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6. Architecture details

This section provides an overview of the underlying model
and explains how the features are passed through the
pipeline during training and inference.

Base model: We use the SD-unCLIP model, a fine-tuned
version of the Stable Diffusion v2.1 text-to-image model
that accepts CLIP image embedding and the text prompt as
conditional input. The network broadly consists of the VAE
autoencoder {E ,D}, the latent denoising UNet εθ(·), and
CLIP conditional models (image branch and text branch)
which extract an image embedding J and a text embedding
C. As shown in Fig. 10, the UNet network consists of down-
block, mid-block, and up-block. Each of these blocks has
4, 1, and 4 subblocks respectively. Each of these subblocks
typically constitutes two ResNet blocks and two inflated at-
tention network blocks arranged as shown in Fig. 10. The
only trainable components of the network belong to the in-
flated attention modules explained in the subsequent sub-
sections.

Feature resolutions: The VAE encoder E reduces the spa-
tial dimensions from 768 to 96. The down-blocks further
reduce the spatial dimensions to 24 while increasing the
channel dimensions from 4 to 1280. The mid-blocks main-
tain the spatial dimensions and channel dimensions. The
up-blocks increase the spatial dimensions to 96, while re-
ducing the channel dimensions to 4. The VAE decoder then
increases the spatial resolution back to 768. The CLIP text
embedding and image embedding is a vector of size 768.

UNet forward pass: The inputs to the UNet network εθ(·)
are the latent noise from previous timestep zt, the sinusoidal
timestep embedding temb, an optional mask M, the CLIP
image embedding J and the CLIP text embedding C. The
latent noise zt is forwarded into layers of UNet network.
At the end of a ResNet block, the hidden states are updated
with the timestep embedding and the optional image em-
bedding information based on the input mask –

• When an input mask is not provided, i.e.,M =Mϕ:
In this situation, the hidden states are updated by adding
the timestep embedding temb and the image embedding
J to all spatial locations of the hidden states.

• When an input mask is provided, i.e., M ̸= Mϕ: In
this situation, the regions that correspond to the back-
ground (i.e., where M = 0) are updated by adding the
temb and source image embedding J src. Similarly, for
the regions corresponding to the foreground (i.e., where
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Figure 10. Architectural diagram. Top to bottom: UNet architec-
ture with VAE, UNet block architecture, Attention layer inflation
of ST-attn, Cross-attn, and T-attn.

M = 1), the hidden states are updated by adding the
timestep embedding temb and the target image embedding
J trg as shown in Fig. 10.

Once the hidden states are updated, they are passed into in-
flated attention blocks and the subsequent network layers.
At the end of each denoising step of UNet, a latent fusion
step is performed when an input mask is provided. In the
next subsections, we explain the latent fusion method and
the inflated model architecture.

Latent fusion: Our latent fusion method follows from
Make-A-Protagonist [46]. The latent fusion step helps
improve the quality of the rendered object in the edited
video. First, UNet features are obtained using only the tar-
get image embedding J trg with no mask input to UNet
to obtain εθ(z, t, C,J trg,Mϕ). Next, UNet features are
obtained using source image embedding J src and target
image embedding J trg along with a mask M to obtain
εθ(z, t, C, {J src,J trg},M). Note here J src is used for
M = 0 region and J trg is used forM = 1 region. These
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Figure 11. Correspondence Error (CE) maps computed using ground truth (source video correspondences) before correction across all
blocks of UNet. We find that Up-block-2 has the lowest CE.
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Figure 12. Zero-shot image editing results on the brown bear using InvEdit mask. Background preservation is not used here.

outputs are combined using the mask in the following man-
ner:

zt−1 =
1

1 +M
(
M⊙DDIM(εθ(zt, t, C,J trg,Mϕ))

+ DDIM(εθ(z, t, C, {J src,J trg},M))
)

Note that when the background is allowed to be changed
(like in Fig. 14 and Fig. 12), J src is replaced with the CLIP
image embedding of DALLE-2 prior obtained from the tar-
get text Ptrg. In all the other cases where the background is
to be kept the same as the source, it is the CLIP image em-
bedding of the source video frame, i.e., J src. More details
can be found in [46].

Inflated attention layers: We follow the inflation strat-
egy laid out by Tune-A-Video [43]. We expand the self-
attention layers into spatio-temporal attention (ST-attn) lay-
ers by inputting the features from the first frames gt,1 along
with gt,n−1 as shown in Fig. 10 for computation of at-
tention matrix. Here, g denotes features of hidden states
in the UNet. Cross-attention layers continue to accept the
text tokens from prompt C along with gt,n. We additionally
introduce temporal self-attention (T-attn) layers which are
trained after permuting the temporal dimensions and spatial
dimensions of the mini-batch. The only trainable weights in
the entire pipeline are the query weights of ST-attn, query
weights of Cross-attn, and all the weights in the T-attn as
shown in Fig. 10.

Additional details of training and inference pipeline:
During training, the source video is mapped into the VAE
encoder’s latent space. A random timestep is sampled and

noise is added to the latents according to the forward diffu-
sion process. The text embeddings of the source prompt and
the image embeddings of a random source video frame are
passed (as C andJ respectively) into the UNet and the mask
is Mϕ. The reconstruction loss is imposed at the given
timestep as shown in Fig. 2 of the main paper. The gradients
are backpropagated using the AdamW optimizer to update
the parameters of inflated attention modules described ear-
lier. The inference pipeline consists of two stages - InvEdit
mask computation and the latent correction. While comput-
ing the InvEdit mask, the mask inputs to UNet are absent,
i.e.,M =Mϕ. After computing the InvEdit maskMinv it
is passed into the UNet for mask guided inference and latent
correction, i.e.,M =Minv . See Algorithm 1 for inference
pseudo-code.

7. Additional results

Selection of the UNet block for latent correction field:
We compute the correspondence error (CE) map across all
blocks of UNet as per Sec. 3.3 and find that the corre-
spondence errors of Up-block-2 are generally lower than
other blocks as shown in Fig. 11. Across all experiments,
we assign the feature with minimal Euclidean distance to
the original feature as the corresponding feature. The cor-
respondences obtained by computing RAFT optical flow on
the source video serve as the ground truth since the object
in the source video and the expected target object have the
same shape. For computing the CE, we compare the cor-
respondences obtained in the feature space with the ground
truth from RAFT.

Additional results of GenVideo. In Fig. 12, Fig. 13 and
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Figure 13. Additional results of GenVideo. Our approach can do object edits when target-object has substantially different shape and size.
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Figure 14. Additional results of GenVideo on style editing of videos. Background preservation is not used in B. and C. since the entire
video is being edited.



Algorithm 1 GenVideo Inference

Require: Vsrc := [Isrc1:N ],Psrc,Ptrg, Itrg

Require: εθ(·)(finetuned inflated UNet), E ,D,CLIPt,CLIPv

1: Set Hyperparameters:
2: T = 50 ▷ DDIM timesteps
3: α = 0.8 ▷ Mask binarization threshold
4: w−1 = 0.1, w0 = 0.8, w−1 = 0.1 ▷ Inter-frame

blending weights

5: Csrc, Ctrg = CLIPt(Psrc),CLIPt(Ptrg)

6: J src
1:N ,J trg = CLIPv(I

src
1:N ),CLIPv(I

trg)

7: Zsrc
T := [zsrcT,1, · · · , zsrcT,N ] = DDIM−1(E(Vsrc))

8: ztrgT,1:N = zsrcT,1:N

9: for t ∈ [0.8× T, T ] do ▷ Compute the InvEdit mask

10: temb = Emb(t) ▷ sinusoidal timestep embedding
11: εsrct,1:N = εθ

(
zsrct,1:N , temb, Csrc,J src

1:N ,Mϕ

)
12: εtrgt,1:N = εθ

(
ztrgt,1:N , temb, Ctrg,J trg,Mϕ

)
13: ∆εt,1:N = abs(εsrct,1:N − εtrgt,1:N )
14: zsrct−1,1:N = DDIM(εsrct,1:N )

15: ztrgt−1,1:N = DDIM(εtrgt,1:N )

16: end for
17: M1:N = binarizeα(meant∈[0.8×T,T ](∆εt,1:N ))
18: Minv = M1:N

19: for t = T, T − 1, · · · , 2 do ▷ Infer using InvEdit mask
20:
21: [f t

1, · · · , f t
N ]← get Up-block-2 features

22: N t
i±[p] = argmaxqd(f

t
i [p], f

t
i±1[q]), 1 ≤ i ≤ N

23: N̂ t
i± = Upsample(N t

i±) ▷ upsample to match the
dim of Z space

24: ot,1:N = εθ(z
src
t,1:N , temb, Ctrg,J trg,Mϕ) ▷ UNet

forward pass as in Sec.6

25: o′t,1:N = εθ(z
src
t,1:N , temb, Ctrg, {J src,J trg},Minv)

▷ UNet forward pass as in Sec.6

26: zt−1 = 1
1+Minv

(
Minv ⊙ DDIM(ot,1:N ) +

DDIM(o′t,1:N )
)

▷ latent fusion as in Sec. 6

27: z̃t−1,i[p] = w−1(Mi ⊙ zt−1,(i−1)[N̂ t
i−(p)]) +

w0(Mi⊙zt−1,i)+w1(Mi⊙zt−1,(i+1)[N̂ t
i+(p)])+(1−

Mi)⊙ zt−1,i, if t ≥ T − 5 ▷ inter-frame latent
correction

28: Apply optional background preservation
29: end for

30: Output video frames = D(z̃1,1:N )

Fig. 14, we present some additional results.

• Video object editing: In Fig. 13, we find that GenVideo
is able to accurately identify the region of interest to be
modified. In Fig. 13A, the InvEdit mask accurately iden-
tified the region of edit and modified the region from the
source rabbit to the target tiger while keeping the water-
melon intact. Similarly, in Fig. 13C, the rabbit was re-
tained correctly and the region corresponding to the wa-
termelon was edited to cake which has a different shape
than the watermelon. Thus, InvEdit correctly handles the
edits for varying shapes and sizes of objects. Results in
Fig. 13B demonstrate the editing of a silver swan to a
small wooden boat. In this result, the InvEdit mask helps
in identifying regions that correspond to both swan and
expected boat in order to edit the source video effectively
even when they are of very different shapes and size here.

• Style editing: In Fig. 14, we present results of Gen-
Video for stylistic variation of the foreground object (in
Fig. 14A) and stylistic variations of the entire frames in
the video (in Fig. 14B and Fig. 14C). When editing the
entire frames in the video, we skip performing the back-
ground preservation.

• Zero-shot image editing: In Fig. 12, we show additional
results on zero-shot image editing capabilities of our ap-
proach.
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