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Figure 1. Given an input image, our single, integrated OmniControlNet extracts its control features and generates high-quality images.
From the first to the last row in the middle, the feature visualization represents Depth, HED, Scribble, and Animal Pose respectively.

Abstract
We provide a two-way integration for the widely adopted

ControlNet by integrating external condition generation al-
gorithms into a single dense prediction method and in-
corporating its individually trained image generation pro-
cesses into a single model. Despite its tremendous suc-
cess, the ControlNet of a two-stage pipeline bears limita-
tions in being not self-contained (e.g. calls the external
condition generation algorithms) with a large model redun-
dancy (separately trained models for different types of con-
ditioning inputs). Our proposed OmniControlNet consoli-
dates 1) the condition generation (e.g., HED edges, depth
maps, user scribble, and animal pose) by a single multi-
tasking dense prediction algorithm under the task embed-
ding guidance and 2) the image generation process for
different conditioning types under the textual embedding
guidance. OmniControlNet achieves significantly reduced
model complexity and redundancy while capable of produc-
ing images of comparable quality for conditioned text-to-
image generation.

1. Introduction
The exploding development of diffusion [35, 93, 94]

based text-to-image generators [66, 71, 81, 83, 85] has led
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Haiyang Xu, Zhizhou Sha, and Zirui Wang at UC San Diego.

to a recent wave of generative model progressing beyond
traditional models such as VAE [44] and GAN [27, 98].

The ControlNet [116] further promotes the popularity
of text-to-image generation by introducing additional user
controls as the conditioning input available in a myriad of
forms including edges [9, 107], line segments [28], human
pose [11], normal map [100], depth map [73], segmentation
map [118], and user scribble. With the additional image-
level input beyond the text prompts, ControlNet can greatly
expand the scope of application domains for text-to-image
generation to real-world workflows in various areas, includ-
ing design, architecture, gaming, art, manufacturing, anima-
tion, and human-computer interaction.

ControlNet [116] is a two-stage pipeline comprising 1)
a condition generation stage and 2) a text-to-image gener-
ation stage conditioned on the output from the first stage.
Despite the great success ControlNet has achieved, it still
suffers from the issue of large model redundancy in two
means: 1) in stage 1, a specific external algorithm is exe-
cuted to create each type of image-level condition, and 2) in
stage 2, a separate diffusion model is trained for each type
of conditional input. Fig. 3 gives an schematic illustration
for the ControlNet method [116].

In this paper, we aim to alleviate the algorithm and model
redundancy problem in ControlNet [116] by proposing Om-
niControlNet, which provides a dual-stage integration. That
is, in stage 1, instead of calling the external algorithms,
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Figure 2. Our OmniControlNet model. From condition generation to image synthesis, while the ControlNet model has to deal with all
the features separately, our model can handle the tasks within an integrated pipeline.

we develop an integrated dense image prediction method to
perform edge detection, depth map generation, animal pose
estimation, and scribble generation in a single multi-tasking
framework under the guidance of task prompts; in stage
2, instead of training separate image generation models for
different conditioning input types, we train a single model
for four kinds of image-level conditional control under the
textual inversion guidance. We observe a large model, pa-
rameter, and memory redundancy reduction, compared with
the existing approaches, while being able to generate com-
parable image quality. The contribution of our work can be
summarized as follows.

The contribution of our paper is summarized as follows:
• We develop a new module to integrate four dense image

prediction tasks, including edge detection, depth estima-
tion, scribble segmentation, and animal pose estimation,
under the task embedding guidance.

• We develop a new module to perform conditioned text-
to-image generation that integrates four different types of
conditional input under the textual inversion guidance.

• Combining the above two modules yields OmniCon-
trolNet, which greatly reduces algorithm complexity for
conditional text-to-image generation. OmniControlNet
points to a promising direction for condition text-to-
image generation under an integrated pipeline.

2. Related Works
2.1. Text-to-Image Generation

The task of text-to-image generation [18, 53, 71, 114] is
to generate an image matching the provided text prompts
using deep learning models. Before the wide use of diffu-
sion models, the task was primarily achieved by GAN [27]
based models [78, 110, 115]. The work Generative Adver-
sarial Text to Image Synthesis [78] applied an encoder to en-

code the texts and concatenated the encoded features to the
image features before inserting them into the GAN model,
which was among the first works to tackle the task. After the
introduction of diffusion models [35, 94], lots of diffusion-
based models appeared [4, 8, 13, 23, 29, 32, 33, 38, 57,
61, 90, 99, 102, 103], which mainly used cross attention to
combine the image and text features in the UNet [82] back-
bone. DALLE-2 [72] and Stable Diffusion [81] are among
the outstanding literature in the field. Many works, includ-
ing T2I-Adapter [62], ControlNet [116] our OmniControl-
Net model, are based on the Stable Diffusion model.

2.2. Image-to-Image Generative Model

Image-to-image generation involves transferring an im-
age from one domain to another. For example, in Control-
Net [116], additional features provided as images are fed
into the model to generate the required images. Before the
widespread use of diffusion models, GAN-based models
[27] such as [1, 15, 25, 41, 42, 64, 65, 80, 104, 119, 120]
and Transformer-based models [21, 71, 101] were com-
monly adopted. CycleGAN [119] was one of the fore-
most models for image-to-image transfer, utilizing a GAN-
based approach for style transfer with cycle consistency.
With the introduction of diffusion models [35, 94], many
[12, 84, 95] have demonstrated the significant potential
of diffusion models in this task. Recently, several works
[37, 51, 62, 68, 116, 117] have combined text and image
conditions within diffusion models, enabling the generation
of high-quality images. ControlNet is a notable example,
taking text prompts and additional features as constraints to
guide image generation.

2.3. Condition Generation

ControlNet has demonstrated its performance in condi-
tional image generation across various conditions, includ-
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ing Depth Map [73], Canny Edge [9, 107], OpenPose [11],
Normal Map [100], User Scribble, and Segmentation [64],
etc. In this section, we delve into four representative tasks:
Depth Map, HED Edge, User Scribble, and Animal Pose,
along with the expert models associated with each.

Generating depth maps to represent relative distances is a
fundamental challenge in computer vision and 3D scene un-
derstanding tasks. Numerous methods have been proposed,
ranging from traditional stereo matching algorithms [47,
86] to deep learning-based approaches [24, 48, 56, 109].
We use MiDAS [7, 76] as our expert model, which exhibits
exceptional performance and generalization capabilities.

Image edge detection plays a major role in tasks such
as object segmentation and visual salience. Early methods
[3, 45, 46, 59, 60] relied on manual design for edge detec-
tion. However, with the advent of deep learning, learning-
based methods [36, 67, 88, 96, 105] have demonstrated
great potential in handling edge detection tasks. A classic
benchmark in this field is Holistically-Nested Edge Detec-
tion (HED) [107], and we take it as our expert model.

User scribbles serve as user-defined guidance for image
generation tasks, enabling users to convey their intentions
and preferences to the generative model. In ControlNet, this
involves a simple mapping of pixels with values greater than
127 to 255, and the rest to 0 in an image.

Generating pose maps, which encode spatial information
about the arrangement of objects or characters in images, is
crucial for tasks like image-to-image translation, particu-
larly in human or object pose manipulation. Human pose
estimation models [10, 63, 97, 106, 111] are designed to
describe human skeletons. Notable benchmarks in this do-
main include PoseNet [43] and OpenPose [11]. In terms of
animal pose estimation, which often presents more diversity
and challenges than human pose estimation, datasets like
AP-10K [113] and APT-36K [112] are considered main-
stream references.

3. Background

3.1. ControlNet

The ControlNet model [116] presents an efficient frame-
work for fine-tuning the Stable Diffusion model [81]. It
introduces an additional control feature (e.g. depth map or
edge detection) to the generative process, ensuring that the
generated images adhere to both the textual prompt and the
control condition. In our approach, the weights of the Sta-
ble Diffusion model (SD-v1.5) are fixed, while a trainable
duplicate of the weights from the 12-layer U-Net encoder
and middle block is created. The additional features are in-
tegrated into this trainable duplicate via a zero-convolution
layer (a 1×1 convolution layer with all-zero initial weights).

We denote the encoder in the frozen part as E , the en-
coder of the trainable copy as E ′, the middle block and the

Input Output

Expert Model for
Depth Map Detection

ControlNet for
Depth MapDepth Map

Text Prompt & Time t

Input Output

Expert Model for
HED Edge Detection

ControlNet for
HED EdgeHED Edge

Input Output

Expert Model for
User Scribble Detection

ControlNet for
User ScribbleUser Scribble

Input Output

Expert Model for
Animal Pose Detection

ControlNet for
Animal PoseAnimal Pose

Features for ControlNet Training

∗ ControlNet for <feature>is similar to our OmniControlNet’s stage 2 in
Fig. 2, except that there’s no input from the textual embedding module.

Figure 3. Original ControlNet [116] model. For different fea-
tures, we have to use different expert models for condition gener-
ation, and we have to train ControlNet on each of the features.

decoder of the frozen part as M and D, respectively. Let
the CLIP-encoded additional feature be cf , the input of the
model as z, time as t, and the CLIP-encoded text prompt
as ct. With Z1,Z2 representing two trainable zero con-
volution layers, the output of the trainable copy should be
E ′(Z1(cf )+z, t, ct). Consequently, the output of the model,
ϵpred, which also estimates the noise in the denoising pro-
cess, should be

ϵpred = D(M(E(z, t, ct)+Z2(E ′(Z1(cf )+z, t, ct)))) (1)

During training, suppose the noise of a diffusion step be ϵ,
then the training loss should be

Ldiff = ∥ϵ− ϵpred∥22 (2)

4. Our Method
4.1. Stage 1: Multi-task Dense Image Prediction

Swin Multi-Head
FPN

Multi-scale Feature

Task Embedding

Figure 4. An overview of our multi-task dense image prediction
pipeline. First, we leverage a Swin Transformer to extract multi-
scale features and propose a multi-head FPN to get full-resolution
feature maps. Finally, we utilize task-specific embeddings to de-
code dense predictions from the feature maps.

As depicted in Fig. 4, our multi-task dense image predic-
tion model is architecturally divided into three components:
a backbone structure, a Multi-Head Feature Pyramid Net-
work (FPN) [55], and a Decoder Head.

Initially, we employ a pre-trained Swin Transformer [58]
to extract multi-scale image features. Considering the res-
olution of the input image as 1×, the extracted features at
each stage correspond to resolutions of 1

4×, 1
8×, 1

16×, and
1
32×, with a uniform feature channel count of 256.
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Subsequently, a Multi-Head FPN is employed to harness
rich semantic information from these multi-scale features.
To foster feature diversity across various task types, the
FPN is structured in a parallel configuration with m distinct
heads, each representing a variant of the original FPN ar-
chitecture. Specifically, each FPN head undergoes an addi-
tional transposed convolution layer to upscale the resolution
to 1× while simultaneously reducing the channel dimen-
sion to C. The concatenated outputs of all m heads yield
a comprehensive, full-resolution multi-task output feature
with channel dimension mC.

In the final stage, task-specific embedding is leveraged
to decode the target condition from the aforementioned out-
put. The flexibility in the type of task embedding is note-
worthy; both one-hot and clip text embeddings derived from
the task name are effective. We employ a Multilayer Per-
ceptron (MLP) to project the task embedding into a latent
space with an embedding dimension of mC, subsequently
unsqueezing the channel dimension to 1. A cross-product
operation is then executed between the output of the Multi-
Head FPN and the encoded task embedding, culminating in
the decoder output, followed by a Sigmoid.

4.2. Stage 2: Conditioned T2I Generation

Fig. 5 provides an overview of our conditioned text-to-
image generation (stage 2) pipeline.

For different tasks, such as depth map or hed edge as
an additional feature, we initially apply the textual inver-
sion [26], using 16 random images for each feature to learn
the corresponding new “words” (represented by forms such
as <depth> or <hed>). Subsequently, we add these new
“words” into the CLIP [34] embedding space so that when
they are used in text prompts, the CLIP encoder can recog-
nize their specific meanings.

After acquiring these new embeddings, we adapt the
prompts for each (prompt, feature, image) triplet. For in-
stance, if the feature for a given triplet is the depth map of
the image and the original prompt is “a motorcycle in front
of a tree”, the revised prompt would be “Use <depth> as
a feature, a motorcycle in front of a tree”. The modified
triplets are fed into the trainable copy, while the correspond-
ing original triplets are fed into the frozen part. Follow-
ing this, the model is trained with a methodology similar to
ControlNet, where the triplets are fed into the model undif-
ferentiated, without separating them by features.

Tab. 1 provides the comparison of the model size as well
as the data scale when compared to other integrated models,
including UniControl [68], and Uni-ControlNet [117], and
our model demonstrates several advantages.

When compared to UniControl, our model, following
the structure of ControlNet, requires no additional param-
eters. In contrast, UniControl incorporates an additional
mixture-of-experts (MoE) module, resulting in a substan-

Extra Parameters Extra Data

Uni-ControlNet 0 ×n
UniControl 20M None

Ours 0 None
∗n refers to the number of datasets we combine. In our work, n = 2.

Table 1. Comparison of parameters and data scale between Om-
niControlNet and competing works. Extra Parameters refers to
the number of extra parameters compared to the original Control-
Net, while Extra Data refers to the increased amount of data dur-
ing training. Uni-ControlNet needs to fill the blanks of the mixed
datasets with black images, which will double the scale of the data.

tially larger model (20M more parameters than other mod-
els, including ControlNet, Uni-ControlNet, and our model).
During training, an increase of 1 in batch size leads to a ∼3
Gigabytes increase in GPU memory usage.

In contrast to Uni-ControlNet, our model does not
need to perform channel-wise concatenation of multiple ad-
ditional features. In our configuration, different features
originate from varying sets of images. Whereas for Uni-
ControlNet, when an image provides a feature such as a
depth map but lacks another (e.g. animal pose), the corre-
sponding channels for the animal pose are filled with zeros,
yielding a larger data scale.

4.3. Textual Inversion Module

Textual Inversion [26] is an approach for extracting and
defining new concepts from a few example images, which
is the inversion process of text-to-image generation. This
method creates new “words” or tokens in the embedding
space of the text encoder within the text-to-image genera-
tion pipeline, such as Stable Diffusion [81]. Once estab-
lished, these unique tokens can be integrated into textual
prompts, allowing for precise control over the characteris-
tics of the images produced.

We leverage Stable Diffusion as our base model. For the
set of images provided, the prompt is set to s = “an im-
age of <w>”, while the embedded feature v of the “word”
<w>is our target. For the frozen SD model, suppose c is
the encoded feature of s, then we can express c = c(v), as c
is determined by v. Therefore, the optimization goal should
be

v∗ = argmin
v

Ez∼ε(x),ϵ∼N (0,1),c(v),t||ϵ− ϵθ(zt, t, c(v))||22.

where θ is the weight of the UNet in the SD model and
is frozen, and therefore we can directly simulate v in this
approach.

4.4. The Whole Integrated Model

Initially, we train the multi-task dense image prediction
(stage 1) model, which can generate various features with a
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Figure 5. An overview of our conditioned text-to-image generation pipeline. Beginning with the original ControlNet structure [116],
we utilize the textual inversion to learn task embeddings. Subsequently, we append the prefix use <feature> as feature to the prompt and
feed the result into the trainable copy. The left side of the figure provides an overview of the conditioned text-to-image generation model,
while the right side illustrates the process of learning the CLIP embedding for the new “word” with textual inversion [26].

single model. Subsequently, the samples generated by the
Stage 1 model serve as the training data for the conditioned
text-to-image generation (stage 2) model. During inference,
images are input into the Stage 1 model, whose output is
then forwarded to the Stage 2 model for further processing.
By utilizing this stage 1 model, we can directly sample dif-
ferent features from a single model without needing multi-
ple expert models. Then, we can use these sampled features
to generate images that share similar features with the origi-
nal one but with specified semantic meanings. Fig. 2 shows
the structure of the whole pipeline.

5. Experiments
For our OmniControlNet and the competing works, we

perform training and inference on 4 tasks, including Depth,
HED, Scribble, and Animal Pose.

5.1. Implementation Details

5.1.1 Datasets

Training. The dataset for both multi-task dense image pre-
diction (stage 1) and conditioned text-to-image generation
(stage 2) training consists of 2 different parts. Features
depth map, HED edge, and user scribble are from the first
part, while the feature animal pose is from the second part.
In the first part, we first use YOLOv5 [77] model to de-
tect all the humans in the images from the Laion-5B [87]

dataset and choose the first 50,000 images that consist at
most 1 human. We directly sample user scribbles from the
images, employ an HED boundary detection model [108]
to generate HED edges, and use the Midas depth detector
[75] to produce depth maps. The captions of the images are
taken from the origin Laion-5B dataset. In the second part,
we utilize the AP-10K dataset [113] and use the MMPose
[16] model to generate the animal poses of the animals. The
captions are generated by the BLIP2 [50] model. In order to
make the 2 parts contain approximately the same number of
images, we duplicate each image in the second part 5 times.
Sampling and Testing. For the features depth map, HED
edge, and user scribble, we utilize the validation split of the
COCO2017 [54] dataset and obtain the corresponding fea-
ture in the same way as the training set. We use the first cap-
tion for each image in the dataset. For the animal pose, we
utilize the APT-36K dataset [112] and choose the first im-
age from each frame as the dataset. We sample the animal
poses the same way as the training set and use the BLIP2
[50] model to perform the image captioning.

5.1.2 Training Details

For our multi-task dense image prediction (stage 1)
model, we assign distinct loss functions and associated
weights for four different conditions. The depth map gen-
eration utilizes L1 loss, while binary cross-entropy loss is
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FID Score CLIPt Similarity
Method Depth ↓ HED ↓ Scribble ↓ Animal Pose ↓ Depth ↑ HED ↑ Scribble ↑ Animal Pose ↑
Disunified Model

T2I-Adapter [62] 20.85 18.31 19.79 45.56 0.3099 0.3072 0.3094 0.3327
ControlNet [116] 24.24 24.33 21.97 57.14 0.3076 0.2760 0.3091 0.3160

Unified Stage 2
Uni-ControlNet [117] 33.71 28.56 30.24 47.71 0.3011 0.3072 0.3028 0.3321
UniControl [68] 25.34 21.03 25.82 54.10 0.3020 0.3006 0.3043 0.3105
Ours 23.20 27.26 25.79 53.28 0.3055 0.2988 0.3002 0.3292

Unified Stage 1 + 2
Ours 34.86 36.57 36.63 51.10 0.3024 0.2971 0.2971 0.3269

Table 2. Quantitative results of our model, including single stage 2 (conditioned text-to-image generation) model and integrated stage 1
(multi-task dense image prediction) + integrated stage 2 (conditioned text-to-image generation) models. Although methods that utilize dif-
ferent models (T2I-Adapter and ControlNet) tend to perform better, our framework demonstrates competitive results among the integrated
models. The numbers in bold indicate the best performance among the integrated methods. The bold numbers represent the best score
among integrated methods.

employed for the other three scenarios. The assigned loss
weights for depth, HED edge, user scribble, and pose are
0.5, 1, 5, and 5, respectively. We resize all the images to
512×512 and take a batch size 16. The model employs an
SGD Optimizer with an initial learning rate of 1e-6, which
subsequently decreases to 9e-7 following a polynomial de-
cay pattern after 120k iterations. The entire training process
takes about 20 hours on 8 NVIDIA RTX 3090 GPUs.

For the textual inversion module, each of the new “word”
of a corresponding feature is trained on 8 NVIDIA RTX
3090 GPUs for about 1 hour.

For our conditioned text-to-image generation (stage 2)
model, the number of DDIM diffusion steps is set to 50.
We adopt the AdamW optimizer and set the learning rate to
1e-5. We train the model on 8 NVIDIA RTX 3090 GPUs
with batch size 2 for 50,000 iterations (4 epochs), which
takes about 40 hours.

5.1.3 Evaluation Metrics

For our multi-task dense image prediction (stage 1)
model, various metrics are adopted to evaluate different as-
pects of the model’s performance. For depth estimation, the
Root Mean Square Error (RMSE) is utilized. For edge de-
tection, three distinct metrics are adopted: the fixed contour
threshold (ODS), per-image best threshold (OIS), and av-
erage precision (AP). The ODS is a metric that evaluates
edge detection performance by considering a fixed thresh-
old value across all images, thereby providing a universal
performance measure. On the other hand, OIS varies the
threshold for each image to find the optimal threshold for
that particular image, offering a more adaptive measure of
performance. Lastly, AP is a commonly used metric in edge
detection tasks. It computes the average precision value for

recall values over the interval [0, 1].
For our conditioned text-to-image generation (stage 2)

model and the integrated model, we adopt FID score [69]
and CLIPt [34] similarity score as our metrics. For the FID
score, we utilize a widely used inception model to measure
the similarity between synthesized and real images. For the
CLIPt similarity score, for each pair of generated image and
corresponding caption, we use ViT-B/32 [20] CLIP to en-
code them, and calculate the inner product of them as the
CLIPt similarity score. We report the average of the inner
products of all the image-caption pairs.

5.2. Experiment Results

Fig. 1 and Fig. 6 display the visual results for both
the multi-task dense image prediction (stage 1), the condi-
tioned text-to-image generation (stage 2), and the combined
model. According to the figure, it is evident that the models
from both stages and the combined one can generate high-
quality results.

Stage 1: Integrated Dense Prediction. To demonstrate
the ability of our stage 1 model, we show the result on the
depth benchmark NYUDv2 [17] and the HED benchmark
BSDS500 [3].

For depth estimation, we compare our result with
DPThybrid’s contemporary work, including DeepLabv3+
[30], RelativeDepth [49], ACAN [14], ShapeNet [70] and
DPThybrid [74]. As shown in Tab. 3, our result outperforms
all the models except for DPThybrid.

For edge detection, we compare with classic methods in-
cluding [2, 5, 6, 9, 19, 22, 31, 39, 40, 52, 79, 88, 91, 92,
107]. As illustrated in Tab. 4, our model surpasses all the
models except for HED [107].

Stage 2: Integrated Conditioned Text-to-Image Gener-
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Figure 6. Features and images generated by our OmniControlNet model.

Method RMSE ↓
DeepLabv3+ [30] 0.575
RelativeDepth [49] 0.538
ACAN [14] 0.496
ShapeNet [70] 0.496
DPThybrid [74] 0.357

Ours 0.472

Table 3. Depth performance of our multi-task dense image predic-
tion (stage 1) model. Our model utilizes the output of DPThybrid as
the training data; therefore, it is acceptable for surpassing all other
methods except for DPThybrid.

ation. We compare the quantitative results on the met-
rics FID score and CLIPt similarity score with other meth-
ods, including ControlNet [116], T2I-Adapter [62], Uni-
ControlNet [117] and UniControl [68]. The latter two meth-
ods build an integrated pipeline that can use a single model
to generate images with different additional features, while
for the first two methods, a new model must be trained for
each different additional feature.

Tab. 2 presents the numerical results for the FID score
and the CLIPt similarity score across various additional fea-
tures and methods. Although methods that utilize differ-
ent expert models for different features perform better, our
method ranks among the best-performing methods within
the category of integrated models.

Integrated Model Results. In the integrated model, similar
to the stage 2 model, we once again compare the quantita-
tive results using metrics such as FID score and CLIPt simi-
larity score with methods including T2I-Adapter [62], Con-

Method ODS ↑ OIS ↑ AP ↑
Canny [9] 0.600 0.640 0.580
Felz-Hutt [22] 0.610 0.640 0.560
gPb-owt-ucm [2] 0.726 0.757 0.696
SCG [79] 0.739 0.758 0.773
Sketch Tokens [52] 0.727 0.746 0.780
PMI [40] 0.741 0.769 0.799
SE [19] 0.746 0.767 0.803
OEF [31] 0.746 0.770 0.820
MES [92] 0.756 0.776 0.756
DeepEdge [5] 0.753 0.772 0.807
CSCNN [39] 0.756 0.775 0.798
MSC [91] 0.756 0.776 0.787
DeepContour [89] 0.757 0.776 0.800
HFL [6] 0.767 0.788 0.795
HED [107] 0.788 0.808 0.840

Ours 0.761 0.782 0.811

Table 4. HED performance of our multi-task dense image predic-
tion (stage 1) model. For the three metrics, ODS, OIS, and AP, the
larger the number, the better the performance. We can see that our
method achieves competitive performance.

trolNet [116], UniControl [68], and Uni-ControlNet [117].
The quantitative results are presented in Tab. 2. It can be
observed that although the overall performance of the inte-
grated model is slightly inferior to methods directly utiliz-
ing features from multiple expert models, it still manages to
generate images of promising quality.

6. Ablation Studies

To demonstrate the effectiveness of our model, Omni-
ControlNet, and to reveal the impacts of certain structural
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designs, we conducted several ablation studies: 1) Inject-
ing learned task prefix embedding into different parts of the
conditioned text-to-image generation module; 2) Learning
weights of the zero-convolution layers with an MLP while
the model is trained with the learned task prefix embedding;
and 3) Comparing different encoding methods and the num-
ber of heads in the multi-head Feature Pyramid Network.
For 1) and 2), we report the results based on our unified
stage 2 setting. For 3), we report the results based on our
unified (stage 1 + stage 2) setting.

6.1. Prefix Injection

In our original framework, only the text prompts fed into
the trainable copy of the SD model contain prefixes such as
“Use <depth> as feature.” In this ablation study, we added
the prefix to both parts of the model. The results are shown
in Tab. 5. We observe that adding the prefix only to the
trainable part yields better results.

FID Scores

Method Depth ↓ HED ↓ Scribble ↓ Animal Pose ↓
Prefixes in both parts 80.17 91.73 58.08 172.29

OmniControlNet (Ours) 23.20 27.26 25.79 53.28

CLIPt Similarity Score

Method Depth ↑ HED ↑ Scribble ↑ Animal Pose ↑
Prefixes in both parts 0.2321 0.2404 0.2676 0.1843

OmniControlNet (Ours) 0.3055 0.2988 0.3002 0.3292

Table 5. Quantitative comparison of different prefix injection
strategies. Prefixes in both parts refers to adding a prefix to text
prompts that are fed into both parts (frozen and trainable copy) of
the model.

6.2. Learning Zero-Conv with MLP

FID Scores

Method Depth ↓ HED ↓ Scribble ↓ Animal Pose ↓
Learn weight by MLP 32.06 32.17 32.04 72.21

OmniControlNet (Ours) 23.20 27.26 25.79 53.28

CLIPt Similarity Scores

Method Depth ↑ HED ↑ Scribble ↑ Animal Pose ↑
Learn weight by MLP 0.3102 0.3085 0.3101 0.3266

OmniControlNet (Ours) 0.3055 0.2988 0.3002 0.3292

Table 6. Quantitative results of generating zero-conv weights via
textual inversion embeddings. Learn weight by MLP refers to
the model using an MLP to learn the weight of the first zero-
convolution.

In our original framework, the zero-conv layers are ini-
tialed with zeros and updated during each training step by
backpropagation, where multiple tasks share the same zero-
conv weights. In the ablation study, we use an MLP to gen-

erate the weights of the first zero-conv layer from the textual
inversion embedding of each task. The results are presented
in Tab. 6. We observe that directly training the first con-
volution layer instead of using the MLP yields a better FID
score, yet generating the weights dynamically via MLP pro-
duces an overall higher CLIPt score.

6.3. Different Task Encoding and Number of Heads

In our foundational framework, a multi-head Feature
Pyramid Network (FPN) is employed to process multi-scale
features, while one-hot encoded task embeddings are uti-
lized for extracting target conditions. Our ablation study
investigates the indispensability of the multi-head FPN and
the efficacy of one-hot encoding. We implement two varia-
tions: one model with a single FPN head and another lever-
aging complex text embeddings generated by the CLIP [65]
text encoder. The comparative results are detailed in Tab. 7.
Results show that integrating one-hot encoding with multi-
ple FPN heads yields superior performance, demonstrating
the effectiveness of our design.

HED Edge Depth Map
Method ODS ↑ OIS ↑ AP ↑ RMSE ↓
Text Embedding 0.600 0.640 0.580 0.558
Single Head 0.610 0.640 0.560 0.520

Ours 0.761 0.782 0.811 0.472

Table 7. Quantitative comparisons of different design choices of
OmniControlNet. Text Embedding refers to the model with CLIP
[65] text encoded task embeddings. Single Head delineates using
a single-head Feature Pyramid Network (FPN).

7. Conclusion and Limitations
In this paper, we propose OmniControlNet, a stream-

lined approach that combines multiple external condition
image generation processes into a cohesive one. This inte-
gration addresses the limitations of ControlNet’s two-stage
pipeline, which relies on external algorithms and has sepa-
rate models for each input type. With OmniControlNet, we
have a multitasking algorithm for generating conditions like
edges, depth maps, and poses and an integrated image gen-
eration process guided by textual embedding. This results
in a simpler, less redundant model capable of generating
high-quality text-conditioned images.
Limitations. 1) When adding an additional task condition,
it’s required to train a new embedding for the task. 2) With
the integrated stage 1 model, the training complexity will
increase, and image generation quality will decrease com-
pared to using separate expert models as the stage 1 model.
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