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Abstract

Close and continuous interaction with rich contacts is
a crucial aspect of human activities (e.g. hugging, danc-
ing) and of interest in many domains like activity recog-
nition, motion prediction, character animation, etc. How-
ever, acquiring such skeletal motion is challenging. While
direct motion capture is expensive and slow, motion edit-
ing/generation is also non-trivial, as complex contact pat-
terns with topological and geometric constraints have to
be retained. To this end, we propose a new deep learn-
ing method for two-body skeletal interaction motion aug-
mentation, which can generate variations of contact-rich
interactions with varying body sizes and proportions while
retaining the key geometric/topological relations between
two bodies. Our system can learn effectively from a rel-
atively small amount of data and generalize to drasti-
cally different skeleton sizes. Through exhaustive evalua-
tion and comparison, we show it can generate high-quality
motions, has strong generalizability and outperforms tra-
ditional optimization-based methods and alternative deep
learning solutions.

1. Introduction

Skeletal motion is a crucial data modality in many appli-
cations, such as human activity recognition, motion analy-
sis, security and computer graphics [8, 33, 46, 54, 55, 57].
However, capturing high-quality skeletal motions often re-
quires expensive hardware, professional actors, costly post-
processing and laborious trial-and-error processes [38]. Af-
fordable devices such as RGB-D cameras can reduce the
cost but usually provide data with jittering and tracking er-
rors [42]. As a result, the majority of available skeletal data
is based on single-person [35] or multiple people with short,
simple and almost-no-contact interactions [42]. Datasets
with close and continuous interactions [14] are rare, limit-
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ing the research of motion generation [58], prediction [14],
classification [46] within such motions.

One way to tackle the challenge is to carefully capture
the motion of actors and retarget it onto different skele-
tons [15]. With a single skeleton, the problem can be for-
mulated as optimizations with respect to keeping key ge-
ometric and dynamic constraints [3, 47]. However, this
process quickly becomes intractable with the increase of
constraints such as foot contact and hand-environment con-
tact, let alone retargeting two people with close and contin-
uous interactions like wrestling and dancing, where inter-
character geometric/topological constraints need to be re-
tained [16, 34]. Consequently, multiple runs of complex
optimization with careful hand-tuning of objective function
weights are needed [17, 18] for a single motion, which is
prohibitively slow and therefore can only be used to gener-
ate small amounts of data.

Meanwhile, data-driven approaches for single body re-
targeting [4], despite being successful, cannot be directly
extended to two-character interaction. Methodologically,
these methods do not model inter-character geometric con-
straints, which is key to the semantics of interactions [18].
From the data point of view, these approaches, especially
those using deep learning [2, 52], require a large amount
of data, which is largely absent for two-character interac-
tion. Existing two-character interaction datasets are for ac-
tion recognition [7, 41] and low-quality, or only consist of
a small amount of data with limited variations in body sizes
[14], hardly covering the distribution of possible body vari-
ations. Considering the high cost of obtaining interaction
data, a method that can learn effectively from limited data
and generate interactions with diversified body variations is
highly desirable.

We propose a novel lightweight framework for two-
character skeletal interaction augmentation, easing the need
to capture a large amount of data. Our key insight is the
joint relations evolving in time (e.g. relative positions, ve-
locities, etc.) can fully describe an interaction, e.g. hugging
always involves wrapping one’s arms around the other’s
body. These relations change when the body size changes,
but the distribution of them should stay similar in the sense
that one’s arms should still wrap around the other, such
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that the hand-to-body distance is always smaller than e.g.
the foot-to-body distance. Meanwhile, this distribution
should be very different from other types of interactions
e.g. wrestling. Therefore, to generate motions from differ-
ent skeleton sizes, the key is being able to predict the joint
relation distributions based on a given skeleton.

To this end, we propose a conditional motion generation
approach, where the generated motions are conditioned on
the joint relation distribution which is further conditioned
on a skeleton prior, allowing a skeleton change to propagate
through the joint relation distribution and finally influence
the final motion. We start by modeling the joint probabil-
ity of two-body motions and proposing a novel factoriza-
tion to decompose it into three distributions. The three dis-
tributions are realized as neural networks, which together
form an end-to-end model that conditions two-body mo-
tions on one person’s body size. Further, to address the data
scarcity challenge, we capture new two-body data and em-
ploy an existing optimization-based method for initial data
augmentation. After training our model on the data, it can
be employed for further motion data augmentation for many
downstream tasks.

We evaluate our method in multiple tasks. Since there
is no similar method for baselines, we compare our method
with adapted baselines and optimization-based approaches,
demonstrating that our method is accurate in generating de-
sired motions, can generate diversified interactions while
respecting interaction constraints, is much faster for in-
ference and generalizes to large skeletal changes than
optimization-based methods. In addition, our model ben-
efits downstream tasks including motion prediction and ac-
tivity recognition. Formally, our contributions include:
1. A new factorization of two-character interactions that al-

lows for effective modelling of interaction features.
2. a new deep learning method for interaction retarget-

ing/generation to the best of our knowledge, which
learns and generalizes effectively from a small number
of training samples.

3. A new dataset augmented from single interaction exam-
ples, containing interactions with different body sizes
and proportions.

2. Related Work

2.1. Deep Learning for Skeletal Motion

Neural networks have been successful in modeling skele-
tal motions. Convolutional neural networks can learn la-
tent representations for denoising and synthesis [20]. Re-
current neural networks improve the robustness and enable
long horizon synthesis [5, 56]. Graph neural networks cap-
ture the joint relations [31]. Generative flows combine
the style and content in the latent space [61]. Transform-
ers co-embed human motion and body parameters into a la-

tent representation [39]. Diffusion models provide a larger
capacity and are less prone to mode collapse in genera-
tion [51, 71]. But all the above research is on a single
body. While there is some research in modeling human-
environment interactions [22, 67], two-body interactions are
more complex. Very recent research shows successful syn-
thesis of two interacting characters, but their focus is either
on single character control [26, 45], or fix one while gen-
erating the other [11, 32]. To our best knowledge, there
is no deep-learning method for complex two-character in-
teractions especially under varying body sizes and propor-
tions.

2.2. Motion Retargeting

Motion retargeting adapts a character’s motion to another
of a different size while maintaining the motion seman-
tics. Early research employs space-time optimization based
on contact [10], purposefully-designed inverse kinematics
solver for different morphologies [15], data-driven recon-
struction of poses based on end-effectors [4, 44], or phys-
ical filters [47] and physical-based solvers [3] considering
dynamics constraints. Recently, deep learning has achieved
great success, e.g. recurrent neural networks with contact
modeling [53], skeleton-aware operators without explicitly
pairing the source and target motions [2], and variational
autoencoders for motion features preservation during re-
targeting [13, 27, 52, 70]. Beyond skeletal motions, the
skeleton structure is also effective in video based retarget-
ing [66]. Fast deep learning methods are pursued for real-
time robotic control [69]. Unlike previous research, we pro-
pose a novel deep learning architecture for motion retarget-
ing/generation of two-character interactions, which are in-
trinsically more complex than single-character retargeting.

2.3. Interaction

Interaction retargeting involving more than one person is
more challenging than single-body retargeting, due to their
complex motion constraints [24] such as topological con-
straints [16], but these constraints involve heavy manual de-
signs. As a more general solution, InteractionMesh [18]
uses dense mesh structures to represent the spatial re-
lations between two characters and minimizes the mesh
change during retargeting [19] and synthesis of character-
environment interactions [17]. As it may result in unnatural
movements when the skeleton is significantly different from
the original one, a prioritization strategy on local relations
is proposed [36]. Nevertheless, optimisation-based meth-
ods require careful design of constraints, and incur large
run-time costs.

Recently, there is a surge of deep learning methods on in-
teractions, including human-object interaction [23, 40, 64],
motion generation as reaction [6, 9, 63], from texts [29, 48]
and by reinforcement learning [62, 72]. Interaction has
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also been investigated in motion forecasting [37, 50, 65].
Among these papers, the closest work is interaction mo-
tion generation but existing work either cannot deal with
skeletons of different sizes or does not focus on continuous
and close interactions. To our best knowledge, there is no
deep learning method for interaction modeling as proposed
in this research.

Another key bottleneck of two-character interaction re-
targeting/generation is the lack of data. Existing datasets
focus on action recognition [7, 41, 68] with simple interac-
tions. While some datasets with complex interactions are
available [29, 43], they include limited variations of body
sizes/proportions and have a limited amount of data. In this
research, we present a new dataset and a method that learns
efficiently from small amounts of data.

3. Methodology
We denote a motion with T frames as q = {q0, . . . , qT }T ∈
RT×N×3 where qt is the tth frame, and each frame qt =
{pt0, . . . , ptN} consists of N joints and pj is the jth joint po-
sition. An interaction motion of two characters A and B
is represented by {qA, qB}. For a specific interaction, dif-
ferent body sizes and proportions should not change the se-
mantics, e.g. one character always having its arms around
the other in hugging. These invariant semantics are often
captured by topological/geometric features [16]. Therefore,
a skeletal change in B should cause changes in both qA
and qB to retain the semantics. We represent a B skeleton
by its bone length vector Bs ∈ Rn where n is the num-
ber of bones. The aim is to model the joint probability
p(Bs, qA, qB). We propose a simple yet effective model,
shown in Fig. 1.

3.1. A New Factorization of Interaction Motions

Directly learning p(Bs, qA, qB) would need large amounts
of data containing different interactions with varying bone
lengths. Therefore, we first make it learnable on limited
data by introducing a new factorization. First, we represent
skeletons with different bone lengths as heterogeneously
scaled versions of a template skeleton with a bone length
scale vector B̂ = {1, ..., 1} ∈ Rn, i.e. we treat the bone
lengths of the template skeleton as scale 1. We abuse the
notation and denote a skeleton variation by Bs, indicating
how each bone is scaled with respect to B̂.

Next, we represent motion data as deviations from some
template motion {q̂A, q̂B} with the template skeleton B̂.
A skeleton variation Bs corresponds to a distribution of
motions {q′A, q′B}, where not only the B motion deviates
from q̂B , the A motion also deviates from q̂A accordingly
to maintain the interaction. So we can split data into tem-
plate motions and others {qA, qB} = {q̂A, q′A}

⋃
{q̂B , q′B},

so that p(Bs, qA, qB) = p(q′A, q
′
B , Bs, q̂A, q̂B). Given

{q̂A, q̂B}, p(q′A, q
′
B , Bs, q̂A, q̂B) is an easier distribution to

learn than the original p(Bs, qA, qB), as {q̂A, q̂B} serves
as an anchor motion with an anchor skeleton, so that all
other motion variations can be described by offsets from the
template motion, restricting p(q′A, q

′
B , Bs, q̂A, q̂B) to only

model the distribution of offsets from {q̂A, q̂B}.
There are many ways to factorize p(q′A, q

′
B , Bs, q̂A, q̂B)

theoretically. Our new factorization follows:

p(q′A, q
′
B , Bs, q̂A, q̂B)

(i) = p(q′A|q′B , Bs, q̂A, q̂B)p(q
′
B , Bs, q̂A, q̂B)

(ii) = p(q′A|q′B , q̂A)p(q′B |Bs, q̂B)p(Bs, q̂A, q̂B)

(iii) = p(q′A|q′B , q̂A)p(q′B |Bs, q̂B)p(Bs) (1)

where (i) gives the conditional probability of
p(q′A|q′B , Bs, q̂A, q̂B), and its prior p(q′B , Bs, q̂A, q̂B).
Further, p(q′B , Bs, q̂A, q̂B) can be factorized into
p(q′B |Bs, q̂B)p(Bs, q̂A, q̂B) in (ii), assuming q′B does
not depend on q̂A. Given the template motion {q̂A, q̂B}
and a changed skeleton Bs, {Bs, q̂A, q̂B} ∼ p(Bs, q̂A, q̂B),
we can sample a new q′B ∼ p(q′B |Bs, q̂B) that satisfies
the desired skeleton change, then further sample a new
q′A ∼ p(q′A|q′B , q̂A) that maintains the interaction with q′B .
Further, (iii) is obtained when {q̂A, q̂B} is given.

The three distributions in Eq. (1) have explicit mean-
ings. p(Bs) is the skeleton prior which captures skeletal
variations that are likely to be observed; p(q′B |Bs, q̂B) is for
motion retargeting, i.e. modeling the distribution of pos-
sible B motions w.r.t. q̂B , given a skeletal variation Bs;
p(q′A|q′B , q̂A) is for motion adaptation, i.e. modeling the
possible A motions w.r.t. q̂A, given a specific B motion q′B .
Among many possible ways of factorization, our particular
choice in Eq. (1) conforms to a plausible workflow where
user input can be injected at multiple stages. The input can
be a skeletal change Bs to p(q′B |Bs, q̂B), or a keyframed
new motion q′B to p(q′A|q′B , q̂A). Alternatively, the Bs can
be drawn from p(Bs) for unlimited motion generation.

To keep our model small, inspired by the recent research
in human motions [28, 30], we learn a generative model by
assuming p(Bs), p(q′B |Bs, q̂B) and p(q′A|q′B , q̂A) to have
well-behaved latent distribution, e.g. Gaussian, shown in
Fig. 1. Compared with other alternative networks such
as flows and Transformers, our model is especially suitable
since our data is limited. We introduce the general architec-
ture and refer the readers to the Supplementary for details.

3.2. Network Architecture

In Fig. 1, MLP1 and MLP2 are a five-layer (16-32-64-128-
256) fully-connected (FC) network, and a five-layer (256-
128-64-32-dim(Bs)) FC network, respectively. As Bs is a
simple n-dimensional vector with fixed structural informa-
tion, i.e. each dimension representing the scale of a bone,
simple MLPs work well in projecting Bs into a latent space
where it conforms to a Normal distribution.
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Figure 1. Overview of our model. The key components include Spatial-temporal Graph Convolution Networks (ST-GCN), Multi-layer
perceptrons (MLP) and G-GRU networks. Details are in the supplementary material.

Next, we choose two types of networks as key compo-
nents of our model to learn motion dynamics and interac-
tions. First, spatio-temporal Graph Convolution Networks
(ST-GCN) extract features by conducting spatial and tem-
poral convolution on graph data and have been proven effec-
tive in analyzing human motions [8, 55]. We use ST-GCNs
as encoders to extract reliable features. The other network
is a Recurrent Neural Network named Graph Gated Recur-
rent Unit or G-GRU [28]. G-GRU models time-series data
by Gated Recurrent Unit on graph structures and have the
ability to stably unroll into the future on predicting human
motions [28]. We use it as decoders in our model. This
choice is again for reducing the required amount of data for
training, which would be much larger if other networks, e.g.
ST-GCNs are used as decoders based on our experiments.

Instead of directly learning the distribution of q′B , learn-
ing the distribution of the differences △qB = q′B − q̂B is
easier [49, 56]: p(q′B |Bs, q̂B) = p(△qB |Bs), which is eas-
ier as it becomes learning the distribution of offsets from the
template motion q̂B and a skeleton variation Bs. We encode
△qB into a latent space and then decode it back to the data
space by:

z = FC(Concat(ST-GCN1(△qB , Bs), q̂
0
B , q̂

T
B)))

△q′B = G-GRU1(z, q̂0B , q̂
T
B , Bs))

subject. to z ∼ N (0, I) (2)

where in both the encoding and decoding processes, we also
incorporate the first and last frame of the template motion
q̂0B , q̂

T
B because they help stabilize the dynamics based on

our results. After decoding, we add the predicted △q′B back
to the template motion to get the new motion q′B = qB +
△q′B .

Next, given a motion q′B , character A needs to adjust
its motions to keep the interaction, leading to a distribution
of possible q′A. Similarly, we focus on learning △qA =
q′A − q̂A by an autoencoder:

Figure 2. The architecture of ST-GCN1 and G-GRU1. More de-
tails are in the supplementary material.

Figure 3. The architecture of ST-GCN2, ST-GCN3 and G-GRU2.
More details are in the supplementary material.

z = FC(Concat(ST-GCN2(△qA), q̂
0
A, q̂

T
A,ST-GCN3(q′B))

△q′A = G-GRU2(z, q̂0A, q̂
T
A)) subject to z ∼ N (0, I)

(3)

where after decoding we compute the new motion q′A =
q̂A +△q′A.

We give more detailed architectures of ST-GCN1 and
G-GRU1 in Figure 2, and the detailed architectures of ST-
GCN2, ST-GCN3 and G-GRU2 in Figure 3.

3.3. Loss functions

Training our model involves three loss terms for the three
autoencoders:

L = LBS
+ LBM

+ LAM
. (4)
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Minimizing LBS
learns MLP1 and MLP2 to learn the dis-

tribution of possible skeleon variations Bs:

LBS
=

1

M

∑
||B′

s −Bs||22 +DKL[z||N (0, I)], (5)

where z is the output of MLP1, B′
s is the output of MLP2,

Bs is the ground-truth skeleton variation and DKL is the
KL-divergence.

Next, LBM
is for training ST-GCN1 and G-GRU1:

LBM
=

1

M

∑
{ω1||q̃′B − q′B ||1 + ω2|| ˙̃q′B − q̇′B ||1

+ ω3BL(q̃′B , q
′
B)}+ ω4DKL[z||N (0, I)], (6)

where z is the latent variable, ω4 = 1 − ω1 − ω2 − ω3, M
is the total number of motions. q̃′B and q′B are the predicted
and the ground-truth B motion. ω1 = 0.75, ω2 = 0.1 and
ω3 = 0.05. || · ||1 is the l1 norm and p(z|c) ∼ N (0, I).
BL(q̃′B , q

′
B) is the bone-length loss between q̃′B and q′B :

BL(q̃, q) =
∑
t

||bone len(q̃t)− bone len(qt)||22, (7)

where bone len computes the bone lengths of frame t of
q̃ and q. Note we minimize the difference between the
ground-truth and prediction on the zero-order and first-
order derivative in Eq. 6.

Summarily for LAM
:

LAM
=

1

M

∑
[ω1||q̃′A − q′A||1 + ω2|| ˙̃q′A − q̇′A||1

+ ω3BL(q̃′A, q
′
A)] + ω4DKL[z||N (0, I)], (8)

where z is the latent variable. ω4 = 1 − ω1 − ω2 − ω3, M
is the total number of motions. q̃′A and q′A are the predicted
and the ground-truth B motion. ω4 = 1 − ω1 − ω2 − ω3,
and ω1 = 0.75, ω2 = 0.1 and ω3 = 0.05. BL(q̃′A, q

′
A) is

the same bone length loss as in Eq. 7.

4. A New Interaction Dataset
To our best knowledge, there are few public datasets fo-
cusing on close and continuous interactions except [14].
To construct our dataset, we first obtain base motions and
augment them. The base motion details are shown in the
supplementary. We obtain “Judo”. From CMU [1], we
choose “Face-to-back”, “Turn-around” and “Hold-body”.
From ExPI [14], we choose “Around-the-back”, “Back-
flip”, “Big-ben”, “Noser” and “Chandelle”. These interac-
tions are sufficiently complex to fully evaluate the robust-
ness and generalizability of our model. They show the need
for automated motion retargeting/generation as it requires
hiring professional actors. Also, these motions contain rich
and sustained contacts and close and continuous interac-
tions, where single-body motion retargeting methods can

easily lead to breach of contact and severe body penetra-
tions.

After obtaining the base motions, a number of variations
of each motion are collected to form a dataset. Our method
is independent of how the variations are obtained. One
may consider motion capture with actors of different body
sizes, or manual keyframing with different characters. We
employ a semi-automated approach. We manually change
the skeleton to generate variations, after which we adapt
an iterative and interactive optimization approach called In-
teractionMesh [18] to generate new motions based on the
changed skeletons. This allows us to precisely control the
bone sizes for rigorous and consistent evaluation.

For each base motion, we vary the bones by scales within
[0.75, 1.25] with a 0.05 spacing, where the original skele-
ton is used as the scale-1 template skeleton. This spans the
+-25% range of the original skeleton, covering most of the
population. The process is semi-automatic, involving the
use of an optimisation engine to carefully retarget an in-
teraction to different body sizes, with manual adjustment
of constraint weights and inspection of results. Synthesiz-
ing a few seconds of interaction generally requires around
2 minutes of computation. This is done multiple times for
one variation of a base motion, due to the need for manual
weighting tuning.

5. Experiments

5.1. Tasks, Metrics and Generalization Settings

Tasks. Since our model can generate motions with or with-
out user input to specify a skeleton variation, we test differ-
ent model variants for motion augmentation. Specifically,
we evaluate our model on motion augmentation via retar-
geting and generation. If Bs is given, we refer to the task
as retargeting where we only use G-GRU1 and G-GRU2
for inference; if Bs is not given, we use the full model
(MLP2+G-GRU1+G-GRU2) and refer to it as generation.

Metrics. We employ four metrics for evaluation: joint
position reconstruction error (Er), bone-length error (Eb),
Fréchet Inception Distance (FID), and joint-pair distance er-
ror (JPD). Er, Eb and JPD are based on l2 distance. FID
is used to compare the distributional difference between the
generated motions and the data. JPD measures the key joint-
pair distance error. The key joint pairs are the body parts in
continuous contact. It is to investigate the key spatial re-
lations between joint pairs in different motions (Judo: A’s
right hand to B’s spine; Face-to-back: A’s left hand to B’s
right hand; Turn-around: A’s left hand to B’s right hand;
Hold-Body: A’s right hand to B’s spine; Around-the-back:
A’s left hand to B’s right hand; Back-flip: A’s left hand to
B’s right hand; Big-ben: A’s right hand to B’s right hip;
Noser: A’s right hand to B’s right hip; Chandelle: A’s right
hand to B’s right hip). All results reported are per joint re-
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Base Motion M1 M2 M3 M4 M5 M6 M7 M8 M9 Total
Original frames 91 536 561 488 294 248 238 518 345 3,319

Augmented motion 160 119 119 119 90 90 90 90 90 967
Augmented frames 14,560 63,784 66,759 58,072 26,460 22,320 21,420 46,620 31,050 351,045

Table 1. M1: Judo, M2 Face-to-back, M3 Turn-around, M4: Hold-body, M5 Around-the-back, M6 Back-flip, M7 Big-ben, M8 Noser, M9
Chandelle. More details are in the Supplementary.

sults averaged over A and B.
Generalization Settings. Our dataset has two different

skeletal topologies shown in the Supplementary. Therefore,
we divide them into two datasets: D1 (M1-4) and D2 (M5-
M9) and conduct experiments on them separately. We em-
ploy four different settings to evaluate our model: random,
cross-scale, cross-interaction and cross-scale-interaction:
1. Random means a random split on the data for training

and testing where we keep 20% data for testing.
2. Cross-scale means we train on moderate bone scales but

predict on larger skeleton variations. Our training data
is within the scale [0.95, 1.05] and our testing data is
both much smaller [0.75, 0.85] and larger [1.15, 1.25].
Note the testing varies up to +/- 25% of the bone lengths
covering a wide range of bodies.

3. Cross-interaction is splitting the data by interaction
types, e.g. training on Judo and tested dancing. When
we choose one or several interactions for testing, the
other interactions are used for training the model.
Specifically, in D1, we split the data into two sets: M1-
M2 and M3-M4; in D2, we split them into two sets: M5-
M7 and M8-M9. In both, when one group is used for
training, the other is used for testing.

4. Cross-scale-interaction is both cross-scale and cross-
interaction, which is the hardest setting. This means that
the scale [0.95, 1.05] of some interactions are used for
training, and the scale [0.75, 0.85] and [1.15, 1.25] in
the other interactions are for testing. For instance, in D1,
when the scale [0.95, 1.05] of M1-M2 is used for train-
ing, the scale [0.75, 0.85] and [1.15, 1.25] in M3-M4 are
for testing.

5.2. Evaluation

5.2.1 Retargeting and Generation

We present the main results here and refer the readers to the
Supplementary for more results and details.

We first show quantitative evaluation in Tab. 2. Across
the two tasks, generation is harder than retargeting, as the
bone scales are not given in generation. Naturally, the bone
length error Eb is almost always slightly worse than Retar-
geting and so is JPD. But even the worst case is 330% in Eb

and 206.89% worse in JPD which suggests the model gen-
eralizability on unseen scales and interactions in general is
strong. We show visual results in Fig. 4 and the video. To-

Er Eb JPD FID Eb JPD

M1

Random 1.069 0.171 3.008 2.934 0.18 3.421
Cross-scale 2.017 0.304 4.248 3.973 0.354 4.304

Cross-interaction 2.843 0.476 4.443 4.071 0.492 4.903
Cross-scale-interaction 3.021 0.679 4.754 4.369 0.753 5.067

M2

Random 0.067 0.004 0.104 1.719 0.005 0.101
Cross-scale 0.344 0.018 0.241 2.364 0.023 0.645

Cross-interaction 0.671 0.087 0.625 3.077 0.097 1.004
Cross-scale-interaction 1.051 0.131 0.845 3.256 0.143 1.317

M3

Random 1.076 0.02 2.274 5.573 0.03 2.134
Cross-scale 1.563 0.066 2.948 6.556 0.094 2.872

Cross-interaction 1.644 0.089 3.147 6.712 0.127 3.095
Cross-scale-interaction 1.928 0.13 3.493 6.863 0.153 3.317

M4

Random 0.191 0.017 0.264 1.579 0.03 0.297
Cross-scale 0.471 0.079 0.418 2.148 0.087 1.071

Cross-interaction 0.617 0.104 0.589 2.648 0.111 1.347
Cross-scale-interaction 0.897 0.112 0.624 3.094 0.129 1.915

M5

Random 1.975 0.003 0.398 0.69 0.01 0.604
Cross-scale 2.674 0.016 0.837 1.283 0.031 1.157

Cross-interaction 3.067 0.034 1.672 1.431 0.05 1.894
Cross-scale-interaction 3.864 0.067 2.268 1.897 0.094 3.068

M6

Random 1.878 0.008 0.448 0.688 0.013 0.624
Cross-scale 3.615 0.022 0.997 1.22 0.028 1.273

Cross-interaction 4.013 0.031 1.923 1.523 0.039 2.024
Cross-scale-interaction 4.876 0.076 2.641 1.667 0.083 3.264

M7

Random 2.746 0.006 0.495 0.645 0.015 0.702
Cross-scale 5.204 0.017 1.163 1.153 0.03 2.14

Cross-interaction 5.648 0.029 2.32 1.492 0.042 2.32
Cross-scale-interaction 5.757 0.066 2.759 1.475 0.069 3.762

M8

Random 2.272 0.006 0.402 0.676 0.012 0.634
Cross-scale 3.124 0.021 0.964 1.349 0.038 1.374

Cross-interaction 3.389 0.04 1.534 1.671 0.057 1.862
Cross-scale-interaction 3.971 0.103 2.341 2.965 0.103 2.675

M9

Random 2.234 0.005 0.403 0.634 0.009 0.561
Cross-scale 2.935 0.01 0.934 1.412 0.043 1.259

Cross-interaction 3.256 0.023 1.674 1.842 0.051 1.903
Cross-scale-interaction 3.623 0.064 2.842 2.854 0.114 2.971

Table 2. Retargeting (left) and Generation (right). Here is the
result of D1 (M1-4) and D2 (M5-9).

gether with the scaled skeleton, the poses are automatically
adapted on both characters to keep the geometric relations
of the interaction.

In terms of generation settings, the overall difficulty
should be Cross-scale-interaction > Cross-interaction >
Cross-scale > Random, as more and more information is
included in the training data from Cross-scale-interaction to
Random. The metrics in Tab. 2 are consistent with this ex-
pectation. Cross-scale-interaction is the most challenging
task which is testing the model on both unseen bone sizes
and interactions simultaneously. Its metrics are worse than
the other three in general as expected. Despite the worse
results, the visual results of cross-scale-interaction are of
good quality. We show one example (with the worst met-
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Figure 4. In the original Judo motion (top), the red character is
augmented for a bigger body (middle) and a smaller body (bot-
tom), while retaining the key features of the interaction semantics.
The black boxes in column a highlight how the “Judo holding” se-
mantics, i.e., the red character holding the blue one, are adapted.
The black boxes in column b show a similar example.

Figure 5. Comparison between ground-truth (top) and cross-scale-
interaction (bottom). The skeleton of the red character is changed.
Both of them are Back-flip on scale 0.85.

rics) in Fig. 5 in comparison with ground-truth.

5.2.2 Extrapolating to Large Unseen Scales

We predict larger scales. The scales are beyond our dataset
(including the testing data). We show one example of Turn-
around on 0.65 and 1.3 in the Supplementary , which shows
that our model can extrapolate to larger skeletal variations
when trained only using data on scales [0.95, 1.05]. More
examples can be found in the video. Although larger scale
variations e.g. 0.5 and 1.5 might lead to unnatural motions,
the Supplementary already demonstrate the generalizability
of our model.

Hold-Body Judo
Our method [39] [12] Our method [39] [12]

FID 0.412 2.257 40.351 0.267 1.998 28.459
Eb 0.002 0.541 0.389 0.118 0.334 0.311

JPD 0.168 1.463 4.903 3.401 4.532 5.648

Table 3. Results at Scale 1.25, averaged over 10 randomly gener-
ated motions.

Figure 6. Scale 1.25 comparisoin. Left: ground-truth, mid: ours,
right: [39]. [39] generates unnatural poses and break contact (en-
larged parts). Zoom-in for better visualization.

5.3. Comparison

To our best knowledge, it is new for deep learning to be
employed for interaction augmentation with varying body
sizes. So there is no similar research. Therefore, we
adapt two single-body methods ([12, 39]) which provide
conditioned generation and are the only methods we know
that could potentially be adapted for handling varying bone
lengths, i.e. we train the model by labelling different scales
as different conditions and train the model on scale [0.75,
1.25]. More specifically, both models require action type
(i.e. a class label) as input, so we label data at different
scales as different classes. Note [39] and [12] cannot gen-
erate motions for unseen action types, which means they
cannot predict on unseen scales like our method.

We show the metrics in Tab. 3. After trying our best
to train [12], it still generates jittering motions. It can pre-
serve the bone-length better than [39] but its FID and JPD
are much worse. [39] generate better results but it is still
much worse than our method. We show one example of
Hold-Body in Fig. 6 in comparison with [39]. Overall,
single-body methods even when adapted cannot easily gen-
erate interactions.

We also compare with InteractionMesh [18]. Since our
ground-truth is from InteractionMesh, comparisons on the
aforementioned evaluation metrics would be meaningless.
Instead, we compare the speed and motion quality on un-
seen extreme scales. The inference time of our model is
0.323 seconds, while InteractionMesh needs ∼120 seconds
on average per optimization, plus the time needed for man-
ual tuning of the weighting. Admittedly, our model needs
overheads for training. However, once trained, it is very fast
and can be used for interactive applications. Further, Inter-
actionMesh needs to do optimization for every given Bs,
while our model is trained once then does inference for any
Bs. Last but not least, InteractionMesh sometimes fails to
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Predict(sec) 0.2 0.4 0.6 0.8 1.0

M5 JME 0.234/0.449 0.427/0.771 0.593/1.073 0.722/1.365 0.848/1.594
AME 0.417/0.605 0.750/1.100 1.036/1.499 1.250 /1.877 1.474/2.176

M6 JME 0.520/0.552 0.848/0.874 1.098/1.187 1.485/1.533 1.670/1.799
AME 0.671/0.682 1.170/1.168 1.530/1.579 1.958/1.968 2.253/2.326

M7 JME 0.538/0.565 0.971/0.959 1.298/1.302 1.720/1.708 1.926/1.848
AME 0.708/0.727 1.334/1.367 1.809/1.823 2.319/2.290 2.608/2.573

M8 JME 0.507/0.562 0.927/0.985 1.137/1.284 1.648/1.692 1.886/2.013
AME 0.673/0.695 1.315/1.330 1.796/1.830 1.908/1.968 2.353/2.483

M9 JME 0.505/0.590 0.834/0.920 1.263/1.312 1.567/1.725 1.904/2.201
AME 0.721/0.723 1.469/1.634 1.848/1.923 2.031/2.224 2.415/2.657

M5 JME 0.278/0.507 0.444/0.767 0.652/1.122 0.763/1.299 0.867/1.641
AME 0.467/0.668 0.748/1.094 1.085/1.603 1.345 /1.894 1.551/2.230

M6 JME 0.538/0.548 0.856/0.880 1.096/1.180 1.488/1.586 1.622/1.793
AME 0.683/0.690 1.194/1.196 1.528/1.566 1.960/1.973 2.256/2.335

M7 JME 0.584/0.579 1.023/1.049 1.322/1.315 1.645/1.648 1.937/1.940
AME 0.723/0.746 1.466/1.489 1.896/1.900 2.391/2.379 2.608/2.612

M8 JME 0.597/0.605 1.036/1.068 1.204/1.315 1.701/1.767 1.892/2.148
AME 0.710/0.748 1.348/1.347 1.808/1.810 2.064/2.101 2.332/2.425

M9 JME 0.524/0.528 0.862/0.892 1.378/1.392 1.674/1.702 1.923/2.046
AME 0.718/0.713 1.486/1.497 1.867/1.901 2.067/2.209 2.523/2.672

Table 4. Motion prediction of [14] (top) and [60] (bottom) in JME
(joint mean error) and AME (aligned mean error) from D2 (M5-9).
In each test, xx/xx is with/without data augmentation.

converge due to its optimization set up, resulting in either
numerical explosion or very unnatural motions (see video).
This requires careful manual tuning. Comparatively, our
model does not need manual intervention.

5.4. Downstream Tasks

Motion augmentation can benefit various downstream tasks.
Here we show two downstream tasks: motion prediction
and activity recognition. In motion prediction we train two
models [60] and [14] on the ExPI dataset [14] with/without
our data augmentation, following their settings. The testing
protocols and evaluation metrics follow [14]. The results
are shown in Tab. 4, where 90 of 100 metrics are improved
by our augmentation, with a maximum 47.88% improve-
ment on JME (M5-AB-0.2sec) and a maximum 47.74% im-
provement on AME (M5-AB-0.6sec).

In activity recognition, we train three latest activ-
ity classifiers HD-GCN [25], STGAT [21] and TCA-
GCN [59] on ExPI with/without data augmentation, follow-
ing two data splits: 80/10/10 and 50/20/30 split on train-
ing/validation/testing data. The results are shown in Tab.
5. The data augmentation improves the accuracy across all
models and all split settings. As the training data is reduced
from 80% to 50%, the results with data augmentation have
a small deterioration (less than 1.49%). Without data aug-
mentation, it quickly drops by as much as 3.42%.

We further show the quality of the augmented motions
via a trained classifier. If a trained classifier can correctly
recognize the generated motions, then it suggests the gen-
erated features have similar features to the original data.
We train the aforementioned classifiers on the original ExPI
data and use the generated motions as testing data. Tab.
6 shows the action recognition result. Our method outper-
forms the other two methods in all three action recognition

Settings/Classifiers HD-GCN [25] STGAT [21] TCA-GCN [59]
80/10/10 94.80/94.36 94.27/94.10 94.68/94.62
50/20/30 93.92/92.65 93.66/92.40 93.27/91.38

Table 5. Activity recognition accuracy on 3 different classifiers
from ExPI [14]. In each test, xx/xx is with/without data augmen-
tation.

Methods/Classifiers HD-GCN [25] STGAT [21] TCA-GCN [59]
ACTOR[39] 97.68 98.03 97.22

Action2motion[12] 97.43 96.90 96.45
Our method 98.64 98.53 97.93

Table 6. Activity recognition accuracy on 3 different methods
from D2 (M5-9). Training on the ground-truth and testing on gen-
erated 200 motions.

classifiers, which shows that our generated data has more
similar features to the ground-truth. Given close interaction
data is new [14] and its limited variety and amounts, our
method provide an efficient way of augmenting such data
for activity recognition.

5.5. Alternative Architectures

Our model combines existing network components in a
novel way for interaction augmentation, so a natural ques-
tion is if there are other better alternative architectures. We
test several alternative network architectures inspired by ex-
isting research. The selection criteria is they need to be data
efficient for learning, so we exclude some data-demanding
architectures such as Transformers or Diffusion models.
The details and results are shown in the Supplementary, but
overall our model outperforms the alternative architectures.

6. Conclusion, Limitations & Discussion
To our best knowledge, our research is the very first deep
learning model for interaction augmentation. It has high ac-
curacy in generating desired skeletal changes, great flexibil-
ity in generating diversified motions, strong generalizability
to unseen and large skeletal scales, and benefits to multiple
downstream tasks. One limitation is that we need some data
samples to start and require the same skeletal topology to do
cross-motion motion augmentation. Also, the model does
not explicitly enforce contacts between two characters now.
However, considering the difficulties of interaction motion
capture, our method provides a new and fast way of itera-
tively augmenting a single captured motion then learning to
generate infinite number of variations. Next, although we
use InteractionMesh to generate training data, our method
can easily incorporate other data sources such as captured
motions from different subjects as well as manually created
motions by animators. Given the small number of motions
needed by our method, this is still a fast pipeline to acquire
a large number of interactions with varying body sizes.
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