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5. Limitations and Future Research Directions

1. Limited number of rare plant species: Our study pri-
marily focuses on five rare plant species. The meth-
ods presented in this study should be evaluated using a
more extensive set of rare flora to demonstrate broader
applicability. However, we theorize and propose initial
work on using rare plants for classification. Given the
constraint on the number of resources available, we col-
lected data and conducted experiments on these five spe-
cific flora, which are well-known rare species.

2. Small real-world labeled test set: The real-world la-
beled dataset used for testing is relatively small, with
only 250 images (50 per class). A more extensive test
set would provide a more robust evaluation of the pro-
posed techniques. However, each of these 250 samples
used in this paper is manually validated for sanity.

3. Few-shot learning limited to 5 shots: A maximum of
5 real images per class are used for the few-shot learn-
ing experiments. The effectiveness of the methods with
more real shots (e.g. 10, 20) has yet to be explored.
However, finding distinct images for rare plants that are
openly available is already challenging, and in our ex-
periment results, we see that within the five real photos,
we start seeing rate performance improvement dropping.

4. GPU constraints limiting experiment scale: GPU con-
straints likely limited the scale of run experiments. Ad-
ditional model architectures, prompt engineering strate-
gies, and hyperparameter settings could be explored with
more computational resources. While additional com-
putational resources could enable a large-scale empirical
evaluation, the current experiments demonstrate signifi-
cant improvements from synthetic data and provide valu-
able insights to guide future research.

5. Focus on rare plant classification: The paper focuses
on rare plant classification as a challenging and so-
cially significant fine-grained visual classification prob-
lem. While extending the techniques to additional do-
mains would demonstrate a broader impact, the current
study provides a meaningful proof-of-concept in a spe-
cific application area.

6. Lack of human evaluation of synthetic images and
feedback: We agree that human assessment of the real-
ism and diversity of the generated synthetic plant images
would provide additional insight. However, the signifi-
cant performance improvements achieved using the syn-
thetic data demonstrate its effectiveness for the classifi-
cation task. Subjective human judgments, while inter-

esting, are optional to validate the approach. However,
human (exceptionally expert botanist) feedback-guided
image generation may yield new results.

6. Ethical Considerations
1. Environmental conservation: The primary motivation

behind this study is to improve the classification of rare
plant species, which can ultimately aid in their preser-
vation. By developing techniques that enable accurate
identification of rare flora from limited real-world data,
our paper contributes positively to environmental conser-
vation efforts. However, it is essential to ensure that the
synthetic data generation process does not inadvertently
promote the collection of rare plant specimens from the
wild, which could harm these vulnerable species.

2. Data privacy: This paper uses publicly available data
sources for training and evaluation, which mitigates po-
tential concerns around data privacy. However, if the
techniques were to be applied to datasets containing sen-
sitive information, such as the location of rare plant pop-
ulations, it would be crucial to ensure that appropriate
data privacy measures are in place to protect this infor-
mation from misuse.

3. Bias and fairness: The paper does not explicitly address
bias and fairness issues in the synthetic data generation
process. While the focus on rare plant species inherently
deals with underrepresented categories, it is essential to
consider whether the synthetic data generation process
could inadvertently introduce biases, such as overrep-
resenting certain species or geographic regions. Future
work could benefit from a more detailed analysis of the
diversity and representativeness of the generated syn-
thetic data.

4. Potential misuse: The techniques presented in the pa-
per could be misused to generate misleading or deceptive
content related to rare plant species. For example, syn-
thetic images could falsely claim the discovery of new
rare species or misrepresent the appearance or distribu-
tion of known species. While we, the authors, cannot
fully control how others use their techniques, it is es-
sential to raise awareness of these potential misuse cases
and to promote responsible use of the technology.

5. Intellectual property: The paper builds upon existing
open-source models and datasets, which helps to en-
sure the accessibility and reproducibility of the research.
However, if the techniques were applied to proprietary
datasets or used in commercial applications, it would be



necessary to consider intellectual property rights care-
fully and ensure that appropriate licenses and attribu-
tions are in place.

6. Societal impact: The paper has the potential to posi-
tively impact society by contributing to the conservation
of rare plant species. However, it is essential to consider
the broader societal implications of the technology, such
as the potential impact on jobs and expertise in botanical
research. It is necessary to ensure that these techniques
are developed in collaboration with domain experts and
that the technology is used to augment, rather than re-
place, human expertise.

7. Visualization of Synthetic Images Generated
In this section, we present a visual analysis of the synthetic
images generated by our proposed approach. The purpose
of this visualization is to provide a qualitative assessment of
the generated images and to offer insights into the effective-
ness of our synthetic data generation process.

7.1. Visualization of Zero-Shot Synthetic Images

Figure 7. Zero-shot images generated with guidance scale set to 8

Figure 7, 8 and 9 showcases a selection of synthetic im-
ages generated by our approach in the zero-shot setting. In
this setting, the model generates images of rare plant species
without real-world examples to guide the generation pro-
cess. The images are generated solely based on textual de-

Figure 8. Zero-shot images generated with guidance scale 12

Figure 9. Zero-shot images generated with guidance scale 18



scriptions of the target species, fed into the text-to-image
generation model.

As can be seen from the figure, the generated images ex-
hibit a high degree of visual fidelity and realism. The pho-
tos accurately capture the distinctive morphological charac-
teristics of each rare plant species, such as the shape and
color of the flowers, leaves, and stems. For example, the
synthetic images of Rafflesia Arnoldii (first row) depict the
large, reddish-brown petals and the central disk characteris-
tic of this species. Similarly, the photos of Amorphophallus
titanum (third row) accurately represent the tall, cylindrical
spadix and the large, frilled spathe typical of this species.

However, it can also be observed that some of the gen-
erated images lack the fine-grained details and textures
in real-world images. For instance, the synthetic images
of Encephalartos Woodii (second row) capture the over-
all shape and arrangement of the leaves, but the individ-
ual leaflets appear somewhat simplified and need more in-
tricate venation patterns visible in natural specimens. This
limitation is likely due to the challenges inherent in generat-
ing highly detailed images from textual descriptions alone,
without any visual reference.

Despite these limitations, the synthetic images generated
by our approach in the zero-shot setting demonstrate the
potential of using textual descriptions to guide the genera-
tion of realistic images of rare plant species. The generated
images capture the essential visual characteristics of each
species and provide a valuable resource for training classi-
fication models without real-world data. As we refine our
approach and explore more advanced text-to-image gener-
ation techniques, we expect the quality and diversity of the
generated images to improve further, enabling even more
effective zero-shot learning for rare plant classification.

7.2. Visualization of Few-Shot Synthetic Images

In the few-shot setting, our approach leverages a small num-
ber of real-world images to guide the generation of synthetic
images. This is achieved through the Real Image Guided
Generation (RIGG) technique, which uses real images as a
starting point for the image generation process. By condi-
tioning the generation on real examples, we aim to improve
the realism and diversity of the generated images while still
benefiting from the ability of the text-to-image model to
generate novel variations.

Figure 10 presents a comparison of real images (first
row) and synthetic images generated by our RIGG approach
(second row) for each of the five rare plant species. The
synthetic images shown here are generated without apply-
ing the Real Feature Filtering (RFF) technique, which al-
lows us to visualize the types of images filtered out by this
process.

As can be seen from the figure, the synthetic images gen-
erated by RIGG exhibit a high degree of visual similarity to

Figure 10. Comparison of real images (first row) and synthetic im-
ages generated by our RIGG approach without RFF (second row)
for each of the five rare plant species: (a) Rafflesia Arnoldii, (b)
Encephalartos Woodii, (c) Amorphophallus Titanum, (d) Ghost
Orchid, and (e) Dracaena Cinnabari.

the real images, capturing the key morphological features
and overall appearance of each species. For example, the
synthetic images of Encephalartos Woodii (second column)
closely resemble the actual images regarding the leaves’
shape, size, and arrangement. Similarly, the synthetic im-
ages of Amorphophallus titanum (third column) accurately
depict the distinctive inflorescence and the mottled patterns
on the spathe.

However, it can also be observed that some of the syn-
thetic images contain artifacts or inconsistencies that devi-
ate from the real examples. For instance, the first two syn-
thetic images of Rafflesia Arnoldii (first column) exhibit
distortions in the shape and color of the petals, which are
not present in the real images. These artifacts are likely due
to the challenges of accurately capturing the fine-grained
details and textures of the real images in the synthetic gen-
eration process.

To address these issues, our approach employs the RFF
technique to filter out synthetic images that are too dissim-
ilar from the real examples. By setting a threshold on the
distance between the real and synthetic images in feature
space, RFF ensures that only the most realistic and consis-
tent synthetic images are retained for training the classifica-



Generative Model CLIP ViT-B/32 LLaVa-Mistral BLIP-2 ViT-L/16@384
Stable Diffusion XL 0.72 0.69 0.64 0.85
Openjourney-v4 0.71 0.73 0.65 0.81
Latent Consistency Model 0.69 0.65 0.62 0.77
Midjourney 0.79 0.75 0.73 0.89
Dall◦E 3 0.70 0.65 0.61 0.83

Table 7. Performance comparison of different generative models (Propreitary + Open Source) and classifiers.

tion models. In the case of Rafflesia Arnoldii, the first two
synthetic images shown in Figure 10 would be filtered out
by RFF, as their distance from the real images exceeds the
specified threshold α. This filtering process helps improve
the quality and reliability of the synthetic data while allow-
ing for a diverse range of generated images that capture the
essential characteristics of each species.

Overall, the visualization of synthetic images generated
by our RIGG approach in the few-shot setting demonstrates
the effectiveness of using real images to guide the genera-
tion process. By conditioning the generation on real exam-
ples and filtering out inconsistent images with RFF, our ap-
proach can generate high-quality synthetic data that closely
resembles the real-world examples while still providing a
diverse range of variations to improve the robustness of the
classification models.

8. Ablation Study on Open-Source and Propri-
etary Text to Image Models

In this section, we present an ablation study to compare the
performance of different text-to-image generative models
when used in conjunction with various classifiers for rare
plant species classification. This study aims to investigate
the impact of the choice of generative model on the effec-
tiveness of our proposed approach and to identify the best-
performing combinations of generative models and classi-
fiers.

We consider five state-of-the-art text-to-image genera-
tive models, including three open-source models (Stable
Diffusion XL, Openjourney-v4, and Latent Consistency
Model) and two proprietary models (Midjourney and Dall-
E 3). These models are selected based on their demon-
strated ability to generate high-quality and diverse images
from textual descriptions and their popularity in the re-
search community and industry.

We evaluate each generative model’s performance when
used with four different classifiers: CLIP ViT-B/32, LLaVa-
Mistral, BLIP-2, and ViT-L/16@384. These classifiers rep-
resent various architectures and training methodologies and
have performed strongly on various image classification
tasks. We evaluate all these models on a relatively more
challenging task of zero-shot rare-common classification
(Task-2).

Table 7 presents the results of our ablation study, show-
ing the classification accuracy achieved by each combina-
tion of generative model and classifier on the test set of rare
plant species images. The results are averaged over multiple
runs to ensure robustness and reproducibility.

From the table, the choice of generative model sig-
nificantly impacts the classifiers’ performance. Among
the open-source models, Stable Diffusion XL consistently
achieves the highest accuracy across all classifiers, with
a solid performance when used with ViT-L/16@384 (0.85
accuracy). Openjourney-v4 also performs well, especially
with LLaVa-Mistral (0.73 accuracy), while the Latent Con-
sistency Model generally yields lower accuracy than the
other open-source models.

When comparing the proprietary models, we find that
Midjourney outperforms Dall-E 3 across all classifiers,
with a notable performance when used with ViT-L/16@384
(0.89 accuracy). This suggests that the Midjourney model
is particularly effective at generating realistic and informa-
tive images of rare plant species, which can be effectively
leveraged by the classifiers for improved classification per-
formance.

Interestingly, we also observe that the relative perfor-
mance of the classifiers varies depending on the generative
model used. For example, while ViT-L/16@384 consis-
tently achieves the highest accuracy for all generative mod-
els, the ranking of the other classifiers differs across mod-
els. This highlights the importance of considering the in-
teraction between the generative model and classifier when
designing an effective rare plant species classification sys-
tem.

Overall, our ablation study demonstrates the significant
impact of the choice of generative model on the perfor-
mance of rare plant species classification using synthetic
images. The results suggest that Stable Diffusion XL and
Midjourney are the most effective generative models for this
task and that ViT-L/16@384 is the best-performing clas-
sifier across all models. These findings provide valuable
insights for researchers and practitioners working on rare
plant species classification and can guide the selection of
appropriate generative models and classifiers for optimal
performance.



9. Real Image Guided Generation (RIGG)
Strategy

In this section, we describe our approach to leveraging a
small set of real in-domain images to guide the synthetic
image generation process in few-shot settings. Our method,
called Real Image Guided Generation (RIGG), modifies the
initialization step of the standard text-to-image generation
pipeline to incorporate information from real reference im-
ages.

In a typical text-to-image generation process using the
Stable Diffusion XL model, the first step involves sampling
a purely noisy latent image xT ∼ N (0, I), which serves as
the starting point for the iterative denoising process. The
model then predicts progressively less noisy latent images
xt−1 (t = T, T − 1, ..., 1) by conditioning on the text
prompt c and the current noisy latent image xt.

In contrast, RIGG introduces a reference image xref
0 to

guide the generation process. We first add noise to xref
0 to

obtain a noisy latent image xref
t∗ corresponding to a specific

time-step t∗, as shown in Equation 1:

xref
t∗ =

√
ᾱt∗x

ref
0 +

√
1− ᾱt∗ϵ (1)

Instead of starting from a completely noisy latent image
at time-step T , we initialize the denoising process with xref

t∗
and begin generating less noisy latent images from time-
step t∗ onwards, as outlined in Algorithm 1. It is worth not-
ing that Stable Diffusion XL employs a two-stage coarse-to-
fine generation framework and uses classifier-free guidance.
However, for simplicity, we omit these details in Algorithm
1 since our image-guidance strategy only affects the initial-
ization step and leaves the remaining settings unchanged.

By initializing the generation process with a noisy ver-
sion of a real reference image, RIGG aims to generate
synthetic images that share similar in-domain properties,
thereby helping to bridge the domain gap between real and
synthetic data. The choice of the time-step t∗ plays a cru-
cial role in balancing the trade-off between similarity to the
reference image and diversity of the generated samples. A
small value of t∗ results in generated images that closely
resemble the reference image but lack diversity, which can
hinder the classifier’s learning. On the other hand, a large
value of t∗ retains little information from the reference im-
age, causing the generated images to deviate from the de-
sired domain.

In our experiments, we explore different values of t∗ for
various few-shot settings to find the optimal balance be-
tween similarity and diversity. Empirically, we set t∗ to 15,
20, 35, 40, and 50 for 5-shot, 4-shot, 3-shot, 2-shot, and
1-shot settings, respectively.

By incorporating real image guidance into the generation
process, RIGG enables the synthesis of diverse yet domain-
relevant images, which can significantly improve the perfor-

mance of classifiers trained on limited real data in few-shot
settings.

Algorithm 1 Real Image Guided Generation (RIGG)

Require: Reference image xref
0 , text prompt c and SDXL

model (µ0,Σ0).
Ensure: Generated image x0

1: # Noisy variable initialization
2: Select a time-step tk ∼ 1, 2, 3, . . . , T and random noise

ϵ ∼ N (0, I)

3: Obtain initial noisy image xtk := xref
tk

according to 1
4: # Random Sampling (is be replaced by EulerDis-

creteScheduler for speed-up)
5: for s = tk to 1 do
6: µ,Σ← µθ(xs, s, c),Σθ(xs, s, c)
7: xs−1 ← sample from N (µ,Σ)
8: end for
9: return x0

10. Implementation Details
This section provides the implementation details for our ex-
periments in both zero-shot and few-shot classification set-
tings.

Zero-shot Setting: For the zero-shot classification tasks,
we generate a total of 500 images, with 100 images for each
of the five classes. These images are generated using the
Primary Strategy (P), Enhanced Description (ED), and Fea-
ture Filtering (FF) techniques.

Few-shot Setting: In the few-shot settings, we employ
three strategies for text-to-image generation: the Primary
Strategy (P), Real Feature Filtering (RFF), and Real Image
Guided Generation (RIGG). For P and RFF, we follow the
same process as in the zero-shot settings. The RIGG strat-
egy is described in detail in Section 9. In total, we generate
800 synthetic images for the few-shot experiments.

Training Procedure: For both zero-shot and few-shot
settings, we use the AdamW optimizer with a weight decay
of 0.1 and apply the cosine annealing rule for learning rate
scheduling. Images are preprocessed by resizing them to
224x224 pixels, regardless of their original aspect ratio. We
use a batch size of 32 for few-shot real images and 512 for
synthetic images.

In the phase-wise training approach, we train the models
for 30 epochs in each stage, using an initial learning rate of
0.002. We train the models for 30 epochs for mixed training
with an initial learning rate of 0.001. The loss values from
real and synthetic data are added in a 1:1 ratio during each
iteration in mix training.

Data Augmentation: Due to the limited number of real
images available, we apply various data augmentation tech-
niques to increase the dataset size. These transformations



include RandomResizedCrop, RandomHorizontalFlip, Col-
orJitter, RandomGrayscale, and GaussianBlur.

Text Description Augmentation: Although we gener-
ate Enhanced Descriptions (ED) using the Claude-3 (opus)
model, the number of text descriptions remains limited.
To prevent overfitting on specific text features during the
contrastive learning process for MLLM and CLIP models,
we utilize the LLAMA-7B-Chat model in its 4-bit quan-
tized form to rephrase the generated descriptions, thereby
increasing the diversity of the text data.

By providing these implementation details, we aim to
ensure the reproducibility of our experiments and facilitate
a better understanding of our approach to rare plant species
classification using synthetic data.

11. Computational Efficiency
In this section, we provide details on the computational effi-
ciency of our proposed approach, including inference time,
training time, and deployment-related aspects. We conduct
all experiments on a single NVIDIA A100 GPU with 40GB
of memory.

11.1. Inference Time

Table 8 presents the average inference time per image for
the different classifiers used in our experiments. We ob-
serve that the ViT-based classifiers (ViT-B/32 and ViT-
L/16@384) have the lowest inference times, making them
suitable for real-time applications. The CLIP model also
demonstrates fast inference, while the MLLM models
(LLaVa-Mistral and BLIP-2) have slightly higher inference
times due to their more complex architectures.

Classifier Inference Time (ms)
CLIP ViT-B/32 12.5
LLaVa-Mistral 28.7
BLIP-2 35.2
ViT-L/16@384 9.8

Table 8. Average inference time per image for different classifiers.

11.2. Training Time

Table 9 shows the training time for the different classifiers
in both zero-shot and few-shot settings. In the zero-shot set-
ting, training involves fine-tuning the pre-trained models on
the synthetic data generated by our approach. In the few-
shot setting, we report the training time for the mix training
strategy, which combines real and synthetic data. The train-
ing times are measured for 30 epochs in both settings.

11.3. Deployment Considerations

Our approach can be easily deployed on various platforms,
including cloud services and edge devices, thanks to the

Classifier Zero-shot (min) Few-shot (min)
CLIP ViT-B/32 45 60
LLaVa-Mistral 90 120
BLIP-2 105 135
ViT-L/16@384 60 75

Table 9. Training time for different classifiers in zero-shot and
few-shot settings.

wide availability of pre-trained models and the efficiency
of our synthetic data generation pipeline. The Stable Diffu-
sion XL model used for generating synthetic images can be
run on consumer-grade GPUs with at least 8GB of memory,
making it accessible to a broad range of users [45].

For deployment on resource-constrained edge devices,
we recommend using the ViT-based classifiers due to their
low inference time and memory footprint. The CLIP model
is also a viable option for edge deployment, as it has been
shown to work well with quantization and pruning tech-
niques [35].

In summary, our approach demonstrates strong compu-
tational efficiency, with fast inference times and reasonable
training times, making it suitable for various real-world ap-
plications. The wide availability of pre-trained models and
the efficiency of our synthetic data generation pipeline fur-
ther facilitate the deployment of our approach on diverse
platforms.


