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Abstract

Image classifiers should be used with caution in the real
world. Performance evaluated on a validation set may not
reflect performance in the real world. In particular, clas-
sifiers may perform well for conditions that are frequently
encountered during training, but poorly for other infrequent
conditions. In this study, we hypothesize that recent ad-
vances in text-to-image generative models make them valu-
able for benchmarking computer vision models such as im-
age classifiers: they can generate images conditioned by
textual prompts that cause classifier failures, allowing fail-
ure conditions to be described with textual attributes. How-
ever, their generation cost becomes an issue when a large
number of synthetic images need to be generated, which is
the case when many different attribute combinations need
to be tested. We propose an image classifier benchmarking
method as an iterative process that alternates image gen-
eration, classifier evaluation, and attribute selection. This
method efficiently explores the attributes that ultimately
lead to poor behavior detection.

1. Introduction

In computer vision, deep learning models have achieved re-
markable successes, consistently pushing the boundaries of
what’s possible in image classification [15], object detection
[27], and many other applications. Despite these achieve-
ments, a persistent challenge remains: accurately discerning
when the predictions made by these models can be trusted
[2]. This is especially important for critical decision sys-
tems such as autonomous vehicles or medical imaging diag-
nostics. Even for less critical systems, errors have a cost that
can be financial or reputational. The reliability of model
predictions becomes particularly nebulous under conditions
of data shift, inherent biases, and the presence of out-of-
distribution (OOD) samples. Using pre-trained models can

worsen those issues because the pre-training process and
data might be unknown. It has been shown that deep neu-
ral networks often rely on spurious correlations for making
predictions [13]. The conventional metric of a single ac-
curacy number falls significantly short of comprehensively
evaluating a model’s performance. It is only a global evalu-
ation of a given data distribution. New benchmarking tools
are required.
Recently, there have been massive improvements in mul-
timodal models, especially those combining textual and vi-
sual data like Text-to-Image generative models. These mod-
els have demonstrated an exceptional ability to understand
and generate content that captures the nuanced interplay
between text and images [26, 29]. This allows new ways
of benchmarking image classifiers with generative models.
Classifier performance can be studied in relation to the tex-
tual attributes of the data [22, 36, 37]. Despite their poten-
tial, however, the practical utility of these generative models
is limited by the computationally intensive inference pro-
cess of the underlying diffusion models. For example, in
[37], testing whether the presence of a flower in an image
causes the classifier to sometimes mistake flies for bees re-
quired hardware with 20 × 4 TPUs.
[22] developed a classifier evaluation process that starts
with an Operational Design Domain [6] that textually de-
scribes the conditions the model is likely to encounter dur-
ing use. It consists of many different combinations of at-
tributes. To test a combination, they use synthetic data from
a text-to-image model. They then identify which of these
combinations lead to classifier errors. However, a major
limitation is the combinatorial explosion: they need to limit
the number of evaluated combinations. They suggest us-
ing combinatorial testing [24], but we found it far from op-
timal and not much better than random selection. In this
paper, we are inspired by the principles of Bayesian Op-
timization (BO), a black-box global optimization method
that is particularly well suited for functions with expen-
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Subdomain
weather: raining
location: forest
time: night
color: black
viewpoint: side

Prompt
"A side view of a black dog in the

forest, during the night, it is raining."

Text-to-Image
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noiseGeneration

Classifier to
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weather: {sunny, ...}
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time: {day, night}
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Evaluation
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Figure 1. Illustration of our method that alternates generation, evaluation, and selection. The selection function selects the next subdomain
to evaluate, based on the feedback of the previous subdomains evaluated. With the right choice of selection function, an efficient exploration
of the evaluation domain is achieved.

sive evaluations. Among others, it has been successfully
applied to Neural Architecture Search (NAS) [20]. We pro-
pose a novel approach to efficiently explore the semantic at-
tributes of data that most significantly impact classification
performance. By leveraging the insights gained from the
multimodal models and addressing the limitations imposed
by the computational demands of diffusion models, our ap-
proach seeks to enhance the reliability and interpretability
of computer vision models. This paper details our method-
ology, which combines the strengths of Bayesian Optimiza-
tion with the latest advancements in benchmarking com-
puter vision with generative models. This offers a more
efficient way to understand classification performance in re-
lation to textual descriptions.

Our contributions are:
• We improve the efficiency of using Text-to-Image mod-

els to identify the textual attributes leading to classifier
failure.

• We show that this approach significantly reduces the exe-
cution time while performing better than baselines.

• We demonstrate through some examples how our ap-
proach improves the understanding of classifier failures.

2. Related Work
Text-to-image generative models Diffusion models, an
essential class of generative models, simulate the process
of adding noise to data and then learning to reverse this
process, enabling the generation of high-quality data sam-
ples. Introduced by [32], these models have paved the way
for advancements in generative modeling by demonstrat-
ing how data distribution can be captured through denois-
ing steps. The development of Denoising Diffusion Prob-
abilistic Models (DDPMs) [16] marked a significant leap
forward, refining training and sampling methods to pro-

duce high-fidelity images. Building upon these foundations,
[8] introduced key improvements in efficiency and sample
quality, leading to outperforming previously state-of-the-art
generative models like GANs [14] and VAEs [21] in image
quality and diversity. Textual conditioning allows for gener-
ating complex and diverse images by prompting them with
text. Well-known Text-to-Image models include DALL-E
2 [26] and Imagen [29]. Stable Diffusion [28] emphasizes
efficiency and scalability. It also makes high-quality text-
to-image generation more accessible as it was published in
open-source. While GANs can also be conditioned by text
[30], the rapid improvements of diffusion models are hard
to match. A main limitation of diffusion models is their in-
ference time, requiring many denoising steps to generate an
image. This is an important research avenue [8, 33].

Classifier failure discovery Discovering failures or bugs
in image classification models has recently been studied
more and more. One can use large labeled datasets and hu-
man verification to identify bugs [11]. To avoid these re-
quirements, other approaches are based on generative mod-
els. In particular, leveraging recent Text-to-Image genera-
tive models allows linking textual attributes to classification
performance. It is possible to identify bugs in a given classi-
fier by generating many images and then clustering and cap-
tioning the ones leading to classification failure [37]. For
instance, the presence of a flower in the images augments
the chances of misclassification of flies into bees. How-
ever, the required computing resources are enormous. [36]
personalizes the generation to a specific dataset to create
distribution-shifted versions of the dataset. They can be
used to test classification models’ robustness to shifts. In
our work, we can study combinations of shifts leading to
failure, or in other words, corner cases. [22] identifies sub-
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groups of data leading to degraded performance. Starting
from an Operational Design Domain defined by domain ex-
perts and consisting of several semantic dimensions. An im-
age classifier is tested on selected subgroups of this domain.
We take inspiration from this work but derive a guided and
efficient exploration of the attributes.

Bayesian optimization Bayesian optimization [12, 19] is
often discussed in the context of Surrogate-Model Based
Optimization (SMBO) [38]. The aim is to evaluate the
costly objective function as few times as possible. To this
end, an efficient model is used as its surrogate. BO typi-
cally relies on regression using Gaussian processes (GPs) in
a process generally known as Kriging. Despite their ubiq-
uity, thanks to many positive attributes, GPs have certain
drawbacks. The most important one is the cubic complex-
ity, making them inefficient as the observed data points in-
crease. Their use is also contingent on selecting a kernel
and possibly a distance function. It is however possible to
effectively apply the general BO loop with alternative mod-
els, such as deep neural networks [31], as well as random
forests [18] and Bayesian neural networks [12].

3. Method

We propose an efficient iterative process to explore the tex-
tual attributes leading to classifier failure. We first intro-
duce the background concepts in subsection 3.1; our defi-
nitions for the evaluation domain and subdomains in sub-
section 3.2; the general pipeline to generate images for the
subdomains in subsection 3.3; and our proposed guided ex-
ploration of attributes that matter in subsection 3.4.

3.1. Background

Image classifier To demonstrate our approach without
using considerable computing power, we tackle a simpli-
fied task: binary classification of images containing dogs.
We construct a dog classifier from a classifier pre-trained
on ImageNet [7], a dataset that contains images of animals
or everyday objects. Out of the 1000 classes, 119 are differ-
ent dog breeds. We sum the classifier probabilities of these
classes to get the dog probability and sum the rest to get the
not-dog probability.

Text-to-image generative models We use diffusion mod-
els as a method for generating images from textual descrip-
tions. They are characterized by their ability to produce
high-quality images through a process of denoising. The
core mechanism involves a forward diffusion process that
incrementally adds noise to an image until it becomes in-
distinguishable from Gaussian noise. The reverse process,
iteratively reconstructing the image from noise, is learned

Algorithm 1 Exploration of image classifier failures

Input:
Dto eval the evaluation domain
Sto eval the list of subdomains to evaluate
f : the classifier
g: the generative model
h: the selection function
n: the number of allowed evaluations
Seval = ∅ the dataset of subdomains evaluations
s0 ∈ Sto eval: the initial selected subdomain
Explore subdomains:
for i = 0 to n do

Generation
build prompt pi from selected subdomain si
x̂i ← g(pi) ▷ generate and filter images from prompt
Evaluation
ŷi ← argmax f(x̂i) ▷ compute predicted classes
ai ← acc(y, ŷ) ▷ compute classifier accuracy
Selection
Seval ← Seval ∪ {(si, ai)} ▷ add result to dataset
Sto eval ← Sto eval \ si ▷ remove from list
si+1 = h(Seval, Sto eval) ▷ update h and select next

end for

during training. For Text-to-Image models, the reverse pro-
cess is conditioned on textual descriptions of the images.
Specifically, on embeddings derived from a pre-trained lan-
guage model to ensure the generated images align with the
provided textual descriptions. This conditioning is usually
integrated with cross-attention [35].

3.2. Define the evaluation domain and subdomains

We call evaluation domain the ensemble of deployment en-
vironment conditions to evaluate. The conditions are de-
scribed by textual attributes, each containing a finite number
of values. They can be categorical or continuous, but we fo-
cus on categorical attributes in this work. The domain com-
prises all the possible attribute value combinations, which
we call subdomains. The number of subdomains grows ex-
ponentially with the number of attributes considered.

As a starting point, we need to define the textual at-
tributes to explore. Expert knowledge is thus required. As
we study image classification of natural images of dogs,
we define the following attributes and associated values in
brackets: weather [sunny, cloudy, raining, snowing], loca-
tion [at the beach, in the forest, in the city, inside a house, in
a garden, in the desert, in the mountains], time [day, night],
color [white, black, brown, beige, gray, red, green, blue],
and viewpoint [front, side, rear]. Some combinations are
not valid and must be removed.
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(a) ”A side view of a brown dog in the city,
during the day, it is sunny.”

(b) ”A front view of a white dog at the
beach, during the day, it is sunny.”

(c) ”A rear view of a black dog in the
desert, during the day, it is foggy.”

(d) ”A front view of a red dog in the city,
during the day, it is snowing.”

(e) ”A front view of a white dog at the
beach, during the day, it is sunny.”

(f) ”A side view of a beige dog in a garden,
during the day, it is raining.”

(g) ”A rear view of a blue dog in the moun-
tains, during the night, it is foggy.”

(h) A front view of a beige dog inside a
house, during the day, it is sunny.

Figure 2. Samples of generated images with their associated prompt. Images on the top row are classified as dogs, while those at the
bottom are not. Note that some biases of the generative model appear: sunglasses at the beach and an umbrella when raining.

3.3. Generate data conditioned by attributes

Prompt The first step is to create a textual prompt cor-
responding to one subdomain attribute. We use a prompt
template to fill with the attributes: ”A {viewpoint} view of a
{color} dog {location}, during the {time}, it is {weather}.”.

Generate A Text-to-Image model can then generate im-
ages conditioned by the textual prompt. The generation is
not deterministic: the starting noisy image is random, and
noise is applied to each step of the reverse diffusion process.
This means that one textual conditioning leads to a variety
of aligned images.

Filter The generation is not perfect, and sometimes the
synthetic image does not align well with the textual prompt
input. We derive a filtering process that follows the gener-
ation to limit this issue. We use CLIP [25] as a zero-shot
subdomain classifier. We have a finite number of subdo-
mains, and each of them is defined as a textual prompt. We
thus compute the cosine similarity between a generated im-
age and all subdomains prompts to obtain logits. Applying
the softmax function to the logits, we get predicted proba-
bilities that the image corresponds to each subdomain. If the
prompt with the maximum probability is indeed the prompt
used to generate the image, we consider the image correct
otherwise it is filtered out.

Subdomain index Viewpoint Color Time Location Weather Classifier accuracy

0 side white day at the beach sunny 0.98
1 side white day at the beach snowing 0.94
2 side white day at the beach raining 0.86
... ... ... ... ... ... ...

1031 rear blue night in the mountains foggy 0.66

Table 1. Reference evaluation data. The generation and evaluation steps were pre-computed, and the results were saved in a table. A table
look-up replaces these costly steps to compare different selection functions quickly. This also removes the variance in the process.
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Figure 3. 3-wise testing selects 61 subdomains to evaluate. Most of them are high-accuracy. We compare that to the other methods when
allowed to explore 61 subdomains. GA and Bayesian optimization identify much more low-accuracy subdomains.

3.4. Guided exploration of attributes that matter

Because generating data conditioned by the attributes de-
scribed above is time-consuming, we propose an efficient
exploration of the critical attributes. An iterative process
alternates the generation of images for a subdomain, eval-
uates the classifier on the subdomain, and selects the next
subdomain to evaluate based on this feedback. The process
is described schematically in Figure 1 and more formally in
Algorithm 1. We propose several selection functions below.

Genetic algorithm (GA) This is a performant optimiza-
tion method based on natural selection [17]. A population
of solutions is evaluated. The top performers are preserved,
and a crossover operation generates children solutions from
pairs of parents. This new generation of solutions under-
goes mutations with a small probability, adding diversity.

Bayesian optimization (BO) Our method to efficiently
explore the space of subdomains involves the same core
loop at the center of Bayesian optimization, relying on a
predictive model to guide the search towards the critical
subdomains.
1. Selection: choose the next subdomain to evaluate using

the model
2. Observation: evaluate the subdomain
3. Model update: add the new observation to the dataset

The selection policy generally means selecting the point
which maximizes an acquisition function. Many acquisi-
tion functions exist in the literature, and each presents a dif-
ferent trade-off between exploration and exploitation. The
selection policy we use is inspired by Expected Improve-
ment [23], a widely used and generally effective acquisition
function. Using the model’s estimation of each subdomain’s
quality, we select the subdomain with the highest potential
improvement over the current best subdomain.

4. Experiments
We conduct experiments evaluating the different aspects of
our approach. We first provide information on our experi-
mental setting in subsection 4.1; we provide details on the

reference data generation in subsection 4.2; we compare
different selection functions, including some baselines, in
subsection 4.3; and we display qualitative results of classi-
fier evaluation in 4.4.

4.1. Prerequisites

Classifier We study a classifier with the ViT-B/16 [9] ar-
chitecture. Weights are from torchvision, following a pre-
training on the ImageNet dataset. The binary classifier’s ac-
curacy on ImageNet validation data is more than 99%. We
want to assess its performance on data that is more diverse
than in the original dataset to see if it can generalize well.

Subdomains The number of possible attribute combina-
tions is 1 class (dog) × 4 weathers × 7 locations × 2 time
periods × 8 colors × 3 viewpoints = 1344. However, some
of the combinations are impossible (e.g., ”during the night,
it is sunny” or ”in a house, it is snowing”). After filtering
those, 1032 combinations remain, forming all the possible
subdomains to evaluate.

Generative model We use Stability AI’s implementation
of Stable Diffusion 2.1 as a text-to-image generative model.
Its architecture is based on Latent Diffusion Models [28],
and text conditioning uses a fixed pre-trained text encoder
based on CLIP ViT/H. Generated images have a 512× 512
resolution, but we resize them into 256 × 256 to save disk
space. Resizing images at a lower resolution is part of the
classifier data preprocessing anyway. We treat this model as
a black box transforming textual input prompts into diverse
corresponding images.

Filtering model Because the generation is imperfect, we
need to filter out generated images that do not align well
with the textual input prompt. We use a subdomain clas-
sifier that classifies generated images into one of the sub-
domains. This classifier is a pre-trained CLIP ViT-L/14
adapted as a zero-shot classifier.

Baselines For comparison, we include some methods of
selecting the subdomains to evaluate as baselines.
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(a) Evolution of the accuracy of selected subdomains during the exploration
(lower is better). We used a moving average with a window size of 10 to
improve clarity. GA and the BO quickly select low-accuracy subdomains
until only higher-accuracy subdomains remain.
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(b) Evolution of the average accuracy on subdomains already evaluated
during the exploration (lower is better). All methods converge to the global
accuracy. Combinatorial testing is not much better than random selection,
compared to the GA and BO.
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(c) Evolution of the 10% lowest accuracy subdomains coverage (higher is
better). We identified the 10% (103) subdomains with the lowest accura-
cies and computed what proportion of them is covered by the subdomains
selected during the exploration. The BO finds all of them after evaluating
≈ 300.
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(d) Spearman’s rank correlation coefficient for different predictors and
training set sizes. It measures the strength and direction of the monotonic
relationship between two ranked variables, here the predicted and test accu-
racies. A value close to 1 means the relationship between the two variables
is monotonic. Except for SVR, all predictors perform similarly well. Lasso
is the best method for small training sizes.

Figure 4. Different metrics to compare the quality of the subdomain selection when iterating on the loop generation, evaluation, and
selection. In general, combinatorial testing is not much better than random selection, and it only gives a few options for the number of
subdomains selected. GA and BO are much more efficient and can explore any given number of subdomains according to the computation
time available. Note that the x-axis of 4a, 4b, and 4c could be replaced by GPU.hours going from 0 to ≈ 200 as mentioned in Subsection
4.2. All plots are averages over 10 seeds and the standard deviations are shown.

• The random selection simply randomly picks a subdo-
main to test in the list of the remaining ones.

• The oracle knows all the subdomain’s accuracies in ad-
vance, and it chooses the subdomains by order of increas-
ing accuracy. This is the best way to select the subdo-
mains, but also the most costly as it requires knowing all
the subdomains’ performances.

• Combinatorial Testing (CT) [24] aims to test a limited
number of combinations that cover well the search space.

In particular, we use n-wise testing from the library all-
pairspy [1]. We vary n from 2 (pairwise testing) to 5 (be-
cause we have 5 attributes). This approach was used by
[22].

Methods details We test two different approaches:
• Genetic algorithm (GA) We use a population size of 20

and the library pymoo [3].
• Bayesian optimization (BO) The predictor takes a one-hot

embedding of the subdomain attributes as input and pre-
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Figure 5. Average accuracies for each value of each attribute. The 95% confidence interval is also shown.

dicts the accuracy. We tested Random Forest Regressors
(RFR) [4], Linear Regression (LR), Lasso [34], and Sup-
port Vector Regression (SVR) [10] using scikit-learn [5].
We start with a pre-training on 10 random subdomains to
lower the variability of each run.

Metrics We study the evolution of selected subdomain
accuracies, average accuracy of selected subdomains, and
coverage of the 10% lowest accuracies subdomains. We
also show a histogram of the subdomain accuracies for a
fixed number of explored subdomains. We use the Spear-
man rank correlation to evaluate the quality of the predic-
tors.

4.2. Evaluating all subdomains for reference

To validate our approach, we evaluate the performance of all
subdomains and save the results as shown in Table 1. Be-
cause all evaluation results are pre-computed, benchmark-
ing the different selection functions is done by replacing the
generation and evaluation parts with a simple table look-
up. This allows us to compare different selection functions
quickly. This validation ensures that subsequent work can
use our findings to reduce the number of evaluations. We
generated 50 valid images for each of the 1032 subdomains.
It took approximately 200 hours to generate all images on
one NVIDIA V100 GPU. Sometimes, hundreds of images
had to be generated to obtain 50 valid ones after filtering.
The expected evaluation time of one subdomain is 12 min-
utes, or 1 hour for 5 subdomains. The results below show
the number of subdomains explored as the x-axis. Still, we
could have used an estimated computing time by using the
value of around 12 minutes per subdomain evaluated.

Figure 2 shows samples of generative images with their
input prompt. While not perfect depictions of dogs, they
are close enough to benchmark the classifier. Some images
clearly depict dogs, yet the classifier fails to identify them.
This highlights some of its limits.

4.3. Benchmarking the selection functions

The main goal of selection functions is to identify subdo-
mains with low accuracy quickly. To measure this, we show
the evolution of different metrics during the exploration in
Figure 4. The main conclusion is that combinatorial test-
ing (n-wise testing with n ∈ {2, 3, 4, 5}) is not much bet-
ter than random selection. Also, it has the disadvantage of
restricting the number of subdomains selected: we cannot
tune this number. GA is much better, and BO is even better.
BO can successfully identify all the 10% most critical sub-
domains (with lowest accuracies) after evaluating ≈ 40%
of all subdomains. This also proves that subdomain perfor-
mance can be precisely inferred from the domain attributes.
This means that classifier failures can be explained from the
attributes, providing interesting insights into the classifier
decision process.

Figure 3 details a specific step in the evaluation process
when the number of subdomains is equal to 61 (which is
the number of subdomains selected by 3-wise testing). This
also shows a clear advantage for GA and BO in quickly
identifying low-accuracy subdomains.

Figure 4d shows that the four predictors perform simi-
larly well. We choose Lasso as a predictor for BO because
it is the best method for small training set sizes. Indeed,
the beginning of the exploration, when the data is limited,
is particularly important. Furthermore, it showed less vari-
ability than, for example, random forests.

4.4. Qualitative analysis of classifier failures

The main focus of our work is to efficiently detect the at-
tributes with the most impact on classification performance.
However, this subsection suggests what kind of qualitative
assessment it allows. We use the BO approach and allow
the exploration of 300 subdomains. Figure 5 shows the av-
erage accuracies for each attribute’s value. This shows the
impact of each attribute individually but does not show the
impact of combinations of attributes. Figure 6 displays the
impact of all the possible combinations of the attributes of
weather and location.
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5. Limitations

Benchmarking classifiers with generative models has limi-
tations as observed by other work [22, 37]. There can be
occasional misalignments between the prompt and the im-
age due to bias or language limitations. For instance, in this
work, we observed that the viewpoint attribute is sometimes
not the one requested. We also observed generator failures
for a few specific subdomains, e.g., nearly all images for ”A
front view of a green dog in the mountains, during the night,
it is raining.” are in a cartoon style, which is not the case
for snowing, see Figure 7. Prompt engineering is required
to allow a rigorous benchmark of the classifier. Also, gen-
erated images do not cover everything possible in the real
world. Our approach tackles the computing time problem.
Its main limitation is that there is no guarantee that a good
selection function will identify all problematic subdomains
for an incomplete exploration. For instance, a subdomain
might be difficult for completely different reasons than the
others. Thus, a selection based on learning a relation be-
tween subdomain attributes and performance might miss it.

6. Conclusion and perspectives

Text-to-Image models have great potential to be a useful
tool for benchmarking image classifiers by generating im-
ages of failure cases. However, since the highest quality
generators are based on diffusion models, their high infer-
ence time prevents large-scale image synthesis for advanced
evaluation. This work starts from an evaluation domain de-
scribed by textual attributes. To efficiently explore the crit-
ical attribute combinations that cause classifier failures, we
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Figure 6. Heatplot displaying the average accuracies for different
combinations of weather and location.

Figure 7. In the top row, images are generated with the prompt ”A
front view of a green dog in the mountains, during the night, it is
raining.”. They are mostly in a cartoon style. In the bottom row,
the same prompt, but ”raining” has been replaced by ”snowing”.
The phenomenon disappears. Is this a generator failure? Careful
prompt engineering, e.g., adding ”a realistic image”, is required
to ensure alignment between the textual prompt, images, and what
we expect.

propose to create an iterative process that alternates image
generation, classifier evaluation, and attribute selection. We
compare different selection functions and show that all of
them outperform the method used in a previous work.

We believe that our work can be further improved by us-
ing NAS methods, taking advantage of low-fidelity evalu-
ations. For example, in our case, the accuracy could be
estimated with 20 images. The method would then use
these low-fidelity evaluations to decide which combination
is worth testing with high-fidelity, say 200 images. In addi-
tion, for more complex problems, one can use word embed-
dings such as language models instead of one-hot embed-
dings of finite attributes. Our work can potentially improve
the benchmarking of image classifiers with text-to-image
models, as it addresses a major limitation: computational
time. It allows the exploration of larger domains and more
precise estimates of accuracies, class probabilities, and fail-
ures.
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