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Abstract

Although humans engaged in face-to-face conversa-
tion simultaneously communicate both verbally and non-
verbally, methods for joint and unified synthesis of speech
audio and co-speech 3D gesture motion from text are a
new and emerging field. These technologies hold great
promise for more human-like, efficient, expressive, and ro-
bust synthetic communication, but are currently held back
by the lack of suitably large datasets, as existing methods
are trained on parallel data from all constituent modalities.
Inspired by student-teacher methods, we propose a straight-
forward solution to the data shortage, by simply synthesis-
ing additional training material. Specifically, we use uni-
modal synthesis models trained on large datasets to create
multimodal (but synthetic) parallel training data, and then
pre-train a joint synthesis model on that material. In ad-
dition, we propose a new synthesis architecture that adds
better and more controllable prosody modelling to the state-
of-the-art method in the field. Our results confirm that pre-
training on large amounts of synthetic data improves the
quality of both the speech and the motion synthesised by the
multimodal model, with the proposed architecture yielding
further benefits when pre-trained on the synthetic data.

1. Introduction
Human beings are embodied, and we use a wide gamut of
the expressions afforded by our bodies to communicate. In
concert with the lexical and non-lexical (prosodic) compo-
nents of speech, humans also leverage gestures realised by
face, head, arm, finger, and body motion – all driven by a
shared, underlying communicative intent [60] – to improve
face-to-face communication [31, 69].

Research into automatically recreating different kinds of
human communicative behaviour, whether it be speech au-
dio from text [89], or gesture motion from speech [97],
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have a long history, as these are key enabling technologies
for, e.g., virtual agents, game characters, and social robots
[15, 42, 59, 71]. The advent of deep learning has led to an
explosion of research in the two fields [55, 69, 87]. Gesture
synthesis, in particular, has been shown to benefit from ac-
cess to both lexical and acoustic representations of speech
[3, 43, 44, 109]. That said, joint and simultaneous synthe-
sis of both speech and gesture communication (pioneered in
[82]) remains severely under-explored. This despite the fact
that simultaneously generating both modalities together not
only better emulates how humans produce communicative
expressions, but also offers a stepping stone towards creat-
ing non-redundant gestures that can complement and even
replace speech, like human gestures do [35]. On top of this,
recent research efforts towards integrating the synthesis of
the two modalities have demonstrated improvements in co-
herent [6, 64], compact [64, 99], jointly and rapidly learn-
able [63], convincing [63, 64], and cross-modally appropri-
ate [64] synthesis of speech and 3D gestures from text.

The current state of the art in joint multimodal speech-
and-gesture synthesis, Match-TTSG [64], achieves strong
performance via modern techniques such as conditional
flow matching (OT-CFM) [52] with U-Net Transformer [96]
encoders [81]. However, there still remains a noticeable gap
between synthesised model output and recordings of nat-
ural human speech and gesticulation [64]. This contrasts
with recent breakthroughs in “generative AI”, which can
synthesise text [2, 14], images [77, 81], and speech au-
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dio [84, 88] that all are nigh indistinguishable from those
created by humans. The critical difference is that whereas
those strong models for synthesising single modalities ben-
efit from training on vast amounts of data (cf. [28]), exist-
ing parallel datasets of speech audio, text transcriptions, and
human motion are radically smaller. This is especially true
if we require good motion quality (which at present gener-
ally necessitates high-end 3D motion capture) and speech
audio with a spontaneous character and quality suitable for
speech synthesis. The state-of-the-art joint synthesis system
demonstrated in [64] was thus trained on 4.5 hours of paral-
lel speech and gesture data from [23]; larger parallel corpora
exist [50, 54], but exhibit some quality issues (cf. [45]) and
do not exceed 100 hours, a far cry from the corpora used
to train leading generative AI systems. It stands to reason
that multimodal synthesis systems could gain substantially
from overcoming the limitations imposed by training only
on presently available parallel corpora.

In this paper, we propose two improvements to the state-
of-the art multimodal speech-and-gesture synthesis:
1. We pre-train1 a joint speech-and-gesture synthesis model

on a large parallel corpus of synthetic training data cre-
ated using leading text, text-to-speech, and speech-to-
gesture systems (Fig. 1), before fine-tuning on our target
data. This offers a simple way for multimodal models to
benefit from advances in unimodal synthesis systems.

2. We extend [64] with a probabilistic duration model (sim-
ilar to [49]) and individual models of pitch and energy
(similar to [79]). This enables more lifelike and more
controllable synthetic expression.

The resulting joint synthesis system is orders of magnitude
smaller and faster than the models used for synthesising the
pre-training data. Our subjective evaluations show that the
proposed pre-training on synthetic data improves the speech
as well as the gestures created by a joint synthesis system,
and that the architectural modifications further benefit a sys-
tem pre-trained on large synthetic data and also enable out-
put control. For video examples and code, please see our
demo page at shivammehta25.github.io/MAGI/;

2. Background
In this section, we review synthesis of text, speech audio,
and 3D gesture motion, along with existing work in multi-
modal speech-and-gesture synthesis. For each task, we state
how the methods relate to our contributions and briefly dis-
cuss how synthetic data can improve synthesis models.

2.1. Text generation
The rise of large language models (LLMs) has brought rev-
olutionary improvements to text generation. Transformer-

1We use “pre-training” to refer to any training (by others or by us)
performed prior to training on our multimodal target dataset.

based [96] LLMs using Generative Pre-trained Transform-
ers (GPTs) [74] like [2, 14, 92] are capable of generating
text virtually indistinguishable from that written by humans.

The critical methodological advances for LLMs are pre-
training on vast amounts of diverse data, coupled with fine-
tuning on a small amount of high-quality, in-domain mate-
rial, e.g., via Reinforcement Learning from Human Feed-
back (RLHF) [10]. This methodology of pre-training foun-
dation models followed by fine-tuning on the best data
has been validated to give excellent results across several
modalities [12, 116]. In this paper, we for the first time use
that methodology in joint speech-and-gesture synthesis.

Fine-tuned LLMs allow generating of diverse text sam-
ples for many domains through prompting the model, i.e.,
providing a written text prompt at runtime describing the
output to generate. Prompting has been useful for many
tasks including creating synthetic dialogue datasets [1] and
selecting appropriate gestures based on verbal utterances
[29]. We use this ability to create an arbitrarily large ma-
terial of conversational text sentences in the style of a given
speaker/corpus as a basis for our synthetic-data creation.

2.2. Speech synthesis
Recent advances in deep generative modelling have signif-
icantly improved text-to-speech (TTS) [87], reaching nat-
uralness levels that rival recorded human speech [84, 88].
TTS models are often divided into two broad classes: au-
toregressive (AR) and non-autoregressive (NAR). AR mod-
els produce acoustic outputs sequentially, using mecha-
nisms such as neural cross-attention [11, 16, 51, 83, 115]
or neural transducers [61, 62, 106] to connect inputs sym-
bols to the outputs. Non-autoregressive models [26, 37, 38,
49, 65, 72, 79, 118] instead generate the entire utterance
in parallel. NAR models are typically faster, especially on
GPUs, but AR methods often yield slightly better synthesis.

Recently, there has been a trend [11, 13, 16, 47, 98]
to quantise audio waveforms into discrete tokens [17, 47],
and then adapt an LLM-like autoregressive approach (e.g.,
with GPTs) to learn to model these audio tokens on large
datasets. Synthesised token sequences can subsequently be
converted back to audio [85]. Speaker and style adapta-
tion can be achieved by seeding (prompting) the model with
an audio snippet, something we leverage to create diverse
stochastic synthetic training data for our work.

LLM-like TTS can give exceptional results when trained
on large datasets, but models risk confabulating (similar to
well-known issues with LLMs) and getting trapped in feed-
back loops due to the autoregression [11, 16]. Our paper
therefore describes a pipeline for mitigating these problems
when creating synthetic training data at scale.

In NAR TTS, it has been found that conditioning the TTS
on the output of a model of prosodic properties, e.g., per-
phone pitch and energy, can benefit synthesis [70, 79, 118].
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This also enables control over the speech, by replacing
or manipulating the prosodic features prior to synthesis.
Speech-sound durations are especially important for con-
vincing prosody, and probabilistic modelling of durations
can substantially improve deep generative TTS [38, 41].
This appears especially useful for speech uttered spon-
taneously in conversation, as considered here, due to its
highly diverse prosodic structure [48]. We therefore intro-
duce a probabilistic duration model, coupled with explicit
pitch and energy models, into the multimodal synthesis ar-
chitecture. Better duration modelling should help create
speech rhythm and timings with adequate time for gesture-
preparation phases, so that gesture strokes can synchronise
with the speech. Improved control should not only affect
the output speech but also the gestures we generate with it.

2.3. Gesture synthesis
Like TTS, deep learning has led to a boom in 3D ges-
ture synthesis from speech text and/or audio [69], adapting
techniques like GANs [100, 101], normalising flows [4, 5],
VAEs [24], VQ-VAEs [107, 108], combined adversarial
learning and regression losses [21, 27, 54], and flow-VAEs
[90]. Following text-prompted diffusion models for human
motion [39, 91, 114] diffusion models have seen rapid adop-
tion for generating 3D gesture motion [7, 8, 112, 117]. Flow
matching [52] improves synthesis speed by learning mod-
els that require fewer diffusion steps during sampling, and
has recently been adapted to motion generation [32, 64] and
TTS [26, 49, 65]. Similar to LLMs and large TTS models,
separate efforts wholly or partly model gestures autoregres-
sively as a sequence of discrete tokens [56, 67, 104].

The most recent large-scale comparison of gesture-
generation models, the GENEA Challenge 2023 [45], found
that the two strongest methods [18, 105] (which are exten-
sions of [7, 103]) were based on diffusion models. Among
these, [18] made use of self-supervised text-and speech em-
beddings from data2vec [9], subsequently aligned with ges-
ture motion using CLIP [75] training, to improve the coher-
ence between gestures and the two speech-input modalities.
In addition to modelling beat gestures, the approach recog-
nises the need for additional input modalities to generate
representational gestures, such as iconic and deictic point-
ing [19], for more nuanced and contextually relevant non-
verbal communication. Our data-synthesis pipeline lever-
ages their approach to create synthetic training gestures that
well match the synthetic speech text and audio input.

2.4. Joint synthesis of speech and gestures
Speech synthesis and gesture generation have traditionally
been treated as separate problems, performed on different
data by distinct research communities. TTS is mainly devel-
oped for read-aloud speech, whereas co-speech gesturing is
more closely associated with conversational settings.

Joint synthesis of speech and motion was first consid-
ered by [82]. The first neural model was DurIAN [111],
which simultaneously generated speech audio and 3D fa-
cial expressions, albeit for speech read aloud. [6] trained
separate deep-learning TTS and speech-to-gesture systems
to synthesise speech and 3D motion for the same speaker
and the same (spontaneous) speaking style. This was fol-
lowed by [99], which investigated adapting and extending
AR [83] and NAR [37] neural TTS models to perform joint
multimodal synthesis. Their joint models reduced the num-
ber of parameters needed over [6], but the best model (the
one based on [83]) required complex multi-stage training to
speak intelligibly and did not improve quality.

Diff-TTSG [63] advanced joint speech-and-gesture syn-
thesis by employing probabilistic modelling, specifically a
strong denoising probabilistic model (DPMs) [86] building
on the TTS work in [72]. This model could be trained on
speech-and-gesture data from scratch in one go and pro-
duced improved results over [99], but internally used sepa-
rate pipelines for producing the two output modalities, lead-
ing to suboptimal coherence between them. Match-TTSG
[64] improved on this aspect by using a compact and uni-
fied decoder to jointly sample both output modalities. It
also used conditional flow matching [52] rather than diffu-
sion, for much faster output synthesis. Experiments found
that Match-TTSG improved on the previous best model in
all respects, establishing it as the current state of the art.

Most of the above models were trained only on small,
parallel multimodal datasets from a single speaker. (The
one exception is [99], which required pre-training part of
the network on a TTS corpus to produce intelligible out-
put at all.) The results in [64] show that, e.g., the synthetic
speech falls short of human-level naturalness, and the qual-
ity we find from systems trained on very large datasets. Ac-
cordingly, we propose to circumvent the data limitation by
using strong unimodal synthesisers to create a large syn-
thetic training corpus for our joint model.

2.5. Training on synthetic data

Training models on synthetic data is gaining interest [93],
e.g., for privacy [66] and in model compression through dis-
tillation [30], including generative models like TTS [94].
Synthesis (and synthetic data) is also appealing in cases
where real data is scarce or difficult to obtain, as demon-
strated in applications to human poses and motion [95, 113].
It also allows for the creation of diverse and controlled
datasets that can enable more accurate and versatile mod-
els [36]. We here propose to generalise such approaches by
chaining together multiple unimodal synthesisers, to enable
training multimodal speech-and-gesture models.

There may be a risk that the individual unimodal synthe-
sisers we use, being trained on non-overlapping data, could
fail to capture mutual information that connects the modal-
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ities. The final multimodal system trained on the synthetic
corpus might then suffer from artefacts and fail to recreate
proper inter-modal dependencies. However, recent theoret-
ical and practical results show that little [57] or no [53, 68]
parallel data may suffice for learning joint distributions of
multiple random variables (modalities). Training on cor-
pora generated by synthesisers built from non-overlapping
material might thus not be as risky as it could seem.

3. Method
We now describe our method for creating wholly synthetic
multimodal datasets for training synthesis models, and then
detail our modifications to the Match-TTSG architecture.

3.1. Creating synthetic training data
Our pipeline for creating synthetic training data had the fol-
lowing main steps:
1. Generating written sentences in the style of conversa-

tional speech transcriptions.
2. Synthesising diverse speech audio from the text.
3. Validating/filtering the synthetic speech audio using au-

tomatic speech recognition, and aligning the input text
with the synthesised audio.

4. Synthesising gestures from the generated speech audio
files and their corresponding time-aligned text.

We provide more detail in the following subsections.

3.1.1 Text generation

The first step was to create text sentences that can form the
basis of synthesising multimodal data in a conversational
style. For this we used GPT-4 [2] and deliberate prompt-
ing. Specifically, we prompted the model with a list of 50
transcriptions of sentences from the training split [63] of the
Trinity Speech-Gesture Dataset II (TSGD2) [20, 22], each
enclosed in triple quotes, followed by a request to produce
50 additional phrases in the same style (including hesita-
tions and disfluencies seen in the transcriptions) but ignor-
ing the content. Further prompting then followed, to make
the model generate additional output based around different
emotions and scenarios, and obtain a more diverse mate-
rial. The emotional categories we provided were: disgust,
sadness, fear, frustration, surprise, excitement, happiness,
confusion, and denial. Our prompts often gave similar in-
structions multiple times, as we found this led to more real-
istic output. The main instruction prompt and a number of
example continuations can be found in Appendix A.

We utilised the above procedure to generate a total of
600 phrases (available through the webpage), each approxi-
mately 250 characters in length. We found that limiting the
length of the prompt helps prevent issues with the subse-
quent speech synthesis, which tended to produce unintelli-
gible or confabulated output for overly long utterances.

3.1.2 Speech generation

The next step was to synthesise speech audio from the 600
LLM-generated phrases. For this, we considered multi-
ple TTS systems capable of multi-speaker and spontaneous
speech synthesis, including Bark2, XTTS [16], and Eleven-
Labs3. However, Bark exhibited frequent confabulations
and unexpected changes in speaker identity within a sin-
gle utterance, which seemed problematic for learning to
maintain a consistent vocal identity. Although ElevenLabs
demonstrated high-quality output, its status as a non-open
source and proprietary solution led us to exclude it. Ul-
timately, we selected XTTS for generating our synthetic
speech dataset, due to it combining more consistent syn-
thesis with a research-permissible license. We limited each
synthesised utterance to at most 400 XTTS speech tokens,
since anything longer than that is virtually certain too long
for our prompts, and thus must contain confabulation or
gibberish speech. For everything else, default XTTS syn-
thesis hyperparameters were used. In the end, each syn-
thesised audio utterance was around 20–23 seconds long,
taking about half that time to synthesise.

In order to obtain more diverse data containing multiple
speakers, each of the 600 phrases was synthesised 16 times,
once in each of 16 different voices. These voices were se-
lected as a gender-balanced set (8 male and 8 female speak-
ers) from the VCTK corpus [102], and elicited from XTTS
by seeding the synthesis of each individual utterance with
the audio of longest VCTK utterance spoken by the rele-
vant speaker as an acoustic prompt. These prompting utter-
ances tended to be around 9 seconds long. In total, we thus
synthesised 16 ⇥ 600 = 9600 audio utterances.

Interestingly, despite the spontaneous nature of the in-
put phrases, we found that false starts and fillers explicitly
present in the input were sometimes omitted in the XTTS
output. This could be partly due to the choice of tempera-
ture parameter at synthesis time (the default, 0.65), which
favours more consistent and likely output, and partly due
to the public English-language training datasets cover read
rather than spontaneous speech. Since XTTS furthermore
was prompted using a snippet of read-aloud speech audio
from VCTK, the output audio tended to sound more like
reading than speaking spontaneously.

3.1.3 Data filtering and forced alignment

Following speech synthesis, a number of data-processing
steps were performed to obtain a suitable dataset for train-
ing a strong gesture-generation system. To begin with, all
synthesised audio utterances longer than 25 seconds were
immediately and permanently discarded, since these over-
whelmingly tended to contain issues related to confabula-

2https://github.com/suno-ai/bark
3https://elevenlabs.io/
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tion and the like. The output from XTTS did not have ex-
act fidelity to the text it was prompted with, so automatic
speech recognition (ASR) was used to get more accurate in-
put to the gesture-generation system. ASR was performed
using Whisper [76], using the medium.en model, which
has in previous uses proven to be less prone to confabula-
tion than the large variants, whilst providing sufficient accu-
racy. Interestingly, Whisper tended to prefer British English
spelling, possibly since VCTK was recorded in the UK. The
ASR derived transcripts then replaced the original TTS in-
put text for each utterance in all subsequent processing.

The gesture-generation system we chose for the final
synthesis ([18]) requires word-level timestamps for the text
transcriptions. Although we considered several tools that
attempt to obtain word timings from Whisper directly, none
were sufficiently accurate for our needs. Instead, we ob-
tained the requisite timings using the Montreal Forced
Aligner (MFA) [58]. Text input to MFA was processed
word-by-word to remove leading and trailing punctuation
and to perform case folding to lower case. Utterances that
MFA failed to align were also excluded from consideration.

Following the filtering and alignment process, we were
left with 8173 audio utterances for our final synthetic
dataset, meaning that 1427 utterances (about 15%) were
discarded during the filtering step. The remaining data had
a total duration of 37.6 hours, which also ended up being
the size of the final synthetic training corpus.

3.1.4 Gesture generation

We used a recent diffusion-based gesture-generation
method [18] that performed well in a large comparative
evaluation [45] to generate synthetic gesture data. That sys-
tem leveraged data2vec [9] embeddings to represent audio
input, which help achieve a more speaker-independent rep-
resentation. On top of that, [45] introduced a Contrastive
Speech and Motion Pre-training (CSMP) module, to learn
joint embeddings of speech and gesture that can strengthen
the semantic coupling between these modalities. By utilis-
ing the output of the CSMP module as a conditioning sig-
nal within the diffusion-based gesture-synthesis model, the
system can generate co-speech gestures that are human-like
and semantically aware, thereby improving the quality and
appropriateness of the generated gestures to the spoken con-
tent. The CSMP module requires word-level timestamps,
which is why forced-alignment was performed in Sec. 3.1.3.

Since this paper is focused on multimodal synthesis from
data where no interlocutor is present or recorded (i.e., not
back-and-forth conversations), interlocutor-related inputs
were removed from the architecture. The input is thus an
audio track with time-aligned text transcripts. We used the
pre-trained weights from [18] for the CSMP module and re-
trained the diffusion-based gesture model to comply with

the change of input, using the same architecture and learn-
ing rate as in the paper. The training was done using two
NVIDIA RTX3090 GPUs (194k updates, each with batch
size 60) on the subset of the Talking With Hands (TWH)
dataset [50] provided in the GENEA 2023 Challenge [45].
We used the trained system to generate text-and-audio-
driven gestures for the 8173 previously transcribed syn-
thetic speech utterances, and used Autodesk MotionBuilder
after synthesis to retarget the output motion to the skele-
ton of the TSGD2 data and visualiser in Sec. 4.1. While
the synthesised motion encompasses the full body (without
fingers), we only consider upper-body motion in this work.
Compared to conventional conditioning approaches where
audio is represented using mel-spectrograms, the speaker-
independent data2vec embeddings in the CSMP module are
expected to better handle the differences between natural
and synthetic voices during synthesis, thus making it fea-
sible to generate large amounts of gesture data based on
synthetic speech without undue degradations due to domain
mismatch. This data was used to train the different multi-
modal synthesis systems considered in our experiments.

3.2. Proposed multimodal synthesis system
The current state of the art in joint speech-and-gesture syn-
thesis is Match-TTSG [64], a non-autoregressive model
which uses conditional flow matching (OT-CFM) [52] to
learn Ordinary Differential Equations (ODEs) with more
linear vector fields than continuous-time diffusion models
[86] create. Such simpler vector fields offer advantages for
easier learning and faster synthesis.

We extend the Match-TTSG framework in three ways:
1. Probabilistic instead of deterministic duration mod-

elling, which can benefit deep generative NAR TTS [38].
2. Additional prosody-prediction modules, which are

widely used in NAR TTS [79, 118].
3. A speaker-identity input, as necessary for pre-training on

the multispeaker data in the large synthetic training set.
We call the resulting system MAGI for Multimodal Audio
and Gesture, Integrated; see Fig. 2 for a diagram.

For (1), we augment the original Match-TTSG architec-
ture with a probabilistic duration predictor based on OT-
CFM, as introduced in [49], to learn distributions over
speech and gesture durations. This is trained jointly with
the rest of the system. It replaces the deterministic duration
predictor in Match-TTSG, inherited from [26, 37, 65, 72,
79, 118], and uses the same network architecture.

To learn better prosody correlations and enable control
over the output, we drew inspiration from [79, 118] and
incorporated two prosody-predictor modules into our sys-
tem: one for pitch prediction and one for energy prediction,
both using the same architecture and hyperparameters as the
variance adaptor in [79]. Such prosody predictors improve
the synthesis as they enable the model to learn a less over-
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Figure 2. Schematic overview of the proposed MAGI architecture and its prosody predictor.

smoothed representation, thereby enhancing the variability
of the generated output by conditioning the synthesis pro-
cess on additional prosodic features [80]. The pitch of the
training data utterances was extracted using the PyWorld
wrapper for the WORLD vocoder4 with linear interpolation
applied in unvoiced segments to achieve continuous pitch
contours for the entire utterances. We employed a bucket-
ing approach similar to [79], separately for pitch and energy,
to turn predicted continuous values into embedding vectors
to be summed with the text-encoder output vectors. How-
ever, in contrast to [79], we performed token-level predic-
tion instead of frame-level prediction for the two prosodic
properties, since it has been stated5 that this improves the
synthesis whilst reducing memory consumption.

Like in [72], Match-TTSG includes a projection layer
that maps the text-encoder output vectors onto a predicted
average output vector per token (sub-phone). These aver-
ages are used for the so-called prior loss in the monotonic
alignment search. The process of sampling the output fea-
tures (i.e., the flow-matching decoder) is also conditioned
on these predicted average vectors. However, the latter can
introduce an information bottleneck, since averages do not
include information about variance, correlations, or higher
moments of the output distribution. To improve information
flow we instead condition the MAGI decoder directly on the
last layer of the text-encoder, prior to the projection layer.

Finally, we added a speaker embedding for multispeaker
synthesis. Specifically, we used a one-hot speaker vector
to represent the 16 different speakers in the synthetic train-
ing data. This vector was concatenated to other inputs at
multiple stages of the synthesis process, including the text
encoder, prosody predictors and decoder. The idea with this
was to minimise information loss and ensure coherent out-
put across different speaker identities. Since the concate-
nated vectors only have 16 elements, the impact on model

4https://pypi.org/project/pyworld/
5https://github.com/ming024/FastSpeech2?tab=

readme-ov-file#implementation-issues

parameter count is small (an increase of a few thousand).

4. Experiments
This section experimentally compares our proposed training
method and architecture with the previous state-of-the-art
method Match-TTSG [64]. Since this is a synthesis work,
the gold standard approach to evaluation – and thus the fo-
cus of our experimental validation – is subjective user stud-
ies. The experiments closely follows those in previous joint
synthesis works [63, 64], which in turn follows established
practices in speech [33] and gesture evaluation [45].

4.1. Data and systems
To test the effectiveness of our method we carried out 3 dif-
ferent subjective evaluations with systems trained on Trinity
Speech-Gesture Dataset II (TSGD2) [23], a dataset contain-
ing 6 hours of multimodal data: recordings of time-aligned
44.1 kHz audio coupled with 120 fps marker-based 3D mo-
tion capture, in which a male native speaker of Hiberno-
English discusses a variety of topics whilst gesturing freely.
The same train-test split of the data was used as in [63],
with around 4.5 hours of training data – much less than the
38 hours of synthetic multimodal data we created.

We trained Match-TTSG (MAT) containing 30.2M pa-
rameters and MAGI (MAGI, 31.6M parameters) for 300k
steps on only the TSGD2 data, and refer to these conditions
MAT-T and MAGI-T respectively. We also took the same
two architectures (albeit with one-hot speaker vectors for
Match-TTSG) and first pre-trained them for 200k updates
on the synthetic multispeaker data, followed by fine-tuning
for 100k updates on our target dataset, TSGD2. We refer to
these as MAT-FT and MAGI-FT. Output samples for held-
out sentences were synthesised using 100 neural function
evaluations (NFEs; equivalent to number of Euler-forward
steps used by the ODE solver) for audio-and-motion syn-
thesis, whilst 10 NFEs were used for the preceding stochas-
tic duration modelling, since it is lower-dimensional and
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converged more rapidly. Training and synthesis were per-
formed on NVIDIA RTX 3090 GPUs with batch size 32.

15 utterances from the held-out set were used to evaluate
each modality individually. We used pre-trained Univer-
sal HiFi-GAN [40] to generate vocoded but otherwise nat-
ural speech referred to as NAT. We used the same vocoder
to generate waveforms from the output mel spectrograms
synthesised by the trained multimodal-synthesis systems,
while Blender was used to render the motion representa-
tions into 3D avatar video, using exactly the same upper-
body avatar and visualiser as in [63, 65]. The motion data
was represented as rotational representation using exponen-
tial maps [25] of 45-dim pose vectors and were downsam-
pled to 86.13 fps using cubic interpolation to match the
frame rate of the mel-spectrograms.

4.2. Evaluation setup
To gain an objective insight into the intelligibility of the
synthetic speed, we synthesised the test set sentences from
TSGD2, which we then passed to Whisper ASR, to use the
Word Error Rate (WER) results as an indicator of their in-
telligibility. For subjective evaluation, user studies are the
gold standard when evaluating synthesis methods. Follow-
ing [63], we used comprehensive evaluation, conducting in-
dividual studies of each generated modality. We addition-
ally evaluate the appropriateness of the modalities in terms
of each other, to determine how well they fit together.

In our studies, participants had an interface with five
unique response choices, with the exact details varying
slightly across different investigations. All participants
were native English speakers recruited through the Pro-
lific crowdsourcing platform. Each test was designed to
last around 20 minutes and participants were compensated
4 GBP (12 GBP/hr) for participation. For the purpose of
statistical examination, we converted responses into numer-
ical values. These values were then analysed for statistical
significance at the 0.05 threshold using pairwise t-tests.

4.2.1 Speech-quality evaluation

To assess perceived naturalness of the synthesized speech,
we employed the Mean Opinion Score (MOS) testing ap-
proach, drawing inspiration from the Blizzard Challenge
for text-to-speech systems [73]. Participants were asked,
“How natural does the synthesized speech sound?”, rating
their responses on a scale from 1 to 5, where 1 represented
“Completely unnatural” and 5 indicated “Completely natu-
ral.” The intermediary values of 2 to 4 were provided with-
out textual descriptions. Each participant evaluated 15 stim-
uli per system and 4 attention checks resulting in a total of
525 responses per condition by 35 participants. Fine-tuning
with synthetic data led to performance enhancements for
both MAGI and MAT, reducing the WER from 13.28% in

MAGI-T to 9.29% in MAGI-FT, and from 12.26% in MAT-
T to 8.35% in MAT-FT.

4.2.2 Motion-quality evaluation

We evaluate motion quality using video stimuli that only vi-
sualised motion, without any audio, in order to have an in-
dependent assessment of motion quality. This ensures that
ratings are not affected by speech and follows the practice
of recent evaluations of gesture quality [34, 78]. Similarly
to the speech evaluation, participants were asked “How nat-
ural and humanlike the gesture motion appear?”, and gave
responses on a scale of 1 (“Completely unnatural”) to 5
(“Completely natural”). The number of stimuli and atten-
tion checks were identical to the speech-only evaluation.

4.2.3 Speech-and-motion appropriateness evaluation

We finally evaluated how appropriate the generated speech
and motion were for each other, whilst controlling for the
effect of their individual quality following [34, 46, 64, 78,
110]. For each speech segment and condition, we created
two video stimuli: one with the original video and sound,
and the other combining the original speech audio with mo-
tion from a different video clip, adjusting the motion speed
to align with the audio duration. Both videos feature com-
parable motion quality and characteristics from the same
condition, but only one video’s motion is synchronised with
the audio track, without indicating which video is which.

The test inquired which character’s motion most accu-
rately matched the speech in rhythm, intonation, and mean-
ing. Participant ability to identify the correctly synchro-
nised video indicates a strong rhythmic and/or semantic link
between generated motion and speech. Following [63] we
opted for five response choices instead of the typical three
for better resolution. Options were “Left is much better”,
“Left is slightly better”, “Both are equal”, “Right is slightly
better”, “Right is much better”. For the purposes of analy-
sis, numbers in the range of �2 to 2 were assigned to each
response, as in [63], with �2 representing the participant’s
preference for the mismatched stimulus and 2 the matched
stimulus. Participants reviewed motions from 14 of the 15
segments, displayed as 7 screens of pairs of videos, plus
two audio and two video attention checks, covering all con-
ditions for these segments. 70 persons completed the test,
yielding 490 responses per system.

5. Results and discussion
Our investigation revealed several key insights into the ef-
fect of pre-training and architectural modifications. Pre-
training on synthetic data markedly enhanced the quality
of synthesised speech, though adjustments to the architec-
ture did not significantly alter its naturalness. Despite this,
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Table 1. Result of three evaluations showing Mean Opinion Scores
(MOS) with 95% confidence intervals.

Condition Speech Gesture Speech & gesture

NAT 4.30±0.06 4.10±0.08 1.10±0.10

MAT-T 3.43±0.10 3.28±0.11 0.52±0.10
MAT-FT 3.56±0.10 3.39±0.09 0.56±0.09

MAGI-T 3.44±0.09 3.11±0.10 0.51±0.09
MAGI-FT 3.62±0.08 3.52±0.11 0.60±0.09

both MAGI-FT and MAT-FT yielded higher Mean Opinion
Scores (MOS), albeit without statistical significance. No-
tably, MAGI facilitated greater control over pitch and en-
ergy – a feature absent from Match-TTSG. However, de-
spite improvements, the synthesised speech did not achieve
the level of naturalness present in the human-recorded
speech from the held-out set, see Table 1.

In terms of synthesised gestures, MAGI outperformed
other conditions in human-likeness. However, they re-
mained inferior to human-motion reference data. The influ-
ence of synthetic data pre-training and the proposed model’s
architecture on gesture synthesis presented a more nuanced
picture. Specifically, pre-training on synthetic data only sig-
nificantly benefited the proposed model, and, intriguingly,
the MAGI enhanced gestures in a larger dataset but had
the opposite effect on a smaller dataset. This discrepancy
might stem from the prosody predictors in our model be-
ing trained on per-phone rather than per-frame data, lead-
ing to a scarcity of training data for these predictors in
smaller datasets. However, with adequate pre-training on
expansive datasets, these models demonstrated better con-
vergence. These findings align with prior speech evalua-
tions, where the novel architecture’s advantages were more
pronounced following pre-training on a larger dataset.

Further, no model matched the cross-modal appropriate-
ness found in multimodal human recordings, echoing the
challenges observed in unimodal gesture synthesis where
recent evaluations did not approach the appropriateness of
human data [46, 110]. Although MAGI pre-trained on
synthetic data showcased superior performance, it did not
significantly exceed the existing benchmarks in synthesis
systems. This observation may be attributed to the inher-
ent difficulty in discerning significant differences in appro-
priateness, as opposed to naturalness or human-likeness,
and the comparison against a robust baseline without al-
terations that directly influence cross-modal synthesis as-
pects. Lastly, the cross-modal aspects might conceivably
be less accurately represented in synthetic datasets created
from unimodal synthesisers trained on non-cohesive data.

5.1. Pitch and energy control
As stated, the proposed multi-stage architecture with sepa-
rate prosody predictors allows for modifying or substituting
the pitch and energy contours before synthesis. This enables
direct control of prosodic properties of the speech, with the
synthesis process having the option to adjust the gestures to
match. On our demo page shivammehta25.github.io/MAGI/
we provide example videos showing the effect that modi-
fying (scaling) the pitch and energy contours returned by
the predictors has on the synthesised output. One can
observe that reducing the pitch seems to promote creaky
voice, which makes sense from a speech-production per-
spective and fits earlier findings from autoregressive TTS
on spontaneous-speech data [48].

6. Conclusion and future work
We have described improvements to the joint and simulta-
neous multimodal synthesis of speech audio and 3D gesture
motion from text. Specifically, we propose training on data
synthesised by a chain of strong unimodal synthesis systems
to address the shortage of multimodal training data. We also
augment the state-of-the-art architecture for speech-and-
gesture synthesis, Match-TTSG, with a stochastic duration
model, TTS-inspired prosody predictors for controllability,
and the ability to perform multispeaker synthesis. The fi-
nal model, called MAGI, is radically smaller than those that
generated the synthetic data. Experiments confirm that pre-
training on synthetic data significantly improved unimodal
speech and gesture quality. The architectural improvements
reaped benefits when pre-training on large amounts of syn-
thetic data, with the added prosody control having a clear
effect on the audio output.

Relevant future work includes investigating alternative
options for mitigating the shortage of multimodal training
data, such as pre-training on data lacking one or more of
the modalities; incorporating RL-based approaches, par-
ticularly effective for generation of situated gestures as in
[19]; or (following the CSMP methodology [18]) leverag-
ing various self-supervised representations trained on large
amounts of data. Possible architectural extensions include
flow matching for pitch and energy, and similar control over
motion properties such as gesture radius and symmetry [5].

7. Acknowledgements
This work was partially supported by the Wallenberg AI,
Autonomous Systems and Software Program (WASP)
funded by the Knut and Alice Wallenberg Foundation, by
the Swedish Research Council (VR) projs. 2023-05441
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