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Supplementary Material

A. Implementation details

The foundation of our model relies on the official imple-

mentation of Enhanced Generative 3D Models (EG3D) [2].

We utilized R1 regularization, assigning a gamma = 1 for

the synthetic humans and FFHQ dataset based on the in-

put image size of 512 x 512 and batch size of 32 across

8 v100 GPUs, following the same hyperparameter tuning

of EG3D. For ShapeNet Cars, we adopted a gamma value

of 0.3 based on the 128 x 128 resolution and batch size of

32 [4]. Our model employs the same architecture as Style-

GAN2 [7], composed of a mapping network with 8 hidden

layers, and output convolutions yielding 96 feature maps.

Following the EG3D protocol, these are then reshaped into

3 planes of 256 x 256 x 32 [2].

A.1. GeoGen training

During the initial training of GeoGen for the FFHQ and

Synthetics dataset, the model was trained end-to-end, a pro-

cess that necessitated unique handling of the SDF depth

consistency loss. For the first 10,000 epochs, we set the

beta value for the Laplace density distribution to 0.1 and re-

frained from making it learnable, as our end-to-end model

would not have been able to learn the best beta value at

this stage [4]. This approach allowed the model to first

learn the optimal geometry and SDF depth map. In con-

trast, StyleSDF had to introduce a two-stage training pro-

cess precisely because their pipeline was not trained end-

to-end. They consistently used a learnable beta parameter

for the Laplace density distribution throughout their train-

ing, as their method required more flexibility in the control

of the SDF consistency loss.

The Laplace beta value plays a crucial role in the SDF

network as it controls the shape of the Laplace distribution,

influencing how the model penalizes deviations from the ex-

pected SDF values. A lower beta value produces a wider

distribution, allowing for a larger spread of SDF values, and

a higher beta value tightens the distribution, constraining

the SDF values more strictly. This ability to control the dis-

tribution of SDF values enables fine-tuning of the model’s

sensitivity to inconsistencies in the SDF depth, a key aspect

of the learning process. After the generator in our model

showed improvement in rendering, depth maps, and under-

lying geometry, we activated the SDF constraint for depth

map regularization and introduced the learnable beta param-

eter for the remaining 10,000 epochs. This allowed us to

dynamically adapt the SDF consistency loss and fine-tune

the model’s learning of SDF depth.

Both EG3D and GeoGen models underwent training for

20,000 epochs for the FFHQ and Synthetics data, while for

the ShapeNet dataset, training was conducted for 10,000

epochs. The batch size for all models was 18, with the

discriminator’s learning rate at 0.002 and the generator’s

at 0.0025. The training was carried out using 4 NVIDIA

P100, while an RTX 2080 and RTX 4090 were used for in-

ference during inversions and sample generation. Our end-

to-end training approach, including the specific handling of

the Laplace beta value, was central to our method’s effec-

tiveness in learning SDF depth. It allowed us to combine

the flexibility needed in the early stages of learning with the

precision required in later stages, reflecting a sophisticated

understanding of the role that SDF plays in the generative

process.

A.2. SDF and color network and surface rendering

The resulting embedding from the augmented spatial rep-

resentation is fed into the SDF (Signed Distance Function)

network. This network utilizes the embedded position to

query the SDF value at a specific point, which gives pre-

cise information regarding the distance to the nearest sur-

face within the 3D space. The understanding of these dis-

tances is crucial in the reconstruction of 3D objects, as it

provides detailed insights into the geometry and the under-

lying complexities of the data being modeled.

Once the SDF network receives and processes the em-

bedded position, the computed SDF values are further han-

dled by the color network. This auxiliary network takes

the SDF values and translates them into the corresponding

color values for the rendered 3D object. The direct utiliza-

tion of SDF values as input for the color network estab-

lishes a coherent link between the geometric structure and

visual appearance of the object. Both the SDF and color

networks are built with a single hidden layer comprising

64 hidden units and leverage a soft plus activation function.

This structure ensures smooth transitions and optimal gradi-

ent flow within the networks. For the transformation of the

SDF into tangible density, a specific surface rendering tech-

nique has been applied. The sampling strategy is carefully

chosen and tailored to different datasets, such as using 48

uniformly spaced samples and 48 importance samples per

ray for the FFHQ dataset, and 64 of each for ShapeNet cars

and Synthetics data.

In combination, these elements forge an intricate

pipeline that integrates spatial features and coordinates,

through a positional encoder, with the SDF and color

networks. The methodology’s architecture ensures a nu-

anced and true-to-life representation across a multitude of

datasets. The implementation of a positional encoder has
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Figure A1. Comparison of models without (left) and with (right) our GeoGen SDF constraint.

further enhanced the SDF network’s capacity to grasp and

replicate complex 3D geometries. The employment of SDF

networks for surface rendering has led to a more sophisti-

cated and resilient interpretation of various datasets.

A.3. Reconstruction of pseudo ground truth meshes

In our approach to reconstructing pseudo ground truth

meshes shown in Figure A5 two methodologies are intri-

cately combined: Planar Prior Assisted PatchMatch Multi-

View Stereo (ACMP) [10] and Poisson surface reconstruc-

tion [6]. Recognizing the challenge of depth estimation

in low-textured areas, which typically exhibit strong pla-

narity, ACMP makes use of planar models in conjunc-

tion with the PatchMatch algorithm. By embedding planar

models into PatchMatch MVS via a probabilistic graphi-

cal model, our approach introduces a multi-view aggregated

matching cost. This novel cost function takes both photo-

metric consistency and planar compatibility into considera-

tion [10], thus accommodating both non-planar and planar

regions. This method has demonstrated its capability to re-

cover depth information in areas of extremely low texture,

efficiently leading to high completeness in 3D models.

The problem of surface reconstruction from oriented

points is cast as a spatial Poisson problem using Poisson

surface reconstruction. This formulation’s advantage is its

simultaneous consideration of all points without the need

for heuristic spatial partitioning or blending, which en-

hances resilience to data noise [6]. The use of a hierarchy

of locally supported basis functions and the reduction of the

solution to a well-conditioned sparse linear system makes

this approach computationally efficient.

By seamlessly integrating ACMP with Poisson surface

reconstruction, we’ve crafted a novel method for 3D model

reconstruction. The fusion of these techniques allows us

to address the complexities and subtleties of 3D model-

ing, particularly in challenging scenarios where noise and

low texture might otherwise impede reconstruction. The re-

constructed pseudo-ground truth meshes generated by this

combined approach are a testament to its effectiveness, sig-

nifying an exciting advancement in the realm of 3D mod-

eling and a promising avenue for further exploration and

optimization.

A.4. Results without positional encoder

Understanding Model Collapse in GeoGen without Posi-

tional Encoding.This analysis delves into the reasons be-

hind the collapse of the GeoGen model, specifically when

trained without the aid of positional encoding in the con-

text of Neural Radiance Fields (NeRF) and GAN training.

The absence of positional encoding can lead to several crit-

ical issues. Firstly, in GAN training, the phenomenon of

mode collapse becomes more pronounced. This is where

the generator starts producing a limited variety of outputs,

failing to capture the complex data distribution. Secondly,

the intrinsic characteristics of NeRF, which rely heavily on

precise spatial information to render 3D scenes accurately,

are compromised without positional encoding. This results

in the model’s inability to effectively learn and represent

high-frequency details, leading to a loss of detail and re-

alism in the generated images. Lastly, positional encoding

plays a vital role in stabilizing the training process by pro-

viding a more detailed and nuanced understanding of spatial

relationships in the data. Its absence can result in unsta-

ble training dynamics, ultimately causing the model to col-

lapse, particularly evident in our observations post epoch

11000. This highlights the essential nature of positional en-
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Figure A2. A detailed comparison between EG3D and GeoGen in the context of ShapeNet cars inversion of meshes, emphasizing the

differences in the geometric representation and rendering capabilities of both methods. The samples underscore the advanced efficacy

of GeoGen in capturing and reconstructing intricate geometric details within the car models, even at granular levels. This superiority is

attributed to the integration of the Signed Distance Function (SDF) network along with the SDF depth consistency loss within GeoGen’s

architecture. The SDF approach provides a continuous and differentiable representation of the car’s surface, enabling more precise and

robust alignment with the observed data. This contributes to better capturing of fine geometrical nuances and results in more accurate

reconstructions. Conversely, the EG3D [2] method’s rendered meshes reveal a deficiency in portraying granular details, leading to a more

approximate and less nuanced depiction of the vehicles.

coding in maintaining the stability and efficacy of models

like GeoGen, especially in complex applications involving

synthetic human images and 3D rendering.
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Figure A3. This caption accompanies a series of synthetic images generated by the GeoGen model operating without a positional encoder.

The figures on the left illustrate the model’s output at different yaw angles, showcasing its ability to render facial features from various

perspectives. On the right, the corresponding mesh structures are displayed, providing a deeper insight into the model’s geometric rendering

capabilities. These results were captured prior to the point of model collapse, highlighting the model’s performance and limitations in the

absence of positional encoding. This comparison not only demonstrates the visual output of the model but also underscores the critical role

of positional encoding in maintaining structural integrity and realism in the generated images and meshes.

B. Datasets

B.1. FFHQ and rebalanced FFHQ

Our modeling framework originally utilized the ”in-the-

wild” version of the FFHQ dataset, a comprehensive col-

lection of uncropped, original PNG human images sourced

from Flickr, as documented by Karras et al. (2019) [5]. To

adapt these images for our purposes, we employed a sophis-

ticated face detection and pose-extraction system [2], allow-

ing us to determine the face area and label each image with

its corresponding pose. The images were then cropped to

approximate the dimensions of the original FFHQ dataset.

We assumed fixed camera intrinsics for all images, with a

focal length 4.26 times the image width, mimicking a stan-

dard portrait lens [2]. After removing a small number of

images where face detection proved unsuccessful, our final

dataset comprised 69,957 images.

In our reporting, we include the 2D performance metrics

of models trained on the Rebalanced FFHQ dataset, particu-

larly focusing on the outcomes from NVIDIA-trained mod-

els. The Rebalanced FFHQ dataset, known for its broader

diversity in facial orientations, plays a crucial role in en-

hancing the model’s capability to understand and replicate

human facial features from various angles. This dataset is

especially valuable for models that need to handle a wide

range of facial geometries, such as those used in advanced

image generation and recognition tasks.

While we present these metrics to showcase the perfor-

mance improvements facilitated by the Rebalanced FFHQ

dataset, it’s important to note a limitation in the available

data. NVIDIA, the entity responsible for training these

models, has not provided detailed information regarding the

number of epochs, specific training methodologies, or other

intricate details of the training process. This lack of de-

tailed training information could potentially impact the re-

producibility and further optimization of these models.

Understanding the training duration (measured in

epochs) and the specific methodologies employed is cru-

cial for comprehensively evaluating a model’s performance

and for making informed comparisons with other models.

The absence of this information leaves a gap in fully under-

standing how the Rebalanced FFHQ dataset impacts model

performance compared to the original FFHQ dataset. De-

spite this, the reported 2D metrics still offer valuable in-

sights into the enhanced capabilities of models trained on

the Rebalanced FFHQ dataset, highlighting their improved

proficiency in handling diverse facial features and orienta-

tions.

B.2. ShapeNet V1

We utilized the ShapeNet V1 Cars dataset for additional val-

idation, rigorously comparing methodologies on a specific

subset that includes 128 renderings of synthetic cars [3].

This carefully curated dataset offers a robust platform for

assessing performance across various viewing angles, en-

abling a comprehensive evaluation of 3D reconstruction and

rendering techniques.

The ShapeNet dataset, as employed in our setup, builds

on prior research and consists of 2,100 car images captured

from 50 different perspectives [3]. The multi-angle images

provide an ideal scenario to analyze geometric consistency,

shadow rendering, and surface texturing. Similar to the

preprocessing applied to the FFHQ dataset, our approach

to the ShapeNet data followed established protocols, main-

taining the integrity and original characteristics of the im-

ages. Unlike other methodologies that might use augmen-

tation or mirror images, we consciously chose not to apply

these techniques to preserve the authenticity of the data and

ensure a more accurate assessment of the models’ perfor-

mance [3].
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Figure A4. Comparison of EG3D and GeoGen inversion results using held-out images from the ShapeNet Car test set. GeoGen results

more closely resemble the input ground truth image (GT).

B.3. Synthetic humans

Our training model also harnessed our proprietary syn-

thetic human dataset. This extensive collection encom-

passes 200,000 images, representing 20,000 unique identi-

ties. Each of these identities is portrayed from only 10 view-

points, a stark contrast to the Rodin model where each iden-

tity was rendered from 300 diverse viewpoints [9]. Despite

the significant reduction in viewpoints per identity in our

dataset, our model produces high quality outputs in terms of

geometry and rendering [1]. Our training approach proves

that strong performance can be achieved with a more lim-

ited number of viewpoints.

B.4. Pivotal tuning inversion

In the context of our work with Pivotal Tuning Inversion

(PTI), a specialized process to invert generative models like

StyleGAN, we adopt a meticulous procedure to enhance the

accuracy and efficiency of the inversion.

Initially, we utilize an off-the-shelf face detection solu-

tion to accurately locate and extract face regions within the

test images. This process allows for precise alignment and

ensures that the features of interest are adequately centered

and scaled. The extracted regions are then cropped and re-

sized to a consistent resolution of 512x512 pixels, facili-

tating uniform processing and analysis across different im-

ages.

Following this preprocessing stage, we implement the

PTI methodology as delineated by Tov et al. [8]. This ap-

proach consists of two main stages:

1. Fine-tuning of generator weights. Subsequent to the

initial latent code optimization, we proceed with an addi-

tional 500 iterations dedicated to fine-tuning the genera-

tor’s weights. This phase is pivotal in refining the subtle

details and enhancing the realism of the generated im-

ages. By adjusting the generator’s parameters, we align

the synthetic outputs more closely with the underlying

distribution of the real data, improving both the fidelity

and the perceptual quality of the inversions.

2. Latent code optimization. For the first 500 iterations,

we focus on the optimization of the latent code, a com-

pact representation within the model’s latent space that

encodes the essential features of the target image. Uti-

lizing gradient-based optimization techniques, we iter-

atively refine the latent code to minimize the discrep-

ancy between the generated image and the target. This

stage ensures that the inverted model captures the essen-

tial characteristics of the face.

The combination of these two stages offers a robust and

precise inversion process, enabling us to generate high-

quality, detailed images that faithfully represent the origi-

nal inputs. The PTI methodology, by explicitly separating

the optimization of the latent code and the fine-tuning of

the generator, provides a nuanced control over the inversion

process, yielding superior results in terms of both accuracy

and visual appeal.



B.5. Justifying the limitations in GAN inversion

In the field of Generative Adversarial Networks (GANs),

particularly with advanced models like EG3D, the accu-

racy of GAN inversion can be inconsistent. This incon-

sistency can be attributed to several factors, encompassing

both the inherent characteristics of the generative model and

the methodologies used in the inversion process.

Firstly, the architecture and complexity of the GAN

model play a crucial role. A model with limitations in its

design may not capture a broad range of features effec-

tively, leading to challenges in accurately reproducing cer-

tain types of images during inversion. For example, if the

model’s architecture does not account for a wide variety of

facial orientations, it may struggle with accurately inverting

images that fall outside of its trained norm.

Additionally, the scope and diversity of the training data

are critical. A model trained on a dataset with limited vari-

ety, such as one primarily consisting of front-facing images,

may not perform well in inverting images with diverse or

unusual orientations. The quality and diversity of the train-

ing data directly influence the model’s ability to handle a

wide range of inversion tasks.

Furthermore, the model’s resolution and detail capa-

bilities are also significant. Models that generate lower-

resolution images or lack fine detail might fail to accurately

capture nuances in the inversion process, resulting in less

precise or realistic inversions.

On the side of inversion methodologies, the efficiency

of the algorithm and its approach to navigating and ma-

nipulating the latent space of the GAN are key factors.

The choice of loss functions and regularization techniques

within the inversion method can greatly affect the match

quality between the inverted image and the original. Com-

putational constraints can also limit the effectiveness of

more resource-intensive, yet potentially more accurate, in-

version methods.

In summary, the limitations in GAN inversion accuracy

can be attributed to a complex interplay of factors related

to both the generative model’s characteristics and the inver-

sion techniques used. Understanding and addressing these

factors is crucial for improving the accuracy and reliability

of GAN inversions.

B.6. Evaluation metrics

Evaluating the quality and performance of generated images

is paramount in understanding the effectiveness of genera-

tive models. To this end, we employed the Fréchet Inception

Distance (FID) and Kernel Inception Distance (KID), cal-

culating these metrics for 50,000 generated images against

all training images for both FFHQ and synthetic humans

datasets. The calculations were performed using the imple-

mentation provided in the StyleGAN2 codebase [5], ensur-

ing consistency with commonly accepted standards.

Our GeoGen model’s KID scores were found to be 100

times lower than those of comparative models, an unex-

pected result that warrants careful consideration. One pos-

sible hypothesis for this abnormality might be an alignment

of specific features or particularities in the convergence be-

havior during the training of our model. It could also be

related to the choice of hyperparameters or the data prepro-

cessing steps that were unique to our experiment. However,

these hypotheses are subject to further investigation, and the

exact reason behind the unusually low KID score remains

an intriguing question for future research.

Alongside the 2D image quality evaluation, we also as-

sessed 3D geometry comparisons, adopting the Efficient

Geometry Aware 3D Network (EG3D) [2] for evaluation.

Our GeoGen model showed promising results relative to

the EG3D model, as indicated by these metrics, both in

terms of 2D image quality and 3D Chamfer distance met-

rics. The overall evaluation paints a comprehensive picture

of our model’s capabilities, but the abnormally low KID

score serves as a reminder that there may always be under-

lying complexities and subtleties that require further explo-

ration and understanding.

B.7. 3D reconstruction metrics

The assessment of 3D geometry is a critical aspect of our

evaluation, as it reflects the ability of the generative models

to faithfully reconstruct and represent the intricate geomet-

ric details of the subjects. Table 2 from the paper presents

a comprehensive comparison of different 3D reconstruction

metrics for generative models on ShapeNet Cars and Syn-

thetic Human Heads. The selected metrics include Overall

Chamfer Distance, Mean Squared Error (MSE), Hausdorff

Distance (HD), Earth Mover’s Distance, and Mean Surface

Distance (MSD).

These metrics were chosen for their ability to capture

various aspects of geometric fidelity. Chamfer Distance

provides a measure of dissimilarity between two point sets,

emphasizing both the precision and recall of the recon-

structed surfaces. MSE offers insights into the mean dif-

ferences between corresponding points, focusing on local

accuracy. HD measures the maximum distance from a point

in one set to the nearest point in the other set, highlighting

global discrepancies. Earth Mover’s Distance quantifies the

minimum amount of work to transform one point set into

the other, capturing overall distribution alignment. Lastly,

MSD focuses on the mean distance between surfaces, re-

flecting surface smoothness and consistency.

In the process of evaluating these metrics, we scaled

the generated and ground-truth meshes to fit within a unit

sphere to ensure a consistent basis for comparison. We then

randomly sampled 20,000 points from the meshes, repeat-

ing this process 20 times, in order to compute the mean

and standard deviation of the metrics. This methodology al-
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Figure A5. Qualitative inversion results on our synthetic face dataset, focusing on the comparison between the EG3D [2] and GeoGen

inversion methods. The corresponding latent source for the source held-out test input image is estimated for GeoGen using GAN inversion,

revealing its ability to capture fine details with reduced noise and artifacts. In contrast, the EG3D [2] inversion meshes are observed to

have significant artifacts, particularly around the ears, and display noticeable holes in the top regions of the eyes. Our inversion mesh

is meticulously compared against pseudo ground truth, and reconstructed using Poisson surface reconstruction from multi-view images,

underscoring the superiority of the GeoGen method in terms of fidelity and accuracy. Moreover, our inversion technique exhibits increased

precision, contributing to a more authentic representation of the facial structure.

lowed us to capture a comprehensive and statistically robust

representation of the geometric quality, eliminating poten-

tial biases related to specific sampling patterns or scaling

discrepancies.

The results, as shown in Table 2 of the main paper in-

dicate that GeoGen demonstrates superior results, reflect-

ing its ability to represent finer geometric details. The ta-

ble also includes comparisons with GeoGen without SDF

and DL constraints, allowing for an understanding of how

specific components and constraints influence model per-

formance. The best-performing methods for each dataset

are highlighted in bold, striking a balance between quan-

titative performance and perceptual realism. The rigorous

evaluation of these 3D metrics underscores the effectiveness

of our approach and contributes to a nuanced understanding

of generative modeling for complex geometric structures.



C. Additional qualitative results

In Figure A5 we present a comparison of synthetic human

avatar meshes across EG3D [2] and GeoGen. It is quali-

tatively evident that our model, leveraging the capabilities

of the Signed Distance Function (SDF) network with SDF

depth consistency loss, surpasses both EG3D and StyleSDF

(as shown in the main paper) in reconstructing detailed fa-

cial features, including the ears, nose, hair, and eyes.

Although StyleSDF [7] also employs an SDF network, it

falls short in accurately reconstructing geometry due to the

absence of features stored in a triplane structure, and lack-

ing the specific SDF constraints that enable learning fine

surface details. This absence results in visible noise and in-

accuracies in parts of the faces, reflecting a failure to capture

the nuanced geometrical complexities.

Additionally, we demonstrate the ability of the GeoGen

model in 3D reconstruction on the ShapeNet cars dataset

in Figure A2 and Figure A1 where it successfully repro-

duces granular details on the surface of the cars. This dis-

tinction is further highlighted by contrasting the rendering

qualities of the generated synthetic samples from the EG3D

and GeoGen models, displayed in Figure 5, against some

ground truth samples. Unlike the EG3D model [2], which

exhibits a lack of granular details, our model’s implementa-

tion of a more advanced SDF network, combined with ro-

bust SDF constraints and feature storage within a triplane,

yields more precise and refined reconstructions. Thus, our

approach consistently and effectively bridges the gap be-

tween visual perception and geometric representation, out-

performing other techniques in 3D reconstruction fidelity.

That is also visible in Figure A2 and Figure A1 where Ge-

oGen is able to better reconstruct the surface of synthetic

faces using a GAN inversion technique [2].
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