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Abstract

Generating background scenes for salient objects plays
a crucial role across various domains including creative de-
sign and e-commerce, as it enhances the presentation and
context of subjects by integrating them into tailored envi-
ronments. Background generation can be framed as a task
of text-conditioned outpainting, where the goal is to extend
image content beyond a salient object’s boundaries on a
blank background. Although popular diffusion models for
text-guided inpainting can also be used for outpainting by
mask inversion, they are trained to fill in missing parts of
an image rather than to place an object into a scene. Con-
sequently, when used for background creation, inpainting
models frequently extend the salient object’s boundaries
and thereby change the object’s identity, which is a phe-
nomenon we call “object expansion.” This paper introduces
a model for adapting inpainting diffusion models to the
salient object outpainting task using Stable Diffusion and
ControlNet architectures. We present a series of qualitative
and quantitative results across models and datasets, includ-
ing a newly proposed metric to measure object expansion
that does not require any human labeling. Compared to
Stable Diffusion 2.0 Inpainting, our proposed approach re-
duces object expansion by 3.6 X on average with no degra-
dation in standard visual metrics across multiple datasets.

1. Introduction

Image outpainting, also known as image extrapolation or
extension, has been a longstanding challenge within com-
puter vision. Prior image outpainting techniques relied
upon retrieval and stitching methods using image patches,
or learning-based methods [9, 17, 21, 45, 47, 57]. The new
wave of generative image models [34—-36] has been adapted
to also solve the outpainting task, representing a break-
through in image quality and adding controllability via text
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prompts and other control inputs. Our work focuses specif-
ically on salient object outpainting, an outpainting problem
that involves generating a natural and coherent background
for a salient object, while optionally conditioned on a text
prompt, as shown in Figure 1.

Given an object, humans can readily imagine its empir-
ical context by relating objects to their context in daily life
while also being able to imagine them in unconventional
settings, such as a swan in a bedroom, as depicted in Fig-
ure 1. There are many potential applications for the salient
object outpainting problem we study here, such as gener-
ating backgrounds for products in online advertising, film-
making, creative design, and augmented reality. Object out-
painting is much more challenging than usual image com-
pletion tasks like inpainting and outpainting for two rea-
sons: (i) the object and background contents may not be re-
lated to each other, (ii) to generate a background constrained
by the salient object, the model needs to understand the cor-
relations within the scene at a semantic level.

Recently, diffusion models [14, 39] such as Latent Dif-
fusion Models [35], unCLIP [34], and Imagen [36] have
shown outstanding results in text-to-image generation. An
early approach for adapting them to the inpainting task con-
sisted of replacing the random noise in the fixed portion of
the image with a noisy version of itself during the diffu-
sion reverse process [26]; however, the model’s inability to
observe the global context during sampling led to unsatis-
factory samples [29]. GLIDE [29] and Stable Inpainting
(SD [35] improved upon this by using the masked image
as extra conditioning information to the reverse diffusion
process. They trained their models using randomly gener-
ated masks to specify what portion of the image to inpaint;
however, the masks were randomly placed and had circu-
lar, square, or highly irregular shapes which are rarely ever
seen in real-world inpainting scenarios. To better mimic
real-world inpainting masks, later works [53, 59] propose
masks that follow object shapes obtained from various seg-
mentation datasets. To ensure that salient objects are not
masked out, they subtract the portion of some masks that
correspond to salient objects in the training image. How-
ever, these masks can be from any object, resulting in small
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Salient Object

“a swan on a beach”

“a swan in a jungle”

‘““a swan in a room”

Figure 1. Examples of outpainting a salient object (leftmost column) using the Stable Inpainting 2.0 (SI2) model (columns 2, 4, 6 from
left) and using our proposed model (columns 3, 5, 7 from left). The images in each paired column (2 & 3,4 & 5, 6 & 7) are generated
using the same seed and prompt, but one uses SI2, and the other uses our model. Objects are often expanded using the SI2 model, which
may catastrophically change the object’s identity. For example, the legs of the tables are expanded in the first two rows; in the third row, a
bench is transformed into a bed; in the last row, a swan is blended into a rock and a bed.

(a) Input image
= o i W

(b) RunwayML'’s generated backgrounds

Figure 2. Significant object expansion is seen at the bottom of the
white dresser with RunwayML’s Background Remix, a popular
commercial tool. These examples are generated with the prompt
of “a modern room.”

masks relative to the image size. Thus, despite these im-
provements, inpainting models are primarily trained to fill
in missing parts of an image rather than synthesize complete
backgrounds conditioned on salient objects.

In practice, we observe that when such inpainting models
are used for background generation, they often ignore the

salient object’s original boundaries and modify or rechar-
acterize the object, as shown in Figure 1 for the Stable In-
painting 2.0 model (SI12) [35, 41]. We call this phenomenon
object expansion. As shown in Figure 2, even popular com-
mercial tools for background generation are prone to this
limitation. To quantify object expansion, we propose an au-
tomated metric that avoids the need for any human labeling.
We also propose a solution to object expansion using Con-
trolNet [55] to maintain object boundaries. ControlNet was
introduced to control large text-to-image models with extra
input conditions like edge maps, segmentation maps, key
points, etc. We utilize the mask of the salient object as a new
input condition to address expansion. Although ControlNet
was initially designed for standard text-to-image diffusion
models, we modify its architecture to be compatible with
diffusion-based inpainting.

Though our approach could also be applied to back-
ground generation for non-salient objects, we train our
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model specifically for salient object outpainting for two rea-

sons. First, we can use readily available manually anno-

tated salient object detection datasets to train our salient ob-
ject outpainting model. If we were to tackle background
generation for non-salient objects, we would have to train
our model with panoptic or instance segmentation datasets,
whose masks, unfortunately, are not pixel-perfect, contain-
ing noisy labels that may not help reduce the object expan-
sion problem. Second, a notable application for background
generation is e-commerce, where personalized and aesthet-
ically pleasant backgrounds can be generated for products
that would be salient objects in the final images.

Our main contributions are:

* A novel study of diffusion-based inpainting models ap-
plied to salient object-aware background generation.

* A characterization of the object expansion problem when
inpainting models are applied for background generation,
as well as a measure for quantifying it.

e An architecture based on ControlNet for adapting
diffusion-based inpainting models to salient object-aware
background generation.”

* Extensive experimental evaluation, comparing our pro-
posed approach to prior work across various metrics and
demonstrating its effectiveness in addressing object ex-
pansion. Compared to a state-of-the-art baseline, our pro-
posed approach reduces the object expansion by 3.6 x on
average with no degradation in standard visual metrics
across multiple datasets.

2. Related Work
2.1. Diffusion Models

Diffusion models [14, 39] are a class of generative mod-
els that learn the data distribution by learning to invert a
Markov noising process. They have gained widespread
attention recently due to their training stability and supe-
rior performance in image synthesis compared to prior ap-
proaches such as generative adversarial networks (GANS).
Given a clean image x, the diffusion process adds noise
to the image at each step ¢, obtaining a set of noisy images
x¢. Then, a model is trained to recover the clean image z(
from x; in the backward process. Diffusion models have
produced appealing results on different tasks, e.g., uncon-
ditional image generation [14, 16, 39, 42], text-to-image
generation [33-36], video generation [15], image inpaint-
ing [1, 2, 26, 29], image translation [27, 46, 58], and image
editing [6, 10, 18].

2.2. Text-guided Image Inpainting

Leveraging the recent triumph of diffusion-based text-to-
image models, a natural transition from text-to-image cre-
ation to text-guided inpainting involves running diffusion
with a standard synthesis model, but at each step replacing
the portion of the image being generated that is outside the

*The code and model checkpoints will be available at https://
github.com/yahoo/photo-background-generation.

mask with a noised version of the input image. In practice,
this approach does not properly condition on the input im-
age, leading to incongruent generations. GLIDE [29] effec-
tively addresses this issue by using the masked image and
mask as direct conditioning inputs to the diffusion model.
Blended Diffusion [1] promotes the alignment of the final
output with the text prompt through the use of a CLIP-based
score [32]. The Repaint method [26] resamples during each
retrograde step, yet lacks support for text input. PaintBy-
Word [3] creates an alliance between a large-scale genera-
tive adversarial network (GAN) and a complete-text image
recovery network, facilitating multi-modal image editing;
however, the GAN structure restricts specific modifications
to regions indicated by the mask. TDANet [54] introduces
a dual attention mechanism that uses text features related to
the masked area by contrasting the text with the original and
noised image. SmartBrush [49] proposes a diffusion-based
model for completing a missing region with an object us-
ing text and shape guidance. None of the prior arts study
the task of background generation for salient objects using
diffusion models.

3. Salient Object Outpainting

Here, we introduce our proposed model architecture for
salient object outpainting. We use Stable Inpainting 2.0
(SI2) as a base model and add the ControlNet model on top
to adapt it to the salient object outpainting task. We explain
each component of our model in the following subsections.

3.1. Stable Inpainting

The training of Stable Diffusion (SD) [35], a text-to-image
diffusion model, involved billions of images. The main
component of the model is a denoising U-Net, which itself
consists of an encoder, a middle block, and a decoder, with
skip connections between the encoder and decoder blocks.
The U-Net is composed of 25 blocks, divided into 12 sym-
metric blocks for each encoder and decoder, plus a middle
block. There are 25 blocks in total, with 8 being down-
sampling or up-sampling convolution layers, and the re-
maining 17 being main blocks containing two transformer
layers and four residual layers each. Each transformer layer
contains several cross-attention and/or self-attention mech-
anisms. CLIP is the source of text embeddings while sinu-
soidal positional encoding is used for diffusion time steps.
SD has been shown to be a competent and versa-
tile text-to-image generative model.  Stable Diffusion
v2-base [40], referred to as SD2, was initially trained
for 550k steps at 256256 pixel resolution on a subset of
LAION-5B [37] with aesthetic score of 4.5 or higher. SD2
differs from previous versions due to its subsequent train-
ing on a dataset with at least 512 x 512 pixel resolution,
resulting in more detailed and visually appealing images.
Stable Diffusion v2-inpainting [41], referred to here
as SI2, is built on top of SD2 and trained for an additional
200k steps. The training process incorporates the mask-
generation approach introduced in LaMa [42], while adding
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Figure 3. The proposed architecture for salient object outpainting. The original ControlNet architecture only works with text-to-image
Stable Diffusion. To make it compatible with text-to-image Stable Inpainting we modified the ControlNet’s U-Net architecture to take two
extra inputs: 1) mask and 2) masked image. The blue region denotes the frozen Stable Inpainting’s U-Net model. The red region includes
replicas of the encoder layers of the blue region. The zero convolution outputs from the red region modulate the outputs of decoder layers in
the blue region. Initially, during training, the modulation has no effect on the output as the weights of the convolution layer are initialized to
zero. Gradually, during training, the nuances of the task of background generation for salient objects will be encoded in modulated values.

the latent VAE representations of the masked image as con-
ditioning inputs. We select SI2 as the base model in this
work because SI2 already has outpainting capabilities and
provides a better initialization compared to SD2.

3.2. ControlNet for Stable Inpainting

ControlNet [55] is a neural network architecture to control
the output of existing text-to-image diffusion models by
enabling them to support additional input conditions. We
adapt ControlNet’s architecture to text-to-image inpainting
diffusion models as they provide a good initialization point
for outpainting tasks. This adaptation requires adding extra
inputs to ControlNet: (i) a masked image, which contains
the pixel values of the salient object; (ii) a binary mask in
which 1s are the pixels to fill in and 0s are the pixels to keep
from the salient object in the masked image. Figure 3 shows
the architecture of the proposed salient object outpainting.
We employ the ControlNet architecture on top of the Stable
Inpainting 2.0 (SI2) model.

To enable computationally efficient training, SD applies
a pre-processing technique akin to VQ-GAN [8] where the
entire collection of 512 X 512 images is transformed into

smaller (64 X 64 X 4) latent images. To match the convolu-
tion size, it is necessary to convert image-based conditions
to a 64 X 64 X 4 feature space in the ControlNet archi-
tecture. The image-space condition is encoded into feature
maps with a tiny neural network comprising of four convo-
lution layers. The network uses 4 x 4 kernels and 2 x 2
strides, ReLLU activations, and channel dimensions of 16,
32, 64, and 128 (respectively for each of the four convolu-
tion layers) and is initialized with Gaussian weights. This
network is trained jointly with the ControlNet model and
later passed to the U-Net model. Training the ControlNet
is computationally efficient as the original weights of the
UNet are locked, and only the gradients from the UNet’s
decoder are required so we need not compute gradients for
the original UNet’s encoder. As only the encoder layers are
copied to ControlNet, the cost of running the decoder layers
is avoided. Specifically, in the forward pass, we must oper-
ate a lightweight mask encoder, two U-Net encoders, one
U-Net decoder, and a few zero convolution layers. We ob-
serve a 33% increase in runtime and a 25% increase in GPU
memory consumption on V100 GPUs when fine-tuning the
whole SI2’s U-Net, relative to training the ControlNet.
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Figure 4. Pipeline for computing salient object masks of the original image (m;) and the outpainted image (m,) to measure object
expansion. We found that existing salient object segmentation (SOS) models underperform on synthetic images, but the Segment Anything
Model (SAM) works robustly. Therefore, we (i) obtain the salient object mask of the original image using the SOS model, (ii) sample
random points from the mask, and (iii) pass sampled point coordinates as the input point prompt to SAM to obtain the salient object mask
mo. We obtain a new salient mask from SAM for the original image (m;) as well for an apples-to-apples comparison with m,.

In the ControlNet’s U-Net, the downsampling blocks
(i.e., encoder) and middle block are copied from SI2 and
initialized using the same weights. The U-Net in the SI2
model takes two additional inputs besides the random noise
(4 X 64 x 64) by concatenation across the channel dimen-
sion: (i) binarized mask (1 X 64 X 64), and (ii) encoded
masked image (4 X 64 X 64). The resulting latent input
(9 X 64 x 64) is then passed to a 3 x 3 convolution layer
which outputs a tensor of size 320 X 64 X 64. The input
to the ControlNet’s U-Net is the encoded condition image
(i.e., salient mask) which is encoded using a convolutional
encoder followed by a zero convolution layer.

The ControlNet uses several zero convolution layers to
modify the U-Net decoder outputs gradually. Mathemat-
ically, we are given the feature map x € R'X*X¢ with
{h,w, c} being height, width, and channel numbers, a U-
Net encoder block E(.; ©.) with a set of parameters O, and
a U-Net decoder block D(.;0,4) with a set of parameters
©4. We denote the zero convolution operation as Z(.; ©,).
The structure of the ControlNet we are using is defined by:

y = D(d;©q) + Z (E(e;©¢), 02) (1)

where y becomes the output of a decoder layer modulated
by the ControlNet structure. As the parameters of a zero
convolution layer are initialized as zeros, in the first gra-
dient descent step, we have Z(x;0,) = 0, which means
the original output of the decoder layer does not change.
As a result, all the inputs and outputs of both trainable and
frozen copies of the U-Net model are not changed, as if the
ControlNet did not exist. When the ControlNet structure is
applied to some layers before any gradient descent step, it
will not influence the intermediate features.

Training. Image diffusion models learn to progressively
denoise images to generate samples. The denoising process
can happen in pixel space or a latent space encoded from
training data. SD uses latent images as the training domain.
Given an image (or latent image) x¢, diffusion algorithms

progressively add noise to the image and produce a noisy
image x¢, with 1 < ¢ < T being the number of timesteps for
which the noise is added. When ¢ is large enough, the image
approximates pure noise. Given a set of conditions includ-
ing timestep ¢, text prompts c;, as well as a task-specific
condition (i.e., the salient mask) cy, image diffusion algo-
rithms learn a network €y to predict the noise, €;, added to
the noisy image x; with

L= EtN[l,T],zo,ct,Cf,et ||€t - 69(3315; Ct,Cf, t)”g (@)

where L is the overall learning objective of the entire diffu-
sion model which can be directly used in fine-tuning as well.
As we are applying classifier-free guidance (CFG) [13], we
randomly drop 10% of text guidance during training to not
drift away from the learned unconditional image generation.
Text dropping also facilitates ControlNet’s capability to rec-
ognize semantic contents from the salient mask.

3.3. Measuring Object Expansion

The primary limitation of text-guided diffusion models for
salient object outpainting tasks is their inability to preserve
object boundaries. To assess a method for handling the
issue of object expansion, we need a way to measure the
error quantitatively. To avoid the need for expensive hu-
man labeling, we initially attempted to use salient object
segmentation (SOS) models to generate salient masks for
both the input (the salient object on a blank background)
and output (outpainted) images. The SOS models we ex-
perimented with [19, 31] were observed to have extremely
poor performance on outpainted images, which we hypoth-
esize is likely due to a distribution shift. However, we note
that the Segment Anything Model (SAM) [20] is immune to
this issue on outpainted images. While SAM is not an SOS
model, it can take a set of positive and negative points as a
prompt to segment the objects represented by the positive
points, while avoiding those represented by negative points.
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Dataset Model FID| LPIPS| CLIP Score{ Obj. Similarity T Obj. Expansion |
Blended Diffusion 31.63 0.41 24.95 0.49 0.21
GLIDE 26.35 0.28 24.82 0.62 0.18
ImageNet-1k | Stable Diffusion 2.0 16.90 0.38 27.46 0.56 0.15
Stable Inpainting 2.0 10.56 0.34 27.21 0.63 0.12
SI2 + ControlNet (ours) | 8.56 0.32 26.34 0.69 0.04
Blended Diffusion 30.13 0.36 25.70 0.75 0.25
GLIDE 25.67 0.19 26.17 0.80 0.26
ABO Stable Diffusion 2.0 9.58 0.31 28.45 0.72 0.18
Stable Inpainting 2.0 9.31 0.28 28.10 0.80 0.10
SI2 + ControlNet (ours) | 5.93 0.27 27.74 0.83 0.04
Blended Diffusion 30.88 0.43 23.82 0.40 0.21
GLIDE 25.96 0.37 24.40 0.48 0.13
COCO Stable Diffusion 2.0 18.89 0.42 27.51 0.47 0.17
Stable Inpainting 2.0 11.35 0.38 27.25 0.52 0.12
SI2 + ControlNet (ours) | 9.38 0.36 26.37 0.57 0.04
Blended Diffusion 29.98 0.48 22.14 0.52 0.12
GLIDE 24.78 0.40 24.02 0.54 0.07
DAVIS Stable Diffusion 2.0 20.69 0.44 28.14 0.56 0.16
Stable Inpainting 2.0 11.77 0.39 28.10 0.64 0.06
SI2 + ControlNet (ours) | 8.70 0.37 27.62 0.69 0.01
Blended Diffusion 30.10 0.45 24.33 0.48 0.12
GLIDE 26.95 0.30 24.58 0.55 0.14
Pascal Stable Diffusion 2.0 18.83 0.40 27.41 0.50 0.14
Stable Inpainting 2.0 11.26 0.36 27.30 0.56 0.10
SI2 + ControlNet (ours) | 8.28 0.34 26.39 0.59 0.03

Table 1. Evaluation results of text-guided salient object outpainting. Our proposed approach (SI2 + ControlNet) reduces object expansion
relative to SI2 by 3.6 x on average, while also surpassing SI2 on the visual metrics (FID, LPIPS).

We randomly pick 10 positive and negative points from the
salient mask of the original image obtained using the SOS
model InSPyReNet [19]. The positive (negative) points are
inside (outside) the mask. Then, the outpainted image and
point prompts are passed to the SAM model to segment the
salient object and produce a mask m,. We also obtain a
salient mask of the input object-only image m,; using the
same process to enable an apples-to-apples comparison be-
tween masks. Figure 4 illustrates the pipeline for obtaining
these salient masks.

Given the masks m, and m;, a natural measure of object
expansion E can be defined as:

E = AREA(m,) — AREA(m;) 3)

with AREA expressed as a percentage of the image. Because
our outpainting models never shrink the salient object, the
salient mask area in the outpainted image would ideally al-
ways be larger than the salient mask area in the original
image, i.e., AREA(m;) < AREA(m,). However, as seg-
mentation models are prone to error, all pixels in m; may
not be included in m,, leading to an underestimate of the
magnitude of the expansion. To account for this, we modify
the outpainted mask to include m; and instead propose the

following measure for object expansion:
E = AREA(m, Um;) — AREA(m;) 4)

With this score, an upper bound exists for the object ex-
pansion based on the size of the salient object. The larger
the salient object in the original image, the lower the upper
bound of expansion.

4. Experiments

We use the following salient object segmentation datasets as
training data, with 56k images in total: CSSD [50], ECSSD
[38], DISSk [31], DUTS [44], DUT-OMRON [51], HRSOD
[52], MSRA-10k [4], MSRA-B [43], and XPIE [48]. As
addressed in Section 4.2.1, training only on salient ob-
ject datasets can reduce the diversity of generated back-
grounds; for this reason, we also include the training par-
tition of COCO [24], which has 118K images. The salient
masks for COCO were generated using the state-of-the-art
InSPyReNet [19] salient object segmentation model. To
train text-guided diffusion models, we need image captions.
We use ground truth captions for COCO and obtain the cap-
tions for the salient objects datasets using BLIP-2 [22]. The
proposed architecture is trained on 8 NVIDIA V100 GPUs
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Table 2. Comparison of SI2 and our model given different types of
prompts: (i) empty, (ii) a likely setting for the object, and (iii) an
unlikely setting. Metrics are averaged over all evaluation datasets.
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Figure 5. Controlling the strength of ControlNet using the ad-
justable weight w at inference time. With w = 0.0, objects can
expand freely. Setting w = 1.0 aggressively prevents expansion.
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Figure 6. Comparison of salient object expansion across 12 COCO
supercategories. The worst expansion scores for each model are
observed in indoor settings with fine details.

for 300k iterations with the AdamW [25] optimizer using a
learning rate of 5¢ =5 and batch size of 15 per GPU.

4.1. Experimental Procedure

We choose the state-of-the-art image inpainting methods
with available code as our baselines: Blended Diffusion [1],
GLIDE [29], Stable Diffusion [35], and Stable Inpaint-
ing [35]. Stable Diffusion, Stable Inpainting, and our
method support image generation for 512 x 512 sizes, but
because Blended Diffusion only supports an image size of

256 x 256, we resize all results to 256 x 256 for fair com-

parison. We compare these techniques using:

1. Fréchet Inception Distance (FID) [12] which evaluates
perceptual quality by measuring the distribution distance
between the synthesized images and real images. A por-
tion of ImageNet [7] is used as the reference dataset.

2. Perceptual Image Patch Similarity (LPIPS) [56]
which evaluates the diversity of generated backgrounds
by computing the average LPIPS score between pairs of
outpainted images for the same salient object image.

3. CLIP Score [11] which measures the alignment be-
tween the text prompt and generated images as
the cosine distance between their embeddings using
CLIP-ViT-L/14.

4. Object Similarity measures how much the salient ob-
ject identity is conceptually preserved after background
generation. This is computed as the cosine distance be-
tween the embeddings of the outpainted image and input
object-only image using BLIP-2.

5. Object Expansion quantifies the degree of expansion of
the salient object in pixel space, as described in Section
3.3.

We conduct evaluations on five datasets: ImageNet [7],

Amazon Berkeley Objects (ABO) [5], the validation split of

COCO [24], DAVIS [52], and Pascal [23]. DAVIS and PAS-

CAL already have ground truth salient masks, but we obtain

the salient object masks of ImageNet, ABO, and COCO im-

ages using InSPyReNet [19] and discard images in which

the salient object occupies less than 5% of the image area.

4.2. Results

The detailed results are presented in Table 1. Our method
reduces object expansion by 3.6 X on average compared to
the state-of-the-art SI2. The SI2 model has been trained
on the LAION [37] dataset, which includes billions of web
images; however, the web image data may contain non-
realistic images such as collages, cartoons, images of text,
etc. As we train this model on real image datasets, we obtain
improved FID and LPIPS scores across standard datasets,
which contain images that also tend to be more realistic.
After GLIDE, which generates the most diverse back-
grounds, our model ranks second in LPIPS by a small mar-
gin. However, GLIDE generations perform poorly under
FID and CLIP Score and show significant object expansion.
SD2 achieves the highest alignment between text prompt
and generation—as measured by CLIP Score—because the
generated background is less constrained by the salient ob-
ject, thus giving the model more freedom to follow the
prompt accurately. Our model slightly degrades the CLIP
Score of SI2, which may be attributed to the distribution of
our training images (67% COCO) and reliance on BLIP-2
synthetic captions for the salient object datasets in our train-
ing corpus. Because these captions can be short and noisy,
they may contribute to a decreased adherence to the input
text prompt by the trained model. However, our architec-
ture allows controlling the strength of ControlNet at infer-
ence time, using an adjustable weight ranging from 0 (no
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Model Training Dataset Train LPIPS | | FID | LPIPS| CLIP Score{ Obj. Sim. 1 Obj. Exp. |
D2 + Comoer SODs 041 312 040 7301 057 0.16
SODs + COCO 031 11.93 037 24.80 0.60 0.13
SODs 041 951 042 75.66 0.63 0.06
SI2 + ControlNet | ¢y coco 0.31 817 033 26.89 0.68 0.03

Table 3. Comparison of training the ControlNet U-Net initialized with SD2 and SI2 using two training sets: (a) only the salient object
datasets (SODs), and (b) SODs plus the COCO training split with segmentation-derived salient object masks. Our results demonstrate that
performance measures improve significantly due to (i) initializing with the SI architecture and weights compared to SD, and (ii) adding
COCO data to the training set, even without ground truth masks for salient objects.

ControlNet) to 1 (full-scale ControlNet). As demonstrated
in Figure 5, using this feature, one can adjust the amount of
control from the ControlNet to different desired levels.

Our approach achieves the highest Object Similarity
score, demonstrating that the identity of the salient object
is better preserved when expansion is explicitly controlled.
A dramatic improvement is seen in the Object Expansion
measure from Section 3.3, with a 3.6x decrease over SI2,
which is ranked second. This improvement can be attributed
to both the model architecture and the training data, which
effectively address the task of salient object outpainting.

4.2.1 Ablation Studies

Role of text prompts. To study the effect of text prompts
on the outpainted images, we evaluate our model and SI2
using different types of prompts in Table 2, including an
empty prompt as well as prompts describing likely and un-
likely settings for the salient objects. For example, a chair is
likely to be found in a room but unlikely to be found in the
sky. This is done by using BLIP-2 to caption the salient ob-
ject image and produce a salient object caption ¢, prompt-
ing OpenAI’s GPT-4 [30] with: “You are a creative and
professional photo editor. Question: What is a very/least
likely scene for the object described in triple parentheses to
be found in? (((c))). Answer: The object is very/least likely
to be found in” and then using the API response as the text
prompt for outpainting. The results in Table 2 show that
FID drops significantly for outpainted images with unlikely
backgrounds, while object identity via the Object Similar-
ity score is preserved the most in likely settings. Prompt-
ing with implausible backgrounds also leads to a slight
decrease in the diversity of the generated backgrounds as
shown through LPIPS, but a large increase in prompt align-
ment via CLIP Score. We hypothesize that when the ob-
ject and the prompt are unrelated, the foreground and back-
ground become independent during the diffusion process,
making them easily distinguishable under these measures.
Finally, object expansion does not appear sensitive to the
background’s naturalness, and our proposed model reduces
expansion robustly across different prompt types.

Object expansion across categories. In Figure 6, we plot
salient object expansion across twelve COCO supercate-
gories. We observe that the ordering of supercategories by
the expansion score is fairly similar across the benchmarked

models. The highest expansion scores for each model are
seen in indoor settings, which tend to contain many fine de-
tails and salient objects with less defined dimensions, such
as FOOD, KITCHEN, and FURNITURE. Similarly, the lowest
expansion scores occur in outdoor scenes like SPORTS and
ANIMAL where objects contrast well with the background.

Effectiveness of inpainting models. The original Con-
trolNet architecture was proposed for controlling text-to-
image models; however, we have adapted it here to work
with text-guided inpainting models. As shown in Table 3,
object expansion with SD2 + ControlNet (a text-to-image
model) is higher than that of SI2 + ControlNet (inpainting)
because inpainting models already can infill missing image
regions, whereas the ControlNet needs to learn this ability
from scratch for text-to-image models. SD2 (SI2)’s UNet
was used in both the frozen stack and the initialization for
the ControlNet encoder stack in the SD2 (SI12) + ControlNet
solution.

Effectiveness of expanding the training set. We ob-
served that the background diversity of the salient object
datasets is lower than in-the-wild datasets such as COCO.
This is also indicated in Table 3 by the LPIPS score for real
training images. We added the training split of COCO to
our training corpus to improve the diversity of our gener-
ated backgrounds. As there is no ground truth segmenta-
tion for salient objects in COCO, we generated synthetic
salient masks for this data using InSPyReNet [19]. The re-
sults show that including COCO data in training, even with
segmentation-derived masks, significantly improves visual
and expansion metrics performance.

5. Conclusions and Future Work

In this paper, we presented an approach based on diffusion
models for generating backgrounds for salient objects with-
out altering their boundaries, as preserving the identity of
objects is necessary in applications such as design and e-
commerce. We identified the problem of object expansion
and provided a measure to capture it. We leave generating
backgrounds for non-salient objects as future work because
it may require high-quality instance or panoptic segmen-
tation masks. Additionally, future work can explore alter-
natives to ControlNet such as the T2I-adapter [28]—which
modulates the U-Net encoder rather than the decoder—or
novel combinations of control architectures for the task of
object-aware background generation.
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