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Figure 1. Exemplary results of text-image-to-video generation using our proposed approach, ART•V. Our method skillfully captures object
motion while preserving the overall scene, showcasing rich details and maintaining a high level of aesthetic quality. Reference images are
generated by DALL-E 3 [1].

Abstract

We present ART•V, an efficient framework for auto-
regressive video generation with diffusion models. Unlike
existing methods that generate entire videos in one-shot,
ART•V generates a single frame at a time, conditioned on
the previous ones. The framework offers three distinct ad-
vantages. First, it only learns simple continual motions be-
tween adjacent frames, therefore avoiding modeling com-
plex long-range motions that require huge training data.
Second, it preserves the high-fidelity generation ability of
the pre-trained image diffusion models by making only min-
imal network modifications. Third, it can generate arbitrar-
ily long videos conditioned on a variety of prompts such as
text, image or their combinations, making it highly versa-
tile and flexible. To combat the common drifting issue in AR
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models, we propose masked diffusion model which implic-
itly learns which information can be drawn from reference
images rather than network predictions, in order to reduce
the risk of generating inconsistent appearances that cause
drifting. Moreover, we further enhance generation coher-
ence by conditioning it on the initial frame, which typically
contains minimal noise. This is particularly useful for long
video generation. When trained for only two weeks on four
GPUs, ART•V already can generate videos with natural mo-
tions, rich details and a high level of aesthetic quality. Be-
sides, it enables various appealing applications, e.g. com-
posing a long video from multiple text prompts.

1. Introduction
Recently, text-to-image (T2I) generation [1, 3, 44] has
been significantly advanced by generative diffusion mod-
els [20, 34, 50–52] and large scale text-image datasets such
as Laion5B [47]. The success has also catalyzed a remark-
able proliferation of research in text-to-video (T2V) gener-
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ation [6, 9–16, 18, 21, 22, 26, 30, 39, 49, 58, 59, 61, 62, 66–
68, 72, 74–76], driven by the intrinsic allure of the potential
breakthroughs.

Existing T2V methods [18, 21] usually adopt a straight-
forward framework in which they generate entire videos at
once using a spatial-temporal U-Net. However, they often
produce videos with unrealistic motions. This is because
learning the long-range motions is a highly ambiguous and
complex task, which requires a significantly larger training
dataset than that used in T2I, such as Laion5B [47], which
unfortunately is prohibitively expensive to collect and train
on. Even the largest video dataset available [7] represents
only a fraction of Laion5B. Therefore, we argue that achiev-
ing the “stable diffusion” moment in T2V using this frame-
work is difficult.

In this work, we present ART•V, a framework that gen-
erates video frames auto-regressively. As shown in Fig. 2,
it first obtains a key frame as initialization. Then, with the
key frame, or multiple copies of it, depending on the length
of the conditioning sequence, ART•V generates subsequent
frames auto-regressively, one frame at a time. The condi-
tioning frames, typically one or two previous frames, are
concatenated and injected into a pre-trained image diffusion
model [44] using T2I-Adapter [33] (similar as ControlNet
[73] but smaller), for conditional generation. The resulting
model is more efficient compared to previous methods, as it
only needs to learn simple continuous motions between ad-
jacent frames. Besides, it minimizes alternations to the pre-
trained image diffusion model, eliminating the necessity for
additional temporal layers, and preserving its high-fidelity
generation capability. Contrary to conventional wisdom,
our auto-regressive model matches the inference speed of
one-shot video models, while facilitating larger batch sizes
during training.

To combat drifting in AR models, we propose masked
diffusion, which learns a mask that determines which in-
formation can be directly drawn from reference images,
rather than from network predictions, to reduce the chance
of generating inconsistent appearance. The static noise, ob-
tained by subtracting the reference image from the input
noised image, is a short-cut to propagate reference images
to the diffusion model. Therefore, the network only needs
to predict the remaining part of the noise, which we call
as dynamic noise. Fig. 3 shows an overview of the pro-
posed masked diffusion. Moreover, we further enhance the
generation process by conditioning it on the initial frame,
which sets the tone for the overall scene and appearance de-
tails, further promoting global coherence. We call the above
scheme anchored conditioning, benefiting long video gen-
eration as well. Finally, we perform noise augmentation
to the reference frames to bridge the gap between training
and testing. We combine the above techniques to arrive at
ART•V, which effectively mitigates the drifting issue.
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Figure 2. Overview of our video generation system ART•V, con-
sisting of first frame initialization process and auto-regressive gen-
eration process. The first frame can be initialized by users, T2I
models [1, 3, 44] or our ART•V itself.

We train our model on five million text-video pairs fil-
tered from the WebVid-10M dataset [7]. Due to limited
GPU resouces, we only train the model for two weeks on
four A100 GPUs. However, we find that ART•V can al-
ready generate videos with natural motions, rich details and
a high level of aesthetic quality. Though trained on low-
resolution data, ART•V can directly generate impressive
high-resolution videos, as shown in Fig. 6. It also achieves
better quantitative results than the previous methods (they
only represent proof-of-concept results since the methods
are not fairly comparable due to differences in model size,
training data and GPU resources). Fig. 1 shows some exam-
ples. Most importantly, the simplicity of our model makes
it highly scalable to larger training data and longer training
time, which we believe can further improve the results. Be-
sides, ART•V enables various appealing applications. For
example, it can generate long videos from multiple text
prompts for story telling. It can also animate single images
based on descriptive texts.

2. Related Work

Text-to-Video Generation. The problem has seen remark-
able progress recently. Early T2V models demonstrated the
possibility of generating videos in simple close-set domain
[17, 28, 29, 31, 32, 35] and further exploited Transformer-
based model [55] to achieve open-domain generation [23,
56, 64, 65]. Recently, diffusion-based T2V systems [6, 9–
16, 18, 21, 22, 26, 30, 39, 42, 49, 58, 59, 61, 62, 66–
68, 72, 74–76] have shown groundbreaking progress. Mod-
els like ModelScope [58] and Imagen Video [21] trained
T2V models from scratch, demanding a huge text-video
dataset and numerous GPU resources which is prohibitive
for most cases. In contrast, most works [9, 26, 30, 49, 59,
62, 66, 68, 72] leveraged T2I model priors such as Stable
Diffusion [44] for T2V by freezing or finetuning the pre-
trained weights, showcasing compelling results. However,
these methods, usually generating entire videos in one-shot,
suffer from generating unrealistic large motions or very lim-
ited motions. In this work, we propose ART•V, a generation
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Figure 3. Illustration of the proposed masked diffusion model (MDM), conditioned on text, two reference frames and a global anchor
frame. The predicted noise of MDM is composed of dynamic noise and static noise, which are scaled by a predicted mask. We employ two
sub-networks Φdynamic and Φmask to predict dynamic noise and mask, respectively. Static noise is directly derived by subtraction of noisy
input and reference frame. We initialize Φdynamic with Stable Diffusion 2.1 [44], while Φmask is randomly initialized. Reference frames
and global anchor frame are injected into two sub-networks by using T2I-Adapter [33] and cross attention [44], respectively. Notably, the
diffusion process is conducted in the latent space as in [44]. The autoencoder is omitted here for brevity.

system that avoids the challenge of learning complex long-
range motion via auto-regressive first-order motion predic-
tion, facilitating efficient training.
Auto-Regressive Video Generation. This is a burgeoning
research area that aims to generate realistic and coherent
videos by predicting each frame based on previously gen-
erated frames. Generally, three strategies have been em-
ployed. The first is pixel-level auto-regression. Some rep-
resentative methods attempt to estimate the joint distribu-
tion of pixel value auto-regressively [25], speed up the pro-
cessing by realizing a parallelized PixelCNN [43], and scale
the techniques of auto-regressive Transformer architectures
[55] to accommodate modern hardware accelerators [63].
The second is frame-level auto-regression. Huang et al.
[24] proposed auto-regressive GAN to predict frames based
on a single still frame. By overcoming error accumulation
problem of AR, the complementary masking is introduced
to promote the generation quality. The third is latent-level
auto-regression, which significantly saves processing time
due to reduced data redundancy and achieves a good time-
quality trade-off [41, 48, 57, 71]. Our ART•V generation
system, belonging to latent-level auto-regression, is the first
attempt exploiting auto-regressive framework in the context
of T2V with diffusion models.

3. Method

3.1. System Overview

Fig. 2 shows an overview of ART•V. Given a text prompt
ytxt and an optional reference frame y0, it generates a video

V = {y0,y1, ...,yi, ...yN}. If y0 is not available, the sys-
tem can use existing T2I models to generate one, or uses
ART•V itself to generate one conditioned on blank images.

It trains a conditional diffusion model Φ(·; θ) parameter-
ized by θ to perform auto-regressive generation, which is
formulated as

yi = Φ
(
ytxt,Ri; θ

)
, (1)

where Ri denotes the set of conditional frames for gener-
ating yi. In implementation, Ri includes the previous two
frames and an global anchor frame, denoted as yi−1

ref , yi−2
ref

and yanchor, to encode first-order motions.
Our model is built on Stable Diffusion 2.1 [44] (SD2.1).

To support image conditional generation, the two reference
frames are concatenated along the channel dimension and
injected into SD2.1 in a T2I-Adapter [33] style, while the
global anchor frame adopts cross attention for injection.
We do not introduce additional temporal modeling modules
such as 3D convolutions and attention layers, which are re-
quired by previous T2V models. This is because we only
need to model short motions between adjacent frames. In
the following, we will elaborate our proposed techniques
for alleviating the drifting issue in AR models.

3.2. Masked Diffusion Model (MDM)

In standard diffusion process, all pixels are predicted from
random noises by networks which have large chance of gen-
erating appearances inconsistent with the previous frames.
As prediction proceeds auto-regressively, the accumulated
errors will eventually lead to drifting. The core idea of
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Figure 4. Value distribution of the estimated mask by mask diffu-
sion model during different sampling steps. The maximum sam-
pling step is 50.

MDM is to implicitly learn a mask determining which in-
formation can be drawn directly from closely related con-
ditional images rather than network predictions to reduce
inconsistency. Fig. 3 shows an overview of MDM.

As shown in Fig. 3, MDM has two U-Nets for predict-
ing noise and mask, respectively. The static noise, directly
obtained by subtracting the reference image from the input
noised image, is a short-cut to propagate information in the
reference image to the diffusion process. We find that the
model tends to copy more from reference images at later
denoising steps, which effectively reduces the risk of gen-
erating inconsistent high-frequency appearances that cause
drifting. This is illustrated in Fig. 4. The U-Net hence only
needs to predict the remaining part of the noise, which we
call as dynamic noise. In the following, we will formally
introduce the method.

Diffusion Model Preliminaries. Diffusion model has a
forward and a backward process, respectively. The forward
process gradually adds noises to the clean data y0 ∼ q (y0),
which can be formulated as:

q
(
yt | yt−1

)
= N

(
yt;

√
1− βtyt−1, βtI

)
, (2)

where t ∈ {1, ..., T} and βt ∈ (0, 1) is a fixed variance
schedule. Denote that αt = 1 − βt and ᾱt =

∏t
i=1 αi, we

can directly sample yt in a closed form from the distribution
q(yt|y0) at an arbitrary timestep t:

yt =
√
ᾱty0 +

√
1− ᾱtϵ, (3)

where ϵ ∼ N (0, I).
The backward process reverses the forward process,

which eventually maps Gaussian noises yT ∼ N (0, I) to
the target data. Specifically, the backward denoising pro-
cess solves the posterior q(yt−1|yt), which can be approx-
imated by training a deep neural network Φ(·; θ) to predict
the noise ϵ added to the data. The training objective is for-
mulated as:

Ey,ϵ∼N (0,I),t

[
∥ϵ− Φ (yt, c, t; θ)∥

2
2

]
, (4)

where c denotes the conditions that represent the reference
and global anchor frames, and texts in our ART•V system.

Mask Prediction and Dynamic Noise. In MDM, noise
prediction in Eq. (4) is realized by two networks: dynamic
noise prediction network Φdynamic(·; θ0) and mask predic-
tion network Φmask(·; θ1). Without loss of generality, we
define σ =

√
ᾱt and λ =

√
1− ᾱt. We omit t for brevity.

We reformulate Eq. (3) as:

yt = σy0 + λϵ

= (yref + yres) + λϵ

= yref + (yres + λϵ)

= yref + ϵ′,

(5)

where yref is the reference frame, and yres denotes the
residual component between σy0 and yref . Therefore,
the ϵ, which needs to be predicted by the diffusion model
Φ(·; θ) in Eq. (4), can be derived from Eq. (5):

ϵ =
yref + ϵ′ − σy0

λ

=
yref − σy0

λ
+

ϵ′

λ

=
ϵ′′

λ
+

ϵ′

λ
= ϵstatic + ϵdynamic,

(6)

where ϵstatic and ϵdynamic represents the static noise and
dynamic noise, respectively.

We can see from Eq. (5) and Eq. (6) that the static noise
ϵstatic is from the reference image yref , which can be di-
rectly propagated to the output and is expected to mitigate
error accumulation. In our implementation, we make ap-
proximation ϵstatic ≃ yref −yt. In such a way, ϵstatic can
be directly derived from reference images and noised in-
put input, which do not need to be predicted. The dynamic
noise ϵdynamic contains the residual component yres that
changes dynamically, which needs to be predicted by our
noise prediction network Φdynamic(·; θ0). In order to de-
termine the contributions of static and dynamic noises, we
employ the mask prediction network Φmask(·; θ1) to pre-
dict a mask m. Eventually, the final predicted noise of our
mask diffusion model is obtained by:

ϵ̂ = m · ϵstatic + (1−m) · ϵdynamic. (7)

The two networks can be optimized by Eq. (4).

3.3. Noise Augmentation

Drifting issue in our ART•V generation system arises not
only from prediction error but also from train-test discrep-
ancy. During training, the model utilizes ground truth
frames as references and the global anchor. However,
during testing, it conditions on generated frames prone to
noises. Inspired by [44], we slightly corrupt reference and
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Table 1. Quantitative comparisons with SoTA for zero-shot video generation on UCF-101 [53] and MSR-VTT [69].

Methods Training Data UCF-101[53] MSR-VTT[69]
Zero-shot FVD ↓ IS ↑ Zero-shot FVD ↓ CLIPSIM ↑

GODIVA [64] MSR-VTT [69] Yes - - No - 0.2402
NUWA [65] MSR-VTT [69] Yes - - No - 0.2439
Make-A-Video [49] WebVid-10M [7] + HD-VILA-100M [70] Yes 367.23 33.00 Yes - 0.3049
VideoFactory [59] WebVid-10M [7] + HD-VG-130M [59] Yes 410.00 - Yes - 0.3005
ModelScope [58] WebVid-10M [7] + LAION-5B [46] Yes 410.00 - Yes 550.00 0.2930
VideoGen [26] WebVid-10M [7] + Private-HQ-2K [26] Yes 554.00 71.61 Yes - 0.3127
Lavie [62] WebVid-10M [7] + LAION-5B [46] Yes 526.30 - Yes - 0.2949
VidRD [16] WebVid-2M [7] + TGIF [27] + VATEX [60] + Pexels [5] Yes 363.19 39.37 Yes - -
PYoCo [15] Private-data [15] Yes 355.19 47.76 Yes - 0.3204
LVDM [18] WebVid-2M [7] Yes 641.80 - Yes 742.00 0.2381
CogVideo [23] WebVid-5.4M [7] Yes 702.00 25.27 Yes 1294.00 0.2631
MagicVideo [76] WebVid-10M [7] Yes 699.00 - Yes 998.00 -
Video-ldm [9] WebVid-10M [7] Yes 550.61 33.45 Yes - 0.2929
VideoComposer [61] WebVid-10M [7] Yes - - Yes 580.00 0.2932
VideoFusion [30] WebVid-10M [7] Yes 639.90 17.49 Yes 581.00 0.2795
SimDA [68] WebVid-10M [7] Yes - - Yes 456.00 0.2945
ART•V + W/O Image (Ours) WebVid-5M [7] Yes 567.20 26.89 Yes 356.50 0.2897
ART•V + SDXL [38] (Ours) WebVid-5M [7] Yes 539.57 36.21 Yes 413.01 0.3022
ART•V + GT Image (Ours) WebVid-5M [7] Yes 315.69 50.34 Yes 291.08 0.2859
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Figure 5. Visual comparisons of text-to-video generation. The results of row 1 to row 5 are sampled from VDM [22], CogVideo [23],
Make-A-Video [49], ModelScope [58] and Our ART•V.

global anchor frames using the forward diffusion process in
Eq. (3). In particular, for each training step, we randomly
sample a noise level t ∈ [0, Tmax]. In such a way, the model
has the chance to see clean reference frames and corrupted
ones, respecting the case of inference and expected to ad-
dress the error accumulation problem during inference. Fol-
lowing [44], we also use the noise level ttest as an additional
condition by adding it to the time step embedding of dif-
fusion model. In inference, we use a fixed noise level of
ttest = 200, validated by the ablation study in Sec. 4.2.

3.4. Anchored Conditioning

In addition to using masked diffusion model and noise aug-
mentation to address drifting issue in our ART•V genera-
tion system, we introduce a novel design, anchored condi-

tioning, expected to promote model capacity for long video
generation. One key challenge in generating long videos
is to maintain consistency in terms of scenes and objects
throughout videos, solved by a global anchor in ART•V.

In detail, we use the first frame, which is free from
noises, as a stable anchor frame yanchor to preserve the
content, in whole videos. In training, we randomly select
one frame within a fixed time window range preceding the
current one to serve as the global anchor frame. We expir-
ically choose time window range as 10, to create relatively
large motion variations. We use cross attention [55] to inject
the global anchor frame to the diffusion model. The strat-
egy addresses the inherent challenges in long text-to-video
generation, providing a robust mechanism for faithfully re-
taining the scenes and objects.
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Figure 6. Visual comparisons of text-image-to-video generation. Reference image generated by DALL-E 3 [1]. Notebly, ART•V is trained
on 320× 320 video data, while the inference is performed on 768× 768 in these cases.

4. Experiment

Datasets and Evaluation Metrics. To make quantitative
and qualitative comparisons, we choose the publicly avail-
able datasets: WebVid-10M [7], MSR-VTT [69] and UCF-
101 [53]. We split WebVid-10M to training subset and test-
ing subset. We make data cleaning on the training subset.
In specific, we use the public code [4] to compute the mo-
tion score of each video and then only retain the videos
whose motion scores are between [1, 20]. Subsequently, we
compute a CLIP score for each video and retain the top 5
million data that have largest CLIP scores [40]. We train
our model on this cleaned 5M dataset. MSR-VTT [69] and
UCF-101 [53] are utilized for evaluation. We report the
Frechet Video Distance (FVD) [54], Frechet Inception Dis-
tance (FID) [36], Inception Score (IS) [45] and CLIPSIM
(average CLIP similarity between video frames and text)
[40] for quantitative comparison.
Implementation Details. We implement our method us-
ing Pytorch [37] and use AdamW solver for optimization.
We train our diffusion model with 1000 noising steps and
a linear noise schedule. The exponential moving average
(EMA) of model weights with 0.9999 decay is adopted dur-
ing training. We set the learning rate as 1e−5 and keep it
constant during the training process. We use a batch size
of 640. For noise augmentation, we set the maximum noise

level Tmax as 550. For inference, we employ classifier-free
guidance [19] to amplify the effect of the conditional signals
of reference frames yref , global anchor frame yanchor and
text prompts ytext. The guidance scales of yref , yanchor

and ytext are set as 0.25, 0.25 and 6.5, respectively. Dur-
ing training, we randomly drop these conditions with a drop
rate of 10%.

4.1. Application

We now demonstrate a wide range of applications of our
ART•V system. Our ART•V, only trained once without task-
specific finetuning, can skillfully support multiple genera-
tion tasks. In contrast, existing models like VideoCrafter1
[10] needs to train two individual models for T2V and TI2V,
causing large training cost.
Text-to-Video Generation. We first exploit our ART•V to
perform text-to-video generation, without the image pro-
vided by T2I models [1, 3, 44] or users. It is worth noting
that, our model is trained using joint conditions of text and
images. Notably, we randomly drop the image condition
with a drop rate of 10% during training. It suggests that
the training cases of text-to-video take a small proportion.
However, we observe that, ART•V, trained for text-image-
to-video generation, is able to skillfully generate video by
using text condition only. Specifically, when there is no
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1st prompts: “A girl is reading a book.”

2nd prompts: “A girl looks thoughtful.”

3rd prompts: “A girl is talking.”

Figure 7. Visual result of multi-prompt long text-to-video genera-
tion. 16 frames are generated for each prompt.

provided reference frames, we directly use our model to
generate one from the text prompt, leaving the conditioned
reference frames blank. Then, we generate the subsequent
frames conditioned on the generated reference frames. We
demonstrate the quantitative results in Tab. 1. We compare
our method with the existing state-of-the-art methods on
UCF-101 [53] and MSR-VTT [69] in a zero-shot setting. It
can be clearly observed that, our method ART•V, achieving
FVD score of 567.20 and IS score of 26.89 in UCF-101,
consistently outperforms existing methods such as Video-
Fusion [30], MagicVideo [76], LVDM [18] and CogVideo
[23]. In MSR-VTT, we keep the top performance in terms
of FVD, and even outperform ModelScope [58] that utilizes
additional high-quality datasets for training. In Fig. 5, we
also demonstrate some exemplary results of different meth-
ods using the same text prompts. The visual results also
support the conclusions above, demonstrating the visually-
satisfying results compared to the existing methods. In ad-
dition, we believe if ART•V is finetuned for T2V task, we
will achieve better results.
Text-Image Conditioned Video Generation. ART•V also
offers the ability to animate a still image based on text
prompts. We either employ the existing T2I models such
as Stable Diffusion [44], Midjourney [3], and DALL-E 3
[1] to generate reference images or directly use the images
provided by users. The numbers are reported in Tab. 1. We
make two variants of our method, termed “ART•V+SDXL”
and “ART•V+GT Image”, which utilize the image generated
by SDXL [38] and GT image as the first frame, respectively.
As can be clearly observed, when conditioned on an addi-
tional image, our ART•V achieves better results in terms of
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Figure 8. (a) Ablation results of mask diffusion model and an-
chor conditioning on UCF-101-2k [53], MSR-VTT-2k [69] and
WebVid-2k [7]. (b) Investigation results of noise augmentation on
UCF-101-2k [53].

FVD and IS in UCF-101. Especially, we achieve the SoTA
results, FVD of 315.69 and IS of 50.34 in UCF-101, FVD
of 291.08 in MSR-VTT, when GT image is taken as refer-
ence image. It demonstrates the superior performance of
text-image conditioned generation of our ART•V.

We demonstrate some visual exemplar videos generated
by our method in Fig. 6. In these cases, ART•V is exploited
to generate high-resolution videos of 768× 768, though the
model is trained on 320 × 320. We compare to a well-
known video generation system Gen-2 [2] provided by a
commercial company. We generate the reference frame us-
ing DALLE 3 [1], which is then fed to ART•V and Gen-2 to
generate videos, respectively.

We observe that both ART•V and Gen-2 are able to an-
imate the given image using the text description, demon-
strating good visual fidelity. Notably, our ART•V exhibits
a superior ability to preserve appearance compared to Gen-
2. As can be seen from the second case of Fig. 6, Gen-2
shows the severe color shifting problem, while our ART•V
preserves the content in the reference images, thanks to the
proposed masked diffusion model and anchored condition-
ing. In addition, the exceptional visual quality of ART•V
demonstrates that our method can achieve tuning-free, high-
resolution video generation, thereby significantly reducing
the training costs. Nevertheless, Gen-2 show superior re-
sults in terms of visual detail and temporal consistency due
to additional high-quality training data and temporal inter-
polation models, which is beyond the scope of this paper.
In contrast, we train ART•V only using WebVid-5M, which
has low resolution and quality.
Multi-Prompt Long Video Generation. ART•V is suitable
for long video generation due to its auto-regressive nature.
We can repeat the auto-regressive process to generate an ar-
bitrarily long video, and require different segments of the
video to be conditioned on different prompts. The leading
frame of a video segment should be conditioned on the end-
ing frames of last video segment to promote coherence and
continuity. Fig. 7 shows an example. We can see that our
system can generate videos with coherent scenes and ob-
jects, and meanwhile the motions in each segment are faith-
ful to the corresponding prompts.
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Generated 
Frame

Mask Visualization Before 
Sampling Step of 25

Mask Visualization After 
Sampling Step of 25

Figure 9. Visualization of estimated mask by mask diffusion
model. Reference image is generated by SDXL [38].

4.2. Ablation Study

Masked Diffusion Model. We propose masked diffusion
model to alleviate the error accumulation in our ART•V sys-
tem. To validate its effectiveness, we introduce a baseline
which drops the mask prediction network. It trains a single
network to predict the noise in Eq. (7) as in standard dif-
fusion models. As shown in Fig. 8 (a), when we drop the
masked diffusion, the performance drops significantly on all
evaluation datasets. We also visually compare the videos
generated by different methods in Fig. 10. We can see
that the model suffers from severe drifting without masked
diffusion. In addition, the image quality is also degraded,
losing many sharp details. These results demonstrate the
importance of masked diffusion.

We show the normalized strengths of the predicted
masks at different time steps in Fig. 4. The average strength
increases as the denoising step, suggesting that the diffu-
sion model will use copy more from the reference images
in later denoising steps, where diffusion models focus on
high-frequency appearance generation [8]. So, our model
will generate images that have similar appearance as the
reference images, thus can effectively alleviate the drifting
issue. Fig. 9 shows the masks at different denoising steps,
which validates our conjecture.
Noise Augmentation. In addition to masked diffusion
model, we propose noise augmentation to further reduce
error accumulation. We investigate the effect of applying
different levels of noises, i.e. ttest, during inference. The nu-
meric results are in Fig. 8 (b). As can be observed, adopting
noise augmentation brings significant performance boosts
in terms of FVD and IS metrics. When we increase the
noise level, IS achieves consistently better results but the
gains become marginal after exceeding 100. In contrast,
the FVD gets the best result when the noise level is 200 and
shows performance drop when noise level exceeds 200. It is
worth noting the value of 200 is approximately the average
of the noise levels we applied during training. Fig. 10 shows
the visual results of ablating noise augmentation, which is
adversely affected by the noise artifacts and reveals the ne-
cessity of noise augmentation.

ART•V (Ours) W/O Anchor 
Frame

W/O Mask 
Diffusion Model

W/O Noise 
Augmentation

Figure 10. Visual results of ablation study. Reference image is
generated by SDXL [38] by using prompt “interior, fireplace.”

Anchored Conditioning. Here we validate the effective-
ness of anchor frame. We manually set the anchor frame to
be zero and keep the model structure unchanged. As can be
seen from Fig. 8 (a), without the anchor frame as an addi-
tional condition, the model shows a clear performance drop
in terms of FVD for all evaluation datasets. The visual re-
sults of Fig. 10 showcase the obvious domain shifting prob-
lem with loss of high frequency details when removing an-
chor frame. These results indicate the anchored condition-
ing is an essential to retain the overall appearance.

5. Conclusion

This paper realizes a novel text-to-video generation system,
termed ART•V, to generate videos conditioned on texts or
images in an auto-regressive frame generation manner. To
address the error accumulation problem and support long
video generation, we implement our ART•V generation sys-
tem by proposing mask diffusion model that carefully uti-
lizes the priors of reference images, noise augmentation that
closes the train-test discrepancy and anchored conditioning
that assures scene consistency. As validated by comprehen-
sive experiments, we demonstrates superior performance
over various comparison methods.
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