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Abstract

We introduce a new generative approach for synthesizing

3D geometry and images from single-view collections. Most

existing approaches predict volumetric density to render

multi-view consistent images. By employing volumetric ren-

dering using neural radiance fields, they inherit a key limi-

tation: the generated geometry is noisy and unconstrained,

limiting the quality and utility of the output meshes. To ad-

dress this issue, we propose GeoGen, a new SDF-based 3D

generative model trained in an end-to-end manner. Initially,

we reinterpret the volumetric density as a Signed Distance

Function (SDF). This allows us to introduce useful priors

to generate valid meshes. However, those priors prevent

the generative model from learning details, limiting the ap-

plicability of the method to real-world scenarios. To alle-

viate that problem, we make the transformation learnable

and constrain the rendered depth map to be consistent with

the zero-level set of the SDF. Through the lens of adversar-

ial training, we encourage the network to produce higher

fidelity details on the output meshes. For evaluation, we in-

troduce a synthetic dataset of human avatars captured from

360-degree camera angles, to overcome the challenges pre-

sented by real-world datasets, which often lack 3D consis-

tency and do not cover all camera angles. Our experiments

on multiple datasets show that GeoGen produces visually

and quantitatively better geometry than the previous gener-

ative models based on neural radiance fields.

1. Introduction

The combination of generative models [18–20, 24] and im-

plicit neural representations [6, 23, 30] has sparked consid-

erable advancements in 3D representation learning [3, 13].

It has powered the synthesis of high-quality, multi-view

consistent, images. However, a common pitfall in the pur-

suit of higher image quality is the sidelining of the quality

of the underlying geometry [40].

Recent non-generative efforts, such as NeuS [36],

VolSDF [40], and Geo-Neus [10], have made use of the

zero-level set of a Signed Distance Function (SDF) to rep-

resent the surface of the geometry in a scene via a surface

rendering equation, ultimately achieving high-fidelity scene

reconstruction. While these models have shown impressive

potential, given their non-generative nature, they are only

able to reconstruct a scene of interest when multi-view im-

age data is available. This limitation highlights the need

for generative models capable of producing high-quality 2D

images that are suitable for content creation while ensuring

precise geometric synthesis without multi-view data.

Other recent methods such as Ball-GAN [34], and

EG3D [4], have combined generative models with Neural

Radiance Fields (NeRFs) [24] to yield high quality rendered

images. Yet, these approaches often result in noisy meshes

that contain geometric artifacts, which emerge due to the

properties of NeRFs and their lack of constraints on the ge-

ometric reconstructions. Attempts have also been made to

harmonize SDFs with generative models as in [29]. How-

ever, the generated meshes are often overly smooth, a result

of the smoothing prior that encourages the SDF to produce

valid values everywhere in 3D space. Additionally, apply-

ing this loss can be prohibitive at higher resolutions.

In this work, we address these issues by adding SDF con-

straints to improve the synthesized geometry of a 3D-aware

generative model. Our approach, named GeoGen, employs

an SDF depth map consistency loss for enhanced geometric

generation. Specifically, we build on EG3D [4] by intro-

ducing an SDF representation, instead of a density repre-

sentation, to encode the geometry. This allows GeoGen to

extract mesh surfaces directly from the zero-level set of the

SDF [28, 36, 40]. In order to make the SDF representation

learning feasible, and to endow it with the ability to model

complex and detailed geometry, we also propose an SDF
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depth map consistency loss. We use a fixed density-to-SDF

transformation function to convert the density representa-

tion to an SDF. This facilitates generative feature learning

by making the learning objective easier to optimize. The

SDF also enables the extraction of smooth depth maps that

serve as a ‘pseudo’ ground-truth. Our approach uses its own

depth prediction in a self-supervised manner to improve the

reconstruction. In contrast to commonly used priors, our

approach is cheap to compute with only a minor increase in

training time.

GeoGen is able to generate detailed meshes from a single

input 2D image via inversion [31]. This capability is valu-

able in applications where the requirement for detailed and

realistic meshes is needed. In stark contrast to recent meth-

ods like Rodin [37], which required 30 million images dur-

ing training to create 3D meshes, GeoGen uses a fraction of

this number – approximately 50,000 images. Other meth-

ods such as PanoHead [1] propose an augmented triplane

and separate foreground and background in 2D images with

the help of a custom in-house dataset. However, with our

proposed architecture, we show that by enforcing our geo-

metric constraints, we are able to reconstruct a detailed 360◦

geometry, with a reduction in visual artifacts (e.g. the backs

of heads) compared to methods such as EG3D [1].

We make the following contributions: (i) We address the

problem of 3D synthesis from 2D images by combining

a Signed Distance Function (SDF) network with a Style-

GAN generative architecture. Our GeoGen model produces

more refined geometry predictions compared to conven-

tional neural volume rendering. (ii) We propose an SDF

depth map consistency loss that is designed to address geo-

metric inaccuracies from volumetric integration by aligning

3D points with the SDF network’s zero-level set for more

precise reconstructions. (iii) We introduce a new dataset of

realistic synthetic human heads that contains 360◦ camera

views from multiple synthetic humans. This dataset will be

a valuable resource for training and quantitatively evaluat-

ing 3D generative models.

2. Related work

The landscape of generative modeling has seen a shift in

recent years, with techniques drawing on neural implicit

representations, such as Generative Adversarial Networks

(GANs) [13] and Diffusion models [9, 17, 22, 35] emerg-

ing as powerful tools. These techniques blend generative

models with neural volume rendering, thereby synthesiz-

ing 3D images that capture novel viewpoints from 2D data

alone [24]. However, a recurring challenge in this domain

has been the reliance on generic density functions to learn

the geometry of the images, a factor that often introduces

artifacts and results in noisy, low-quality geometric predic-

tions [29]. To mitigate this, prior work has taken advantage

of large amounts of multi-view data to constrain the models,

thereby yielding more robust geometry [36, 40], but at the

expense of not being fully generative.

The emergence of volumetric implicit representations,

bolstered by the strengths of Multi-Layer Perceptrons

(MLPs) [14] and neural rendering techniques [24], has

shown substantial promise in extracting detailed geometry

from a 3D scene. This is most apparent in methods such

as NeuS [36] and VolSDF [40], which extract high-fidelity

surfaces by representing the scene using the Signed Dis-

tance Function (SDF) and extracting the surface at the zero

level set.

Meanwhile, the broader field of deep learning has seen

a surge in novel methods for creating 3D representations

from 2D data. One such family of methods is Neural Radi-

ance Fields (NeRFs) [24], which employs a neural network

to model the radiance of a 3D scene at any spatial point. The

ability of NeRFs to generate high-fidelity 3D models from

2D multi-view supervision, complete with accurate light-

ing and shading effects, makes them an attractive option for

applications requiring realistic 3D representations, such as

virtual reality [40].

One set of methods that deserves particular discussion

within this landscape is the set of 3D-aware generative mod-

els [3, 8, 11, 12, 15, 25–27, 33]. These methods are specif-

ically designed to generate 3D representations of objects

or scenes, utilizing a variety of techniques, including vol-

umetric representations, SDFs, and implicit neural repre-

sentations. For instance, the Generative Radiance Fields

(GRAF) model [32] generates high-resolution 3D shapes

with intricate detail, leveraging a neural network to model

the radiance and shape of a 3D object. Other notable mod-

els include DeepSDF [30], which learns continuous signed

distance functions for arbitrary shapes using 3D supervi-

sion, and HoloGAN [25], which generates 3D objects by

imposing structural constraints in the generative process.

Recently, EG3D [4] proposed a triplane representation for

volume rendering in generative models, which enables effi-

cient 3D-aware generation. However, extracting high qual-

ity 3D meshes is not guaranteed because of its use of a vol-

ume density representation. StyleSDF [29], makes use of

an SDF representation to directly model geometry, but the

extracted surfaces are overly smooth making it challenging

to use them in practical applications.

In our investigation of 3D-aware generative models and

SDF representations, we identify certain limitations inher-

ent in existing methodologies. One such limitation appears

to be a result of the use of the Eikonal loss [10, 36, 40], lead-

ing to overly smooth geometry synthesis. Our methodology,

building on the foundation laid by EG3D, aims to overcome

this by introducing an SDF depth-consistency constraint.

This novel constraint is designed to refine geometric surface

predictions by leveraging a self-supervised depth prediction

mechanism. Unlike previous efforts, such as StyleSDF [29],
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Figure 1. GeoGen, our 3D-aware generator, is trained solely from 2D images. Noise sampling is followed by a StyleGan2 generator that

produces triplane features similar to EG3D [4]. However, we enhance them with positional info and an SDF network for refined geometry.

GeoGen is end-to-end trained with a GAN objective along with our SDF depth consistency loss.

which merely translates SDF values into density fields, our

approach harnesses the full potential of SDF for geometry

representation as exemplified by VolSDF [40]. We empha-

size that incorporating our SDF representation and its as-

sociated constraints does not substantially complicate the

training of generative models yet provides enhanced con-

trol over geometric surface detail.

3. Method

Here we present our GeoGen generative approach for

enhanced geometric synthesis. We begin by revisiting

EG3D [4], an efficient geometry-aware 3D GAN that intro-

duces notation and provides context for our contributions.

Then we describe our SDF-based generative model which

builds on the EG3D framework.

3.1. Efficient geometry­aware 3D GAN

EG3D [4] is an efficient geometry-aware 3D generative ad-

versarial network. It consists of a StyleGAN2 [19] based

feature generator, triplane representation, implicit volume

render, and super-resolution module. In order to generate an

image, it first samples a random latent noise code and pro-

cesses the code via a mapping network. The processed code

is used to drive the StyleGAN2 generator to produce feature

maps which are reshaped to form three feature planes. Dur-

ing the volume rendering, a queried 3D point p is projected

onto each of the three feature planes, leading to correspond-

ing feature vector [Fxy(p), Fxz(p), Fyz(p)]. These feature

vectors are further processed by a shallow MLP to yield

the color and density at the position p. By the process of

volumetric integration, a low-resolution image is generated

based on the sampled points along all image rays. Finally, a

super-resolution module is used to generate high-resolution

output images.

Like EG3D, we also use a triplane representation to ef-

ficiently generate images. Different from EG3D, which tar-

gets geometry-aware image synthesis, we focus on high-

quality geometry synthesis. To this aim, we introduce

an SDF-based generative model and present a novel SDF

learning strategy.

3.2. SDF­based generative model

Our goal is to develop a model that can learn to generate

3D consistent object-centric images with associated geom-

etry by making use of a collection of posed single-view 2D

images at training time. This transformation is achieved by

conceptualizing the surface as the zero-level set of a neu-

ral implicit signed distance function. To achieve our high-

fidelity geometric synthesis, we first introduce our aug-

mented triplane representation. Then, we introduce our

SDF-based volume rendering. Finally, we describe an SDF

depth-consistency constraint, which is used to enhance SDF

learning. Figure 1 displays our overall pipeline.

Augmented triplane representation. Our method aug-

ments the original EG3D triplane representation with

sampling position p. According to the sampling po-

sition p, we retrieve the corresponding feature vector

[Fxy(p), Fxz(p), Fyz(p)] via bilinear interpolation. In ad-

dition, the position p is processed by a position embedder

PE(·) that employs multi-level sine and cosine functions

similar to NeRFs [24]:

PE(a) = [a, γ0(a), γ1(a), . . . , γL−1(a)], (1)

where γk(a) = [sin(2kπa), cos(2kπa)], L is a hyper-

parameter that controls the maximum encoded frequency,

and a represents each of the three different spatial dimen-

sions of p. p is defined as a vector since it represents the

position in 3D space. Each component of p (i.e., px, py , pz)

corresponds to a different spatial dimension.

The function γk(a) is a positional encoding function that

takes a scalar value a and returns a 2D vector representation

of the sine and cosine of 2kπa. This function is used for

positional encoding to capture frequency information up to

a maximum frequency defined by the hyper-parameter L.

The augmented triplane representation is formed by

concatenating the triplane features Fxy(p), Fxz(p), and

Fyz(p) with the positional encoding PE(px), PE(py), and

PE(pz). This augmented representation enables the model

to capture high-frequency details by combining the local ge-

ometric features with positional encoding information. The

absence of the positional encoder destabilizes the training

process, often resulting in model collapse (see supplemen-
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tary material for results).

SDF-based volume rendering. The augmented tri-plane

representation is directed to a shallow MLP to learn the SDF

value s(p) and RGB color c(p) for point p. The SDF value

represents the distance to the surface, providing an accurate

depiction of its geometry. To convert the SDF value s(p)
into a density field σ, we follow VolSDF [40] and use the

following Laplace transformation:

σ(s(p)) =







1
2β exp

(

s(p)
β

)

if s(p) ≤ 0

1
β

(

1− 1
2 exp

(

− s(p)
β

))

if s(p) > 0
,

(2)

where β is a parameter, which can be fixed or learned.

Based on the volumetric integration, the rendered RGB

color for a ray r(t) = o+ td is calculated as follows:

C(r) =

M
∑

i=1

Ti(1− exp(−σiδi))ci, (3)

where o is the camera position, d is the ray direction,

Ti = exp(−
∑i−1

j=1 σjδj) and δi = ti+1 − ti is the distance

between adjacent sampled points. For simplicity, we use

σi and ci to denote σ(s(pi)) and c(pi) respectively, which

mean the color and density value at the i-th sampling point

pi along ray r. In a similar way, we compute the rendered

distance as follows:

d(r) =

M
∑

i=1

Ti(1− exp(−σiδi))ti. (4)

SDF depth consistency. It has been shown in Geo-

Neus [10] that there can exist a gap between the rendered

image and the true surface and it is important to introduce

explicit constraints to optimize the SDF network. There-

fore, Geo-Neus introduces sparse points and multi-view

photometric consistency to achieve this in the multi-view

setting when multiple images are available for each object

during training. However, these two constraints are obvi-

ously not available in our single-view GAN setting. To re-

duce the geometry bias caused by volumetric integration,

the 3D point computed from the rendered distance d(r) in

Equation 4 should be located on the zero-level set of the

SDF network. Thus, according to the rendered distance

d(r), its corresponding 3D point pd(r) is computed as:

pd(r) = o+ d(r)d. (5)

Since the above 3D point should be approximately on the

geometry surface, the SDF value of this point should be ap-

proximately zero. Thus, we define an SDF constraint as:

Ls =
1

|R|

∑

r∈R

|s(pd(r))|, (6)

where R denotes all rays for the current camera pose. Dur-

ing training we aim to minimize the above loss.

3.3. Training GeoGen

The SDF-based GeoGen model uses dual discrimination

during training, evaluating both the neurally rendered low-

resolution 2D image and the super-resolved 2D image. The

generative model takes only 2D images as input, and the

discriminator encourages both the low-resolution and super-

resolved synthesized 2D images to match the distribution

of real images. This ensures the consistency between the

super-resolved images and the neural rendering, facilitating

our method to achieve high-quality high-resolution render-

ing results. In addition, the SDF depth consistency loss is

imposed during training to promote geometric consistency.

The model can then effectively learn to capture accurate ge-

ometry information from the 2D images, leading to more

precise and reliable 3D reconstructions. Our overall loss is:

L = Ldis + λLs, (7)

where Ldis is a GAN loss computed using dual discrimi-

nation and λ is a weighting applied to the SDF constraint.

Empirically we find that directly training our model from

scratch is challenging. We suspect that the introduced learn-

able parameter β in Equation 2 prevents the StyleGAN2-

based feature generator from learning effective features. In

addition, the SDF constraint requires good geometry initial-

ization, which is not possible to obtain in the early phase of

training. Therefore, we design a learning strategy to train

our model in which the β parameter of the Laplace den-

sity distribution is fixed to stabilize the early learning of our

generative model.

Specifically, the significant part of this training process

involves managing the β parameter of the Laplace transfor-

mation in Equation 2, which directly influences the learn-

ing of the SDF network. The β parameter remains fixed for

the first N iterations to allow the SDF network to focus on

learning coarse geometry. This enables the learning of the

StyleGAN2-based generator to produce stable view synthe-

sis. After N iterations, we make the β a learnable parameter

to increase the ability of the model to capture finer-scale sur-

face details. As previously mentioned, the SDF constraint

should also be carefully managed. We achieve this by con-

trolling the weight λ in Equation 7, where it is initially set to

0, and then increased to 0.1 after N iterations. As a result,

our geometry optimization is conducted in a quasi coarse-

to-fine fashion, i.e. N iterations, our Geo-Gen learns coarse

geometry and then after this, the SDF constraint can con-

centrate on surface detail refinement.

4. Synthetic human head dataset

Existing methods typically train their models on high

resolution human face datasets such as Flickr-Faces-HQ

(FFHQ) [18]. However, FFHQ only contains a limited

range of captured viewpoints (i.e. no backs of heads) and
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Figure 2. Examples from our synthetic human dataset. We display

rendered images on top and pseudo 3D ground-truth below.

has no 3D ground-truth, hence the need for our syn-

thetic dataset. There are other synthetic datasets, such as

ShapeNet Cars [5], which have ground-truth 3D meshes but

are not realistic looking.

To address this, we created a new dataset of semi-

realistic synthetic human heads which is generated based

on the work of Wood et al. [38]. Our dataset features im-

ages of different synthetic individuals with diverse facial

features, body morphologies, clothing, and hair styles. Cru-

cially, unlike FFHQ which primarily captures frontal views,

our dataset includes images across the full azimuth range,

ensuring comprehensive representation of heads from all

sides. This approach not only fills a critical gap in available

resources but also shifts the focus towards the quality of the

mesh, a vital aspect for advancing the field of 3D generative

modeling.

For our dataset, we randomly generate 10 images of

512×512 for each of 19,800 identities, ensuring a com-

prehensive set of different views, encompassing full az-

imuthal coverage and utilize multi-view stereo and surface

reconstruction techniques to establish pseudo ground-truth

meshes. To generate a pseudo ground-truth mesh for quan-

titative evaluation of 3D reconstruction metrics we use the

ACMP multi-view stereo approach from [39] and Poisson

surface reconstruction [21] to reconstruct the full head ge-

ometry. Example images can be found in Figure 2. A subset

of images from our synthetic dataset will be made available

upon acceptance.

5. Experiments

Here we present qualitative and quantitative results compar-

ing GeoGen to existing methods. For the baseline EG3D

model, we retrained it on each of the evaluation datasets so

that the training settings were consistent with our approach

(e.g. the same number of training epochs). Implementation

details are provided in the supplementary material.

Dataset Method FID↓ KID↓ ID↑

FFHQ GRAF 79.20 55.00 -

PiGAN 83.00 85.80 0.67

GIRAFFE 31.20 20.10 0.64

HoloGAN 90.90 75.50 -

StyleSDF 11.50 2.65 -

EG3D 4.86 0.0053 0.77

EG3D (rebalanced) 4.70 0.0044 0.79

EG3D∗∗ 5.70 0.0054 0.76

GeoGen 5.40 0.0049 0.75

Synthetic Heads EG3D∗∗ 5.90 0.65 0.69

GeoGen 5.10 0.0038 0.69

ShapeNet Cars GIRAFFE 27.30 1.70 -

Pi-GAN 17.30 0.93 -

EG3D 2.75 0.0054 -

EG3D∗∗ 2.90 0.0043 -

GeoGen 2.50 0.0028 -

Table 1. Comparative analysis of different generative models on

FFHQ, our Synthetic Heads, and ShapeNet Cars datasets using

standard 2D metrics. Our model surpasses EG3D [4] and other

leading models in both FID and ID metrics for the Synthetic Heads

and ShapeNet V1 datasets. However, it does not outperform EG3D

on the FFHQ dataset, attributed to a lower number of training it-

erations due to limited computational resources. Additionally, the

original number of training epochs for achieving the reported FID

results in EG3D is not specified by its authors. GeoGen was not

included in training on the FFHQ rebalanced dataset due to its un-

availability during the training period. ∗∗ indicates our retraining

with far fewer iterations and computation power.

5.1. Datasets

We perform experiments on Flickr-Faces-HQ (FFHQ) [18],

ShapeNet Cars [5], and our synthetic human dataset de-

scribed previously. Each provide distinct, valuable re-

sources for training and evaluating 3D-aware generative

models. The FFHQ dataset consists of high-quality real 2D

face images. It contains over 70,000 1024×1024 resolution

images. ShapeNet Cars provides images for a variety of car

models imaged from different viewpoints. The dataset we

used for training contains 2,100 different car instances, each

with 20 images from different viewpoints.

5.2. Quantitative results

We adopt the widely used Frechet Inception Distance

(FID) [16] and Kernel Inception Distance (KID) [2] met-

rics to measure the image synthesis quality of our GeoGen

approach. We also assess multi-view facial identity con-

sistency (ID) by calculating the mean Arcface [7] cosine

similarity score between pairs of views of the same synthe-

sized face rendered from random camera poses. We report

the results of our retrained EG3D baseline using the same

training conditions and our GeoGen model on the three dif-

ferent datasets in Table 1. Our improved results show that

our GeoGen can achieve better image synthesis results on
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Figure 3. Sampled images and meshes from EG3D, Style SDF, and our GeoGen approach on FFHQ. GeoGen meshes display smoothness,

anatomical accuracy, and detailed facial features. In contrast to EG3D and Style SDF, GeoGen synthesizes finer geometric detail.
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Figure 4. Sampled images and meshes from EG3D, StyleSDF, and our GeoGen approach trained on our synthetic human head dataset.

GeoGen results in fewer overt visual artefacts and more faithfully captures the backs of objects (e.g. see second last column). While the

2D images from the competing methods look plausible, the underlying 3D mesh is not always consistent.

synthetic humans and ShapeNet Cars datasets.

An important feature of our approach is its ability to gen-

erate accurate meshes from a single image. However, it

is difficult to evaluate the geometric quality of generative

models on real images as ground-truth 3D shape informa-

tion is challenging to obtain. Instead, it is possible to obtain

the ground-truth meshes for both synthetic datasets that we

use. To evaluate the generated meshes of different methods

quantitatively, we leverage the GAN inversion technique

PTI [31]. Then, given an image from the test set dataset,

we can estimate the corresponding latent code by PTI. With

the latent code, we can generate both the synthesized im-

age and mesh. In this way, we can compute a range of 3D

evaluation metrics that compare the differences between the

synthesized mesh and ground-truth mesh to measure the ge-

ometry fidelity. Results are presented in Table 2, where we

observe that our GeoGen outperforms EG3D.

5.3. Qualitative results

Here we present qualitative results where we compare Ge-

oGen to existing methods. In Figures 5 and 7 we compare

2D image synthesis of different methods via GAN inver-

sion. We observe that GeoGen results in outputs that more

closely match the input image. In Figure 7 we observe that

GeoGen captures details such as the spacing between the

car body and wheel and, in some instances, even the han-

dles on the doors of the cars. Finally, in Figures 6 and 4 we

display sampled outputs (i.e. not inversions).

6. Discussion

Our evaluation shows the competitive performance of our

proposed GeoGen model, both qualitatively and quantita-

tively. To gain deeper insight into the effectiveness of our

approach, we employed a suite of metrics that assess both

the 2D and 3D aspects of the images and meshes gener-
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Figure 5. Inversion Results for EG3D and GeoGen Models: The figure presents a comparison at 0◦, 90◦, and 270◦ angles to highlight

variations in the reconstruction of facial features by the two models.
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Figure 6. Comparison of EG3D and GeoGen, with and without SDF Depth Loss (SDF DL) constraints, showing sampled images from

models trained on our synthetic human images. These examples highlight GeoGen’s ability to represent finer geometric details, e.g. the ears

have more detail than those generated by EG3D. We also observe a failure for EG3D in the top right, where the back of the head contains

facial geometry. More qualitative results highlighting the differences in the use of the SDF depth loss are shown in the supplementary.

ated by our model. Two quantitative performance areas are

of particular note: the synthesis of high-quality 2D images

and precise 3D geometric predictions. Our model competes

closely with EG3D [24] in terms of 2D metrics, outperform-

ing both StyleSDF [30] and GRAF [32]. This demonstrates

our model’s ability to generate high-fidelity 2D images.

Table 2 showcases a systematic comparison between Ge-

oGen and EG3D, revealing the advantages of incorporat-

ing Signed Distance Functions (SDF) and SDF depth con-

straints during training. The lower Chamfer Distance for

GeoGen compared to EG3D for both Cars and synthetic

human heads is indicative of a more precise alignment be-

tween the reconstructed points and corresponding points in

the ground-truth. This highlights an improved precision in

point-to-point correspondence which is an essential part of

3D reconstruction. The Earth Mover’s Distance, another vi-

tal metric in understanding the geometrical congruence be-

tween shapes, is also consistently lower for GeoGen. This

indicates that the shapes are more similar, requiring fewer

alterations to match the ground-truth, thus showing an un-

derlying efficiency in GeoGen’s modeling approach. Fi-

nally, the Mean Surface Distance adds to the evidence of
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Source Image EG3D GeoGen w/o SDF-DL GeoGen w/ SDF-DL

Figure 7. Comparison of mesh predictions on ShapeNet Cars. Meshes are obtained by inverting the source image to derive latent codes.

EG3D meshes display diminished shape fidelity and surface detail. Using SDF constraints in GeoGen improves detail, evident around car

wheels and windows. Results for GeoGen without SDF constraints are also shown for context.

ShapeNet Cars

Method Chamfer↓ MSE↓ HD↓ EMD↓ MSD↓

EG3D 0.31 0.31 0.85 0.44 0.33

GeoGen w/o SDF&Depth Loss 0.27 0.28 0.77 0.42 0.31

GeoGen 0.25 0.27 0.77 0.40 0.29

Synthetic Heads

Method Chamfer↓ MSE↓ HD↓ EMD↓ MSD↓

EG3D 0.21 0.29 0.65 0.54 0.35

GeoGen w/o SDF& Depth Loss 0.19 0.29 0.59 0.45 0.26

GeoGen 0.17 0.27 0.56 0.43 0.24

Table 2. Comparison of different 3D reconstruction metrics for

generative models on ShapeNet Cars and our Synthetic Heads

dataset. We report averages for MSE, HD, and MSD metrics. Vari-

ations of GeoGen without the SDF and Depth Loss constraints are

also shown. Best methods for each dataset are bolded.

GeoGen’s superiority, as it also yields consistently lower

values. The implication here is a closer similarity between

the reconstructed and target shapes, providing further ev-

idence for GeoGen’s effectiveness. The utilization of the

SDF in GeoGen ensures better geometric consistency in the

reconstruction, as it leverages the implicit representation

of the mesh’s surface. GeoGen, with its additional depth

constraints, preserves topology and fine details that are of-

ten overlooked with conventional generative techniques like

EG3D. It is also noteworthy that these numerical advan-

tages, though significant, do not fully represent the percep-

tual quality of the reconstructed models. Qualitative evalu-

ations indicate that models generated by GeoGen often ap-

pear more realistic and accurate, underscoring GeoGen’s

advantage in bridging quantitative performance with per-

ceptual realism.

Limitations. Our GAN-based approach, like others, re-

quires posed images for training. Camera poses can be es-

timated similar to methods used in FFHQ. While we aim to

align the expected depth with the SDF’s zero-level set, ex-

tending the SDF consistency loss to other points along the

ray could theoretically enhance geometric accuracy. How-

ever, this would substantially increase computational load.

There are also inherent limitations in learning-based meth-

ods, such as potential bias from unrepresentative training

data, notably in web-scraped human face images.

7. Conclusion

We presented GeoGen, a novel 3D-aware generative model

for synthesizing high-quality 2D images with associated ac-

curate 3D geometry, that is trained from 2D images. Ge-

oGen outperforms established methods on several perfor-

mance metrics. By harnessing the power of neural implicit

representations and neural signed distance functions, we

have developed a solution that delivers both quality and ver-

satility in the context of 3D representation learning. In addi-

tion, we presented a new synthetic human head dataset for

training and quantitatively evaluating 3D generative mod-

els. GeoGen moves us closer to the goal of enriching fields

such as character animation, gaming, and virtual reality

with plausible 3D geometry from single input images. Our

results affirm the potential of our approach and its relevance

in this rapidly evolving field.
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