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Abstract
Discovering the creative potentials of a random signal

to various artistic expressions in aesthetic and conceptual
richness is a ground for the recent success of generative
machine learning as a way of art creation. To understand
the new artistic medium better, in this work, we compre-
hensively analyze AI-generated art within the context of
human art heritage using our dataset, “ArtConstellation,”
comprising annotations for 6,000 WikiArt and 3,200 AI-
generated artworks. After training various generative mod-
els, we compare the produced art samples with WikiArt data
using the last hidden layer of a deep-CNN trained for style
classification. By interpreting neural representations with
important artistic concepts like Wölfflin’s principles, we
find that AI-generated artworks align with modern period
art concepts (1800 - 2000). Out-Of-Distribution (OOD) and
In-Distribution (ID) detection in CLIP space reveal that AI-
generated art is ID to human art with landscapes and geo-
metric abstract figures but OOD with deformed and twisted
figures, showcasing unique characteristics. A human survey
on emotional experience indicates color composition and
familiar subjects as key factors in likability and emotions.
We introduce our methodologies and dataset, “ArtNeural-
Constellation,” as a framework for contrasting human and
AI-generated art. Code and data are available here.

1. Introduction
Recent advancements in machine learning have transformed
problem-solving across various domains, including art.
Generative ML algorithms like GAN (Generative Adver-
sarial Network) [6] offer artists a scientific tool to explore
creativity from pure randomness to deliberate authorship.
While generative art has historical roots dating back to
projects like Mozart’s Musikalisches Würfelspiel in 1792
and Harold Cohen’s autonomous art systems in the 1970s,
modern generative AI models are gaining attention despite

* indicates equal contribution.

controversies surrounding machine-generated art. Despite
concerns about authorship and copyright, the aesthetic and
conceptual richness of machine learning art is undeniable.
Notable instances include the sale of the first AI artwork
(Portrait of Edmond de Belamy) for over $400K in 2018, an
AI-generated piece (Théâtre D’opéra Spatial) winning first
place in the 2022 Colorado State Fair Fine Art competition,
and a MoMA exhibition in 2023 featuring a large-scale AI-
generated work by Refik Anadol titled “Unsupervised.”

At this pivotal moment in the intersection of AI and art,
understanding the distinctions between human-created and
AI-generated artworks is crucial 1. In this paper, we delve
into various art principles to highlight the differences and
similarities between the two, aiming to deepen our compre-
hension of AI as a new artistic medium. By focusing on
foundational art principle concepts, we lay the groundwork
for a comparative study that can inform future analyses and
the creation of next-generation generative art.

Art styles, or movements, have long been essential in
art history, reflecting cultural shifts, technological advance-
ments, and periods of innovation. For instance, inven-
tions like paint tubes and photography were pivotal for
the emergence of movements like Impressionism and Cu-
bism, respectively. Heinrich Wölfflin’s theory [21], a cor-
nerstone in art historical analysis, provides a framework
for understanding stylistic patterns and changes. His com-
parative method, based on five fundamental visual princi-
ples—linear vs. painterly, planar vs. recessional, closed-
form vs. open-form, multiplicity vs. unity, and absolute
clarity vs. relative clarity—has become standard in art his-
tory training [17], offering insights into distinguishing be-
tween artistic periods such as the Renaissance and Baroque.

Recent studies [4, 12, 13] have analyzed deep neural
net representations of artwork, revealing correlations with
established artistic principles. Elgammal et al.[4] demon-

1In this paper, the terms “human art” and “AI-generated art” refer to
the two end-poles indicating zero and 100% of the intervention degrees of
artificial automaton in art creation.

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

7470

https://github.com/faixan-khan/ArtNeuralConstellation


strated high correlations between the last hidden space of
a deep CNN and Wölfflin’s principles of art history, while
[12, 13] developed a deep neural network aligning dimen-
sions with 58 artistic concepts. While Wölfflin’s principles
were initially for distinguishing Baroque and Renaissance
styles[21], the broader visual elements serve as universal
semantic structures in art analysis [15, 20]; we term these
“general art principles” in this paper.

Inspired by the studies [4, 12, 13], we conducted statis-
tical analysis for the art principles after quantifying the art
samples on the neural net’s hidden layers to answer the fol-
lowing questions: (1) how can we represent individual hu-
man and AI-generated art samples by the art principles?, (2)
what are their collective states, so how does AI-generated
art differ from human artwork?, and (3) can we detect gener-
ative art instances visually outlying from the general human
art population? Through Out-Of-Distribution(OOD) detec-
tion, we specify distinctive visual features that AI-generated
art uniquely has. Pre-trained CLIP [16] is used for the anal-
ysis as a base neural net representation, motivated by its
strong capacity to encode visual concepts in images.

Our contrastive evaluation is not limited to the for-
mal analysis. Two other dimensions of time and emo-
tions/likability are also investigated to identify a dominant
period for human art samples that are visually closer to ma-
chine art. And, we also check if the machine generative art
influences emotional experiences in art appreciation. The
main philosophy of this work is to focus on the collective
state of machine art from the five dimensions after conduct-
ing individual analyses for massive human and machine art
samples generated by various state-of-the-art models. Fi-
nally, we evaluate the difference between human and AI-
generated art, highlighting the key findings below.

• Wölfflin’s art principles: AI-generated artworks are re-
lated more to the concepts which are originally formu-
lated to characterize the Baroque style by Wölfflin.

• General art principles: compared to human art, AI art-
works are visually related more to the art principle con-
cepts for modern art.

• Out-Of-Distribution (OOD) analysis: human and AI-
generated artworks are ID when they depict landscapes
and geometric abstract figures, but when deformed and
twisted figuration is generated by machines, the art sam-
ples are detected as OOD to human art.

• Time analysis: The majority (70%) of the AI-generated
art is visually closest to the modern period art made from
1850 to 2000.

• Likability and emotional experience: AI-generated art-
works have higher likability when they are visually closer
to or resemble human art. And, like human art, they also
evoke a diverse range of emotions.

Along with the findings, we propose massive data col-
lected for this study as a whole analytical framework to

contrast human and AI-generated art. For 6,000 human art
from the eleventh to twentieth century and 3,200 generated
art pieces from eight different generative models, we col-
lected annotations about Wölfflin’s art principles, likability,
and emotions resulting in 262,000 annotations for human
and AI-generated art. The evaluated AI-generated artworks
were generated using StyleGAN-based models with differ-
ent creative loss functions—(1) the adversarial objective of
the original StyleGAN [10, 11], (2) of Creative Adversar-
ial Network (CAN) [3], and (3) of Creative Walk Adver-
sarial Network (CWAN) [9], and two state-of-the-art gen-
erative models: Vector-Quantized GAN (VQ-GAN) [5] and
Denoising Diffusion Probabilistic Models (DDPM) [8].

2. Related Work
2.1. Art Generation Models

Our study relies on StyleGAN [10, 11], an advanced Gen-
erative Adversarial Network (GAN) [6], for art generation,
allowing for hierarchical control over global style and local
details. GAN algorithms have evolved from imitative to cre-
ative, as demonstrated in the literature, by modifying loss
functions to encourage the production of novel and seman-
tically meaningful content [3, 7, 9, 14]. We employ these
networks to foster machine creativity by training StyleGAN
architectures with creative objectives[3, 9]. Additionally,
we examine two state-of-the-art image synthesis models:
VQ-GAN [5], leveraging transformer architecture for high-
resolution image synthesis, and DDPM [8], which progres-
sively converts noise distributions into target data distribu-
tions to generate high-quality images.

2.2. Formal Analysis of Art in Neural Nets

In our study, art samples undergo encoding in a deep neural
network, yielding quantitative representations interpreted
with art principles to glean semantic knowledge about AI-
generated art. Inspired by prior works like [4, 13], which
showcased deep-CNNs’ ability to capture smooth visual
transitions over time in their last hidden layers during style
classification training, we train deep neural networks for 21
human art movements. Leveraging Wölfflin’s and general
art principles, these approaches demonstrate the potential
of deep neural nets as computational frameworks for formal
art analysis. Notably, our work marks the first exploration
utilizing art principles to compare human and AI-generated
pieces in a neural net space.

Expanding beyond art principles, our neural net anal-
ysis delves into general semantics by considering CLIP
space [16]. We observed a clear separation between hu-
man and AI-generated art in CLIP vision space, prompting
an Out-Of-Distribution (OOD) analysis. OOD methods are
crucial for ensuring safe and reliable machine learning. In
this paper, the nearest neighbor OOD detection method [19]
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employed to identify AI-generated samples significantly
distant from their nearest neighbors in the WikiArt dataset.

2.3. Emotional Analysis

Emotional response plays a pivotal role in art apprecia-
tion [18], intriguing both deep learning and computational
art communities in understanding the relationship between
visual features and emotion [2]. Recent efforts, such as
ArtEmis by Achlioptas et al. [1], provide a large-scale
dataset of emotional reactions to visual artwork, facilitat-
ing machine learning models for predicting dominant emo-
tions from images or text. In our study, we conduct a hu-
man survey to explore how individuals perceive emotions
in AI-generated art compared to human art, extending the
ArtEmis dataset with new annotations for AI-generated art.
These annotations adhere to the emotional categories and
survey questions in ArtEmis, providing insights into emo-
tional construction from both AI-generated and human art.

3. Experimental Setup

We test various neural net models and semantic spaces. For
image generation, we train variants of StyleGANs, VQ-
GAN, and DDPM from scratch on the WikiArt dataset.
For art comparison, we consider Wölfflin’s and general art
principles, time, and emotions. All representative CNNs,
including VGG-Nets, ResNets, and vision transformers,
are trained for style classification, and CLIP (ViT-B/32) is
adopted for deep nearest neighbor OOD analysis [19].

In our study, we construct six GAN-type models for art
generation—based on the two versions of StyleGAN-1 and
StyleGAN-2 [10, 11], combining three objectives (1) the
adversarial objective of the original StyleGAN, (2) Creative
Adversarial Network (CAN) [3], and (3) Creative Walk Ad-
versarial Network (CWAN) [9]. Additionally, we include
DDPM [8], which uses diffusion processes for high-quality
image synthesis, and VQ-GAN [5], combining a Variational
Autoencoder (VAE) with a Vector Quantization layer. In
the later sections, we will bold the original StyleGAN-1&2
to avoid confusion with StyleCAN-1&2. All models are
trained on the WikiArt dataset.

We prepare two sets of art data: machine-generated art
and digital human artworks. For machine-generated art, we
sample 400 artworks from each of the eight trained mod-
els. We select four groups of 100 images each based on cri-
teria such as nearest and farthest neighbor distance, shape
entropy, and randomness from a total of 10,000 generated
samples. For digital human art heritage, we select 6,000 art
samples from the WikiArt dataset spanning from the 11th to
the 20th century. They are western art except for Japanese
Ukiyo-e.

3.1. Semantic Spaces for Contrastive Analysis

We analyze art samples using Wölfflin’s principles, initially
devised to differentiate Renaissance and Baroque styles.
These principles include five pairs of opposing concepts:
Linearly vs. Painterly: Linear paintings feature clear
boundaries and isolated objects, while painterly paintings
depict blurry outlines and swift brushstrokes.
Planar vs. Recessional: Planar paintings arrange objects
parallel to the canvas plane, while recessional paintings de-
pict objects at angles, emphasizing spatial depth.
Closed-form vs. Open-form: Closed-form paintings have
balanced figures within the frame, open-form paintings fea-
ture figures cut off, suggesting space beyond the frame.
Multiplicity vs. Unity: Multiplicity paintings have distinct
parts with independent features, while unity paintings fea-
ture elements blending together as a coherent whole.
Absolute Clarity vs. Relative Clarity: Absolute clarity
offers realistic representation for clear object forms, while
relative clarity enhances visual effects in a holistic view.
These principles aid in capturing visual differences between
human and AI-generated art, guiding our analysis.

We gathered data on Wölfflin’s principles by training an-
notators to identify paintings based on these concepts. An
interface presented descriptions of each principle, and anno-
tators rated paintings on a scale of 1 to 5 (1: clear Linearly,
5: clear Painterly). We collected five ratings per painting
to ensure accuracy. Ratings were averaged and normalized
between 0 and 1, with lower scores indicating linear char-
acteristics and higher indicating painterly characteristics.
General Art Principles: Along with Wölfflin’s five princi-
ples, general art principles such as shape, color, texture, and
space are also considered. Our analysis framework is based
on proxy-space [12, 13], a deep neural network trained to
quantify the relatedness of input paintings to 58 art prin-
ciple concepts in its last hidden layer. Each dimension in
proxy-space is aligned with a semantic, enabling direct sta-
tistical analysis for human and generated artworks. We use
a subset of 15 visual concepts with an AUC performance of
more than 0.75, including non-representational, representa-
tional, geometric, abstract, planar, closed, open, rough, per-
spective, broken, thin, flat, distorted, linear, and ambiguous.
Out-Of-Distribution (OOD) Analysis: Machine learning
models, particularly GANs, aim to learn the distribution of
real art but often produce AI-generated art that differs no-
ticeably from human art. Machine spaces can help iden-
tify outlier samples and highlight visual similarities or dif-
ferences between machine and human art. We conduct a
qualitative and comparative examination based on Out-Of-
Distribution (OOD) analysis, distinguishing between OOD
and In-Distribution (ID) instances of machine-generated art
compared to human art. Using CLIP vision space for its
robust visual encoding capacity, we analyze the features de-
termining ID or OOD.
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Figure 1. The distribution example of the first principle: linearly
vs. painterly. The bins represent the values from the left value to
the right value. We can see that AI-generated art is less uniform
than human art for this Wölfflin’s principle. Machine artworks
are highly populated on the right side concepts more in general.
Figures for other principles are in supplementary section C.

Time Analysis: Deep-CNN style classifiers can encode the
smooth visual transition of art over time in its hidden layers.
Even though time information is not used in training, the
hidden representation learned a positive correlation with the
year of art creation [4]. We estimate the time period of AI-
generated art by checking the year of the human art which
is spatially closest to each of AI artworks in a neural space.
Emotion and Likability: In our experiment, we investigate
likability and emotion in art appreciation. Specifically, we
aim to determine if AI-generated art is more liked or dis-
liked, identify visual features prominent in highly liked art,
and assess the range of emotions evoked by generative art-
works compared to human art. Emotional data for human
art was obtained from the ArtEmis dataset, while Mechani-
cal Turk participants provided emotional responses and lik-
ability ratings for all 3,200 AI-generated artworks.
Deep Neural Nets: [4] is seminal in computational art anal-
ysis, showing how a deep-CNN style classifier’s hidden
space captures visual transitions across art movements. In-
spired by this, we trained various neural networks to clas-
sify style and analyzed Wölfflin’s principles and time from
the hidden space. Extracting representations from the last
hidden layer after ReLU activation, we applied PCA to ex-
amine principal components covering 95% of the variance.
ResNet50 showed the highest style accuracy and maximum
correlation with time, thus was chosen for our analysis.

4. Experimental Results
4.1. Wölfflin’s Principles-based Analysis

We reaffirmed that Wölfflin’s principles are implicitly
learned in the last hidden layer of CNN style classi-
fiers. For example, the Pearson correlation coefficients
(PCCs) between Wölfflin’s concepts and ResNet50 fea-
tures for WikiArt art are: linearly-painterly: −0.21, planar-
recessional: −0.19, closed-open: 0.2, multiplicity-unity:
0.25, absolute-relative clarity: 0.33. These are the max-
imum absolute PCCs among the top 30 principal compo-
nents (95% variance). Correlation diminishes after the 30th

Table 1. The table displays the average absolute maximum PCCs
of the first 30 PCA components for human and AI-generated art
across various architectures. The highest PCC for each art type
is bolded, with the second highest in red. Human art consistently
exhibits higher PCC values for all of Wölfflin’s principles across
all architectures. Models labeled with ”+2” denote extended Con-
vNet models with additional hidden layers.

Architecture Human Art SG2 SC2 CW1 CW2 DDPM VQ-GAN

ResNet50 .236 .114 .126 .128 .124 .126 .122
ResNet50+2 .186 .114 .084 .130 .118 .096 .122
ResNet101 .262 .122 .106 .108 .128 .100 .116
ResNet101+2 .170 .096 .094 .134 .116 .092 .118
VGG16 .300 .144 .110 .112 .134 .108 .126
VGG16+2 .344 .118 .112 .116 .124 .108 .122
ViT-S .242 .110 .108 .142 .102 .118 .146
ViT-B .256 .136 .122 .120 .110 .102 .116
ViT-L .224 .142 .110 .124 .132 .116 .136

component. Human and AI-generated art are compared us-
ing Wölfflin’s principles. In Table 1, we averaged the max-
imum absolute Pearson correlation coefficients (PCCs) in
the top 30 principal components for the five principles. Hu-
man artworks show a higher correlation than AI-generated
images consistently. The lower PCC values for AI art sug-
gest it varies within smaller ranges across Wölfflin’s con-
ceptual poles compared to human art. Fig. 1 illustrates that
AI art is more concentrated around higher values, partic-
ularly around 0.4. Concepts associated with Renaissance
style are less prevalent in AI art, with mean values biased to-
wards concepts like ”painterly, relative clarity, unity, open”.
This bias, coupled with smaller deviations across principles,
suggests AI-generated art shares visual characteristics with
modern period human art (1800 - 2000).

4.2. General Art Principles-based Analysis

To compare human and AI-generated artworks based on
general art principles, we utilized the same neural network
as the original framework [12], to quantify paintings’ relat-
edness to each of the 15 visual concepts. We normalized the
AI and human embeddings using human artworks’ means
and standard deviations to establish a unified scale, referred
to as “standardized values by human art.” Kernel Density
Estimation (KDE) and hypothesis testing were conducted
on the normalized space to assess the statistical differences
between AI and human art samples for each concept. Addi-
tional details on the experimental procedure are provided in
supplementary section D.1.

The densities in Fig. 2 show the differences between hu-
man and generated artworks across various visual concepts
and their significance. We combined samples from all eight
models to obtain a single representative density of AI art
for each concept, using a Gaussian kernel with σ = 0.5
for KDE. Hypothesis testing revealed significant differences
between the centers of generated and human art for most vi-
sual concepts, except for “geometric”, “open”, and “linear”.

One interesting observation is that the generated arts are
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Figure 2. For each visual concept, the densities for human (in blue) and generated art (in red) are estimated to contrast their centers. Dotted
densities are also added to show how human artworks visually changed from classical to modern times and to see where the generated art
falls on the historical transitions. The plots’ ranges are magnified around centers, and the names of the concepts are colored red when the
two population means are significantly different. We found AI-generated art centers different from the human centers for most of the visual
concepts except for “geometric”, “open”, and “linear”; in general, generated artworks are visually biased toward modern periods artworks.

visually biased toward modern periods’ human art. We
computed KDE after dividing the human samples into three
groups by the periods: (1) before 1800, (2) 1700 − 1800,
and (3) after 1800. We observed definite linear transitions
of human art for visual concepts across time (dotted and
black lines in Fig. 2). And, the visual bias between AI and
human art is also aligned with the direction of the changes.
For example, as human art is getting less “representational”
closer to the modern period, the generated art is less “repre-
sentational” compared to human art; the same phenomenon
is observed for all the visual concepts. To confirm this ob-
servation, we tested the same hypothesis by dividing human
samples into two groups: before 1800 and (3) after 1800.
The center of generated samples is significantly different
from the human arts as human art samples were drawn be-
fore the 1800s while the center of modern art is not much
different from generated art. The results show that gener-
ated art is visually biased to modern period art from the
perspectives of the principle concepts. The tendency is ob-
served again for individual AI models and all hypothesis
testing results are presented in supplementary section D.2.

To clarify the relation between human and generated
art further, we examined the following questions on proxy
space: (1) what are the nearest and farthest generated sam-
ples to human art, (2) how do they look depending on the
distances, and (3) lastly, we check whether the generated
arts are valued within the range of human arts or beyond
on each axis of 15 visual concepts. Based on standardized
values by human art, the most insignificant and significant
AI-generated artworks from human art are sorted and ana-
lyzed. From the insignificant generative arts, we observed a
pattern that AI-generated samples represent the typical sub-
jects in human art: portraits and landscapes, but not in del-
icate or detailed expressions as much as in human art. An-

other result to note is that for all visual concepts, significant
generated samples are observed on the same side of the bias
toward modern arts, but AI-generated art samples are not
valued beyond the extremes of human samples in both neg-
ative and positive sides. This indicates that AI-generated
art is within the distribution of human art at least from the
aspects of the concepts of proxy-space, but its visual char-
acteristic is biased toward modern styles. In supplementary
section H, the art examples are presented.

4.3. Out-Of-Distribution (OOD) Analysis on CLIP

Using CLIP’s [16] robust representation of visual concepts,
we conducted an OOD analysis between human and gener-
ated art. Initial trials showed a clear separation between
human and generated samples in CLIP space, with one-
third of generated samples identified as OOD to human art
at 95% PCA space. To further explore the space, we con-
ducted OOD detection across different PCA spaces (20%,
30%, 50%, 70%, 95%, 100%). OOD samples were de-
tected based on kNN distances computed between human
vs. human and AI-generated vs. human samples [19]. OOD
samples were identified if their kNN distances exceeded a
threshold determined by a 5% false OOD probability. Fig. 3
illustrates the variation in OOD counts and the changing t-
SNE arrangements of generated and human arts with PCA.
Across all models, similar patterns emerged, with the low-
est number of OOD samples observed in lower dimensions
(20%-50% PCA), followed by an increase in OOD samples
as more principal axes were considered. This trend was re-
flected in t-SNE plots for 50%, 70%, and 95% PCA, indicat-
ing that top principal axes encode shared semantics, while
differentiation occurs in later PCA axes.

Different PCA axes in CLIP represent various visual se-
mantics, leading to variations in the spatial arrangements
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Figure 3. For the various CLIP spaces by different PCA dimensional reductions, OOD states are compared along with t-SNE representations
(perplexity 30): human (greenish dots) and generated arts (orange dots). We found that for the top principal axes from 1 to 17 (50% data
variance), OOD is relatively few, but the number of OOD is increased as more additional marginal dimensions are considered.

Figure 4. The most ten OOD (red lines) and eight ID samples
(black lines) in 95% PCA are presented along with their t-SNE lo-
cations. All ID samples show landscape or abstract and geometric
patterns, but OOD samples show irregular and twisted figures.

of arts across PCA spaces. With larger PCA spaces con-
taining more profound semantics, we sought to identify (1)
what generated samples remain close to human art when en-
coded and compared by the various semantics in the large
PCA space (95% variance: 1−256 axes). and (2) what gen-
erated samples are distant to human art when they are com-
pared by a few but essential semantics consisting of the top
PCA space (50% variance: 1−17 axes)? We aimed to char-
acterize shared and distinctive features between human and
AI-generated art by addressing these questions.

To identify the generated samples closest to human art
in a large PCA space (95% variance), we collected the
most In-Distribution (ID) samples and Out-of-Distribution
(OOD) samples. These samples were then analyzed in a
smaller PCA space (50% variance) to observe changes in
their OODness. The t-SNE plot in Fig. 4 illustrates ten
OOD samples (red lines) and eight ID-generated samples
(black lines) on the t-SNE plot in 95% PCA. Notably, ID
samples predominantly depict landscapes or abstract pat-
terns, while OOD samples feature irregular and somewhat

Figure 5. OODness in 50% PCA space is rechecked for the AI-
generated samples detected as most OOD in 95% PCA space. The
three abstract paintings in the first row are newly detected as ID,
while the other generated images in the second and third rows are
still OOD. The incomplete and unbalanced figuration in the seven
samples is what is hardly seen in human art in general.

twisted figures. When analyzed in 50% PCA, all ID sam-
ples remained ID, while some OOD samples transitioned
to ID in the new space, as shown in Fig. 5. The ten OOD
samples in 95% PCA become three ID and seven OOD sam-
ples in 50% PCA. This shift indicates visual distinctions be-
tween the two groups: the first group, initially OOD in 95%
PCA but ID in 50% PCA, appeared too abstract to discern
any figurative objects. Conversely, the second group con-
tained recognizable figures such as towers, portraits, and
landscapes, albeit incomplete and malformed.

The features observed in the sub-samples were consis-
tent for all other OOD and ID samples. All ID-generated
images in 95% PCA depict one of the subjects: landscape,
portrait, and geometric abstract. All OOD-generated im-
ages in 50% PCA contain recognizable objects, but they are
somewhat unbalanced, abnormal, and incomplete. Based on
the observation, we confirmed two things: (1) human and
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Figure 6. t-SNE visualizations of ResNet50 features of AI art (in
black) are overlayed with human art.

Figure 7. The most and least liked AI-generated artworks. There
was a constant feature that affected likability throughout all mod-
els: the highly likable images are mostly the typical landscape
composed of horizontally lined blue sky, water, and trees whereas
the low-scored images are deformed and distorted portraits.

generated art have subjects in common, but (2) some gen-
erated artworks get visually distinct from human art when
they try to reproduce the subjects but fail to have the deli-
cacy and variants as much as human art. It generates incom-
plete and reduced forms but presents a new artistic style.

4.4. Time Analysis

The t-SNE visualization in Fig. 6 shows that AI-generated
art(black dots) tends to cluster with modern human art, sup-
porting the observation in section 4.2 of visual proximity
between them. To figure out the specific period of mod-
ern art closest to our AI-generated art, we computed the
following. We first find the five nearest neighbors from
human art in the ResNet50 space for each of the gener-
ated artworks and then assign the average year of these five
nearest human art pieces of art to the generated artwork.
We observed that the average year of human art from the
WikiArt dataset was 1869, but it was 1891 for the generated
art. We notice that the majority (70%) of the AI-generated
art was estimated to be in the period from 1850 to 2000.
The average year of generated art was 1882 for StyleGAN-
2, 1894 for StyleCAN-2, 1887 for StyleCWAN-1, 1893 for
StyleCWAN-2, 1885 for VQ-GAN, and 1902 from DDPM.

Table 2. Turing and likability results across different groups and
models reveal interesting trends. StyleCWAN consistently showed
higher mean likability compared to other StyleGAN variants, with
the LowestNN group, close to human art in ResNet50, exhibiting
the highest likability. DDPM artworks garnered the highest mean
likability across all groups. In the Turing test, over 50% of par-
ticipants believed that the machine artworks were created by hu-
man artists. For reference, [3] reported Turing test rates of 85%,
41%, and 62% for three human art sets: Abstract Expressionist,
Art Basel, and Artists Sets Combined. Qualitative AI art examples
and Turing results are provided in supplementary section E.

Likability Truing test

models Q1-mean/std NN↑ NN↓ Entropy↑ Random Q2-human artists (%)

StyleGAN-1 3.12/0.58 3.07 3.36 3.00 3.06 55.53
StyleGAN-2 3.02/0.67 2.89 3.31 2.79 3.09 53.80
StyleCAN-1 3.20/1.14 3.01 3.61 3.05 3.11 56.55
StyleCAN-2 3.23/0.61 3.27 3.34 3.11 3.21 57.70

StyleCWAN-1 3.29/1.12 3.15 3.67 3.15 3.17 58.63
StyleCWAN-2 3.40/1.10 3.30 3.61 3.33 3.35 64.00

VQ-GAN 3.57/1.03 3.55 3.65 3.57 3.52 65.90
DDPM 3.85/0.91 3.77 3.90 3.81 3.93 63.55

4.5. Beholder’s Visual Experience

Likability and emotion are the last elements for the com-
parison of the artworks. We conducted a human survey and
found that AI-generated artworks are more likable when
they depict landscapes and portraits, typical genres in hu-
man art, and they evoke a diverse range of emotions, in-
cluding anger, awe, contentment, disgust, excitement, fear,
sadness, and amusement. Participants identified various vi-
sual features that contributed to the likability of generated
art, such as unique color combinations, imaginative compo-
sitions, intricate details, and captivating narratives. These
findings highlight the potential of AI-generative art in offer-
ing engaging and emotional impact on artistic experiences.

4.5.1 Likability

We surveyed likability for all 3,200 AI-generated artworks,
asking participants two questions: Q1, “How much do you
like this image?” and Q2, “Was the art created by a human
artist or a machine?” Likability ratings ranged from 1 to
5, with mean scores above 3 indicating a neutral to pos-
itive response. In Table 2 we report mean values for the
first question (likability) and the percentage of responses
that believed human artists created the AI-generated sam-
ples. Fig. 7 illustrates the most and least liked machine art
samples categorized by the four generative model groups.

We have three points to remark from Table 2. First,
StyleCAN-1&2 and StyleCWAN-1&2 scored higher than
StyleGAN-1&2; in the survey, the models trained with cre-
ative losses resulted in 38% and 18% more people assigning
a full score of 5 over the vanilla models. Second, DDPM is
liked the most (score 3.81) than any other model. DDPM
images are all figurative and representational. We observed
that some samples quite resemble specific paintings by hu-
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Figure 8. Emotional distribution results of the human survey on
human and AI-generated artwork. Both AI-generated and human
art evoke diverse emotions with negative emotions relatively rare.

man artists. For example, the most liked HighestNN in
Fig. 7 reminds us of the winter landscapes of Alfred Sis-
ley. We also found multiple DDPM variations of Marcel
Duchamp’s Sad Young Man on a Train of different tones in
color. Lastly, in comparison of the two NN groups (High-
est NN vs. Lowest NN), Lowest NN—visually closer to
WikiArt—got higher likable scores than other groups for
all the generative models. In our empirical observation, we
found a correlation between the closeness to human art and
likability. AI-generated artworks were more likable when
they successfully depict the popular and familiar topics of
landscape and portrait in human art, but they are disliked
much when they fail to be drawn as a sound shape, like the
deformed portraits in Fig. 7. According to groups and lik-
ability, we characterize our generative models empirically
and provide detailed analyses in supplementary section F.

4.6. Emotional Distribution

We examined the collected data for emotion and investi-
gated the diversity of emotions elicited by AI-generated art.
As shown in Fig. 8, AI-generated art can construct diverse
sets of emotions. To measure the diversity of these emo-
tions, we calculated the entropy of emotions evoked by AI-
generated art and compared it with human art. Human art
has an entropy of 0.916, whereas the generated art from all
models combined has an entropy of 0.938, indicating that
generative art is capable of evoking diverse emotions. How-
ever, some differences exist in the distribution. For exam-
ple, excitement accounts for around 17% of AI-generated
art compared to 7.47% in human art. DDPM has the high-
est percentage of art evoking excitement of 24.90%. Awe
accounts for 18.63% of human art, which is much higher
than machine art, but contentment has the highest share of
any emotion for both human and generated artworks.
Qualitative Analysis of Emotion: Based on the responses
of emotion participants, we derived and analyzed common
factors and elements of AI-generated artworks that con-
structed the different emotions. We find that color and com-
position are the key factors for emotions in the emotional
narratives of participants. Also, some familiar and ordinary
subjects make people comfortable and content by bringing
a good memory related to them. Detailed analyses are pro-
vided in supplementary section G.

5. Conclusion
AI is reshaping both daily life and the landscape of art cre-
ation, sparking debates in the art community regarding the
definition of art, authorship, and creativity. As AI-generated
art gains traction through museum exhibitions and auctions,
understanding its role as a new artistic medium becomes in-
creasingly important. In this work, we delve into generative
AI models, exploring their representation within the broader
context of human art heritage. Through deep neural net rep-
resentations, we aim to analyze, visualize, and interpret the
constellations of AI-generated art, considering fundamental
art principles and emotional experiences. Ultimately, our
goal is to shed light on the current state of machine art.

From our analysis, AI-generated art simulates the most
typical subjects in training data—in our case, landscape,
portrait, and geometric abstracts often drawn from the 1800-
2000 period samples in WikiArt—but the outcomes often
consist of bizarre shapes, distorted human faces and bodies,
and unrecognizable nature scenes especially when gener-
ated by GAN models. The incomplete figuration causes the
bias toward the visual concepts related to modern period art
in abstract and open forms. In OOD analysis, the deformed
images were detected as significant outliers compared to hu-
man art images. The phenomenon might be caused by the
GAN models’ architectures and learning algorithms in prac-
tice, but the constraint comes to form a unique and distinc-
tive visual style of AI-generative art. DDPM, on the other
hand, showed better ability in producing art with realistic
and delicate human and natural figures and they are liked
the most by the participants in our survey.

Our results and empirical observations reveal current
generative art’s unique visual features. And, we understand
that historically new art mediums have initiated new art
movements or genres like the camera, which was introduced
as a scientific instrument, gradually revealed its artistic po-
tential. However, this study did not aim at positioning AI-
generated art into a new abstract category. Rather than that,
we demonstrated how AI-generated art differs from human
art heritage based on various fundamental aspects of art his-
tory and aesthetics in fine neural net representations.

The AI-generated art samples in this work represent the
case where art creation is solely based on the machine’s
random generation without artists’ curation. However, the
practical use of generative models in the art world is beyond
that; existing middle of somewhere between pure random-
ness and the full realization of the author’s free will. Also,
in the developmental process of generative models, we have
many choices for datasets and ML algorithms. Given all
the possibilities and new algorithms, ML-based generative
models possess endless potential for visual art. This work
was about the starting point of the infinite spectrum, offer-
ing a baseline framework for both the art and ML communi-
ties to understand current and next-generation machine art.
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