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Abstract

With recent advances in image and video diffusion mod-
els for content creation, a plethora of techniques have been
proposed for customizing their generated content. In par-
ticular, manipulating the cross-attention layers of Text-to-
Image (T2I) diffusion models has shown great promise in
controlling the shape and location of objects in the scene.
Transferring image-editing techniques to the video domain,
however, is extremely challenging as object motion and tem-
poral consistency are difficult to capture accurately. In this
work, we take a first look at the role of cross-attention in
Text-to-Video (T2V) diffusion models for zero-shot video
editing. While one-shot models have shown potential in
controlling motion and camera movement, we demonstrate
zero-shot control over object shape, position and move-
ment in T2V models. We show that despite the limitations
of current T2V models, cross-attention guidance can be a
promising approach for editing videos. Code: https:
//github.com/sam-motamed/Video-Editing-
X-Attention.git

1. Introduction

Text-to-Video diffusion models [2, 3, 18, 41, 46] have been
fast advancing in generating temporally consistent scenes
with plausible object interactions. There has been a series
of works that have focused on editing T2V models to enable
greater control over video generation. More successful edit-
ing methods have made use of small sets of reference videos
to learn an object’s motion or camera movement. They sub-
sequently transfer that specific movement or camera motion
to a new object and scene [21, 52, 56] by training parts of
the video diffusion model or performing Low Rank Adap-
tation (LoRA) [19]. While these methods can be effective,
they require additional data and compute with limited flex-
ibility, which limits their adoption in practice.

Several works [40, 45, 47, 49] have shown the promise of
attention maps in object discovery and segmentation. In the

domain of text-to-image models, cross-attention and its role
in controlling the scene layout has also been well studied.
In particular, cross-attention is responsible for determining
the objects’ shape and size in the image. Cross-attention fa-
cilitates maintaining semantic consistency between the text
and the generated image. By attending to relevant textual
features, the model ensures that the generated visual con-
tent aligns with the overall semantics of the input descrip-
tion. One of the works that exploited cross-attentions to
enable editing images was Prompt-to-Prompt [16]. This
work showed that the shape of an object a can be replaced
with the shape of another object b by replacing a’s cross-
attentions with those of b. Training-Free Layout Control
[7] was another work that proposed an energy-based ob-
jective to control the position of objects in the generated
image. Given a user-specified bounding box, the energy
function encourages the cross-attention maps of a token to
form within the bounding box and hence position the ob-
ject within the bounding box. Diffusion self-guidance [12]
generalized the Training-Free Layout Control method such
that editing the scene could be done by using the cross-
attention maps alone, without the need for external inputs
(e.g., bounding box), in a zero-shot manner. This was
achieved by applying transformations (e.g., relocating and
resizing) to the original cross-attentions of a token and using
the resulting cross-attentions as the target of the objective.

With the success of the above methods for editing im-
ages generated by T2I models [5, 12, 16, 30] or adapting
T2I models for video editing [27], we ask the question; “Do
such approaches for editing images transfer to the video do-
main?”. In particular, we are interested in exploring the ef-
fectiveness of cross-attention layers for editing the subject’s
size, positioning, and motion in videos.

In this paper, we build upon the achievements of prior
image-editing techniques by extending them to the video
domain. More specifically, our contributions are threefold:
• We take a first look at cross-attention layers in T2V dif-

fusion models and their role in editing videos.
• We explore two possible ways to use cross-attentions in

editing videos; namely forward and backward guidance.
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Figure 1. This figure shows an overview of backward guidance in T2V models. On the left, we show the generated frames of the T2V
model after t steps, given an initial input latent zt and the text prompt “A burger floats on the water”. To edit the video and move the burger
from the top-left of the screen to the bottom-left in a straight line, we generate Atarfi for each frame fi reflecting this edit. Following the
scheme in Section 4.2, we update the latent through the denoising process based on objective E. At time step 0, z0 generates the video on
the right which reflects the intended edit.

• We investigate the limitations of current T2V models that
hinder the capabilities of video editing methods.

2. Related Works

Denoising Diffusion Models. The denoising diffusion
paradigm [1, 42, 43] emerged as a new method to gen-
erate images with high photo-realism and diversity. It
has rapidly advanced text-conditioned image generation
[11, 14, 17, 31, 34–36, 39, 54, 55], which is important for
gaining control over its generated content. Due to their ver-
satility and representation learning capabilities [8, 20, 53],
they have also been successfully adapted for specialized
tasks such as classification [10, 26], depth prediction [23]
and segmentation [6, 22, 44].

Personalizing Image Generation. Personalizing [13, 25,
29, 38, 50, 55] and editing [5, 12, 16, 30, 32] T2I models
has become a research focus to enable user-intuitive control
for creating content with these generative models. In par-
ticular, the cross-attention layers of diffusion models have
been studied for their role in determining a scene’s layout
and their ability to enable zero-shot editing of generated im-
ages. Similar to [5], we split cross-attention-based editing
of T2I and T2V models into two categories of 1) forward

and 2) backward guidance.
In forward guidance, cross-attention manipulation occurs
directly during the denoising process via a forward pass
through the model. A notable example of forward guidance
is Prompt-to-Prompt [16], which proposes replacing the to-
ken’s cross-attentions from a source prompt with those of
a target prompt. Figure 2 shows one such example in the
video domain where the cross-attentions of “car”, from the
source prompt “car drives on the road”, are replaced with
cross-attentions of “truck”, from the target prompt “truck
drives on the road”. To enable more precise modifications to
a specific source token, while preserving the overall scene,
forward guidance requires source and target prompts that
differ by a single token, limiting its applicability.
In contrast to forward guidance that directly manipu-
lates cross-attentions, backward guidance biases the cross-
attention through backpropagation. By designing an
energy-based loss that encourages some desired edit [5, 12],
the gradient of the loss is then used to update the input la-
tent zt of the model. Training-Free Layout Control [5] is an
example of backward guidance where the energy function
encourages the cross-attentions of the user-specified token
to obtain higher values inside a user-defined bounding box.
At multiple time steps, the input latent is updated to realize
this objective. Similarly, Diffusion self-guidance [12] de-
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signed energy functions that encourage the cross-attentions
to take certain shapes or positions within the image. This
paper is inspired by the success of these two works in the
image domain. In Section 3.3, we show that forward guid-
ance is too restrictive to enable effective video editing. In
Section 3.4, we show backward guidance’s promise in en-
abling zero-shot editing of T2V models.

Text-to-Video Generation. Diffusion models have been
improving at high-quality video generation by training con-
ditional denoising networks (e.g, 3D U-Net [9], DiT [33])
to denoise randomly sampled sequences of Gaussian noises
[2, 3, 18, 28, 41, 46]. Some works take advantage of large,
pre-trained text-to-image foundation models to build text-
to-video models. This is done by inflating the T2I model
with temporal layers, like Tune-A-Video [51], Text2Video-
Zero [24] and AnimateDiff [15].

Personalizing Video Generation. Following the same
desire to control image generation, a few works focused
on video editing and customizing the motion and camera
movement in T2V models [7, 21, 48, 52, 56]. Most current
editing and customization methods work by tuning parts of
the network or performing LoRA [19] based on example
videos containing the desired effect. Such methods lack
the flexibility of a zero-shot approach and require additional
training data and resources. For this reason, we investigate
the effectiveness of forward and backward guidance using
cross-attention for T2V models.

3. Method
3.1. How Do Video Diffusion Models Work?

Video diffusion models train a 3D denoising network, tra-
ditionally U-Nets but more recently transformer-based [33]
networks, to generate videos from randomly sampled Gaus-
sian noise. In this work, we use T2V models with 3D U-
Net backbone [46] which consists of down-blocks, middle-
blocks, and up-blocks. Each block has several convolu-
tion layers, spatial transformers, and temporal transformers.
During training on videos, the U-Net (ϵθ) and a text encoder
(τθ) are optimized with the following objective:

L = Ez0,y,ϵ∼N (0,I),t∼U(0,T ) = ∥ϵ− ϵθ(zt, t, τθ(y))∥22,
(1)

where z0 ∈ Rf×b×h×w×c is the initial latent input of the
training videos (b indicates the batch size, f is the number
of frames, h, w and c are the height and width and channels
respectively) and y is the text description of the video, with
ϵ and t being the added Gaussian noise to the videos and the
time step. At time step t, the noised latent is defined as:

zt =
√
ᾱtz0 +

√
1− ᾱtϵ, (2)

where αt controls the noise strength.

3.2. T2V Cross-attention

The cross-attention mechanism in the spatial transformers
of the 3D U-Net enables the model to capture spatial rela-
tionships between the video frames and the input text. In
this work, we focus on changing an object’s size, location
and motion given a latent input and text prompt to the T2V
model. To this end, we work with the cross-attention lay-
ers of the 3D U-Net where {Ai,t,.,.,k ∈ RHi×Wi×|k|} is the
Softmax-normalized cross-attention map of the ith layer of
the U-Net, at time step t for token k.

3.3. Forward T2V Guidance

Following the works that perform forward guidance in T2I
models [4, 16, 32], we implemented forward guidance in
the T2V pipeline. Figure 2 is one example where the cross-
attentions of “car” are replaced with the cross-attentions of
“truck”. Below are the two main limitations with forward
guidance that have also been observed in the T2I domain.
• Size and Shape Mismatch. Forward guidance is re-

strictive and can lead to artifacts due to the difference in
shape and size of the two objects. In the example of Fig-
ure 2, since the truck is larger than the car, injecting the
cross-attentions of the truck to replace the car’s has led to
artifacts around the car without changing the car’s size to
match the truck’s.

• Cross-attention Overlap. The cross-attentions of dif-
ferent tokens can overlap. We refer to the top row of
Figure 3, where the shark is still visible in the cross-
attention maps of tokens “in” and “the”. For this rea-
son, forward guidance can work reasonably well where
the two source and target sentences only differ by one to-
ken (i.e., Prompt-to-Prompt’s setting). This overlap can
cause degradation in the image and video quality, espe-
cially when the text inputs differ by more than one token.
We note that some of these artifacts are due to the current

T2V models generating noisy cross-attentions. We go over
more details in Section 4.1 regarding this limitation.

3.4. Backward T2V Guidance

Following Diffusion self-guidance [12] and Training-Free
Layout Control [5], we define an energy function E to en-
courage specific shape, size and motion properties on the
cross-attentions of some user-specified token k. Figure 1
gives an overview of our backward guidance where Aorigfi

is the cross-attention map of some user-specified token k
(e.g., token corresponding to “burger”) in frame fi of the
video generated by the T2V model. we omit the layer num-
ber and the token k in our notation of the cross-attention.
Atarfi is the target cross-attention that captures the proper-
ties of the editing task. In Figure 1, the task is to move the
burger from the top-left to the bottom-left of the scene. We
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Figure 2. We show an example of forward guidance by swapping the cross-attention maps of “car” with cross-attention maps of the “truck”.
The two input texts only differ in one token (“truck” and “car”). While the car follows the motion and location of the truck in the video,
artifacts can be seen around the car due to the mismatch in size and shape of the truck and car.

Figure 3. We compare the cross-attention maps for the same prompt to a T2I and T2V model. The cross-attention maps are extracted and
averaged at the 16× 16 resolution from the mid-blocks and up-blocks of the U-Net. Open-source T2I models currently produce much less
noisy cross-attention maps compared to T2V models. In Section 4.1, we give details on how the noisy cross-attentions hinder backward
guidance and propose a procedure for bypassing this limitation for our experiments in this paper.

define the energy function E below. To control the shape
and size of an object (indicated by token k) through its cor-
responding cross-attention maps, we threshold the attention
map to eliminate the effect of background noise and over-
lapping attention from other tokens. This is achieved by
taking a soft threshold at the midpoint of the per-channel
minimum and maximum values:

shape(k) = Athreshold
k .

Using the thresholded original cross-attention and the target
cross-attention, we define the energy function E as:

E = shape(Atar)− shape(Aorig). (3)

This objective is zero-shot since shape(Atar) can be
computed as (M × shape(Aorig)) where M defines some
transformation such as resizing and relocating the original

attention. At time step t, we update the latent zt according
to the gradient of the loss defined by the energy function E.
This is realized through the following equation:

zt ← zt − δ2t η∇Zt

∑
E(Atar, Aorig), (4)

where η > 0 controls the strength of backward guidance
and δt =

√
(1− αt)/αt. Updating the latent z in this man-

ner indirectly influences the cross-attentions. Please refer to
Section 4.2 for more details on our experimental setup.

4. Experiments
4.1. Limitation of Current T2V Models

In Figure 3, we visualize the cross-attention maps for all
tokens of the prompt “a shark swims in the ocean” gener-
ated with Stable Diffusion [37] and our T2V model [46].
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Figure 4. We show qualitative results for shrinking and enlarging objects through backward guidance. The middle image of each row
visualizes the first frame of the original video. We enlarge and shrink the target cross-attentions at four different levels (Big / Bigger and
small / smaller) and update the latent through backward guidance. The first frame for each edited video is shown.

The cross-attention maps in T2I models capture the to-
kens much better than T2V models. We attribute this
to deeper denoising networks of T2I models, larger train-
ing datasets, and more cross-attention layers. Using such
noisy cross-attention maps hinders both forward and back-
ward guidance. To perform backward guidance more ef-
fectively, we opted to directly generate shape(Atar) for
each frame. Instead of transforming shape(Aorig) to cal-
culate shape(Atar) for each video frame, we generate bi-
nary cross-attention maps for the token of interest. Despite
this backward guidance setup not being zero-shot, we rely
on future T2V models with better cross-attention maps to
replace this manual effort.

Figure 1 shows an example of user-generated target
cross-attentions. In this example, instead of transforming
the cross-attention maps of the “burger” to calculate the tar-
get, we directly generate each frame’s cross-attention ac-
cording to our editing task. Here, the task is to move the
burger from the top-left of the scene to the bottom-left in a
straight line. Hence, we generate cross-attention maps for
each frame. For frame 1, Atarf1 is placed at the top-left of
the scene and in the following frames, the cross-attention
map moves slightly down such that in the last frame, Atarf16

is placed at the bottom-left.

4.2. Experiment Details

We use the ModelScope [46] T2V model in our experiments
and generate 16 frame videos with 256×256 resolution. Im-
age editing methods such as Diffusion self-guidance [12]
have used the extracted image features learned by the de-

noising network to preserve the background details and ap-
pearance features of the object being edited. In this work,
we only focus on controlling objects’ motion and size and
leave background and appearance consistency for future
works. We experimented with text prompts that describe
a simple scene, to further control the limitation of current
T2V models and get less noisy cross-attention maps for the
object we want to edit.

Our 3D U-Net has cross-attentions with resolutions 4×4,
8× 8 , 16× 16 and 32× 32. We find the 8× 8 and 16× 16
cross-attentions to be the most important dimensions for ef-
fectively minimizing the energy function and editing the
scene. There are 10 such layers in the down-blocks, mid-
blocks, and up-blocks of the 3D U-Net (4 down-block, 2
mid-block, and 4 up-block layers). We found that mid-
block’s cross-attentions played a vital role in backward
guidance. Excluding the two mid-block layers resulted in
failed edits whereas excluding either all of down-block’s or
all of up-block’s cross-attentions resulted in fewer failures.

We experimented with different schemes for updating the
latent z and found the most effective strategy to be that of
Diffusion self-guidance [12]. During the first N/4 itera-
tions, we update z at each step. For the subsequent 3N/4
iterations, we update z at every other step. The guidance
scale η (eq. 4) also plays an important role in the method’s
effectiveness. Increasing η too much leads to degradation
in the generated frames. Selecting a very low scale does not
change the latent enough for effective editing. We found
that in our setting, a scale of 15 < η < 25 provided a good
balance between guidance strength and synthesis quality.
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5. Results
In this section, we show the capabilities of backward guid-
ance for two different tasks. Figure 4 shows qualitative re-
sults for changing an object’s size through backward guid-
ance. Figure 5 presents qualitative results of backward guid-
ance for controlling the motion of an object in a video. To
edit an object of interest, we generate binary cross-attention
maps that capture the target position for the object’s token.
For “burger”, we placed the first cross-attention at the top-
left of the scene and slowly moved it down. For the “ball”,
we placed the cross-attention at the top-left and moved it
towards the bottom-right of the scene. Finally, we moved
the “shark” from the top-right towards the bottom-left of
the scene. Each sequence of frames with the black caption
shows the original video without performing guidance. The
sequence of frames with blue instruction shows the video
after updating the latent with backward guidance. The ob-
ject successfully follows the cross-attention at each frame.

We also observe that the original video can be missing an
object described in the text. The example with prompt “A
wolf howls to the moon” in Figure 5 is missing the moon.
Interestingly, backward guidance encourages the moon to
be present in the scene. Attend-and-Excite [4] achieves the
same objective in the T2I domain.

6. Observations
In this section, we go over a few interesting observations
when experimenting with backward guidance.

Perspective. In our experiments, we used a fixed size for
Atar for all 16 video frames. However, if the object is mov-
ing away or toward the camera, we should see a change
in the object’s size. In Figure 5, we see the burger, ball,
and shark getting larger as they move closer to the camera
while the moon remains the same size as it is static in the
sky. It is noteworthy that despite updating the model’s in-
put latent with fixed-size target cross-attentions, the model
consistently generates videos with reasonable perspective.
However, this comes at the expense of not strictly adhering
to the exact size defined by Atar.

Motion Control. To control the motion of objects, we
interpolate the cross-attention maps between the attention
map Atarf1 , placed at starting position a and the attention
map of the last frame Atarf16 placed in final position b. We
observed that the model keeps the temporal consistency at
the expense of not following the exact start and end location
defined by the target cross-attention. For instance, in Figure
5 - last row, we placed the cross-attention of the “shark” at
the top-right for the first frame and at the bottom-left for the
last (16th) frame. However, after t steps, the shark is not
at the bottom of the scene where Atarf16 was positioned. To

do so, the model needs to move the shark much faster to
go from Atarf1 to Atarf16 in a short number of frames. We
also note that compared to resizing an object, controlling its
motion is often prone to failures using backward guidance.
This failure takes the form of the object being statically po-
sitioned at Atarf1 . We leave further exploration of this mode
of failure for future work.

7. Discussion
This study conducted an initial investigation into the signif-
icance of cross-attention layers within the 3D U-Net frame-
work of video diffusion models. More specifically, focusing
on their role in determining objects’ size, position and mo-
tion in T2V models. We examined the efficacy of utilizing
cross-attention maps to manipulate object size and motion,
employing both forward and backward guidance. In Sec-
tion 3.3, we showed that forward guidance in videos faces
the same limitations that were previously observed in the
T2I domain [7] which hinders its performance. In Section
5, we showed results for editing the size and motion of an
object through backward guidance. Our findings empha-
size the promise of backward guidance in enabling zero-
shot editing capabilities for video generation. Moreover, in
Section 4.1, we highlighted current limitations that impede
the transition of cross-attention-based editing methods from
the image domain to videos. This analysis provides insights
into the challenges and opportunities inherent to adapting
editing techniques to be used in dynamic video content.

8. Impact and Future Directions
Enabling zero-shot editing capabilities for generative video
models is a valuable approach to enhance user control with-
out the need for model fine-tuning with additional data.
While current video models face limitations in quality,
length, and cross-attention accuracy, we anticipate that edit-
ing methodologies like ours will leverage future advance-
ments in Text-to-Video models, similar to the progress seen
in the Text-to-Image domain.

In this study, we focused on manipulating objects’ size
and motion with backward guidance. However, practical
applications for editing tools require further exploration,
particularly enabling editing of real videos. This needs ad-
ditional constraints such as controlling background alter-
ations and maintaining the fidelity of different objects to the
original video. These aspects remain open for future work.
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Figure 5. The figure visualizes the results of backward cross-attention guidance. For each of the 4 examples, we show the output of the
T2V model given the prompt in black. The blue text describes the applied transformation to the cross-attentions at each frame. We update
the input latent accordingly. The red bounding box highlights the edit’s success.
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