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Figure 1. Multi-track timeline control: We introduce a new problem setting for text-driven motion synthesis, where the input consists of parallel

tracks allowing simultaneous actions, as well as continuous temporal intervals enabling sequential actions. A long and complex motion can be

generated (top) given the structured input of multiple simple textual descriptions, each corresponding to a temporal interval (bottom).

Abstract

Recent advances in generative modeling have led to promis-

ing progress on synthesizing 3D human motion from text, with

methods that can generate character animations from short

prompts and specified durations. However, using a single text

prompt as input lacks the fine-grained control needed by anima-

tors, such as composing multiple actions and defining precise

durations for parts of the motion. To address this, we intro-

duce the new problem of timeline control for text-driven motion

synthesis, which provides an intuitive, yet fine-grained, input

interface for users. Instead of a single prompt, users can specify

a multi-track timeline of multiple prompts organized in tem-

poral intervals that may overlap. This enables specifying the

exact timings of each action and composing multiple actions

in sequence or at overlapping intervals. To generate compos-

ite animations from a multi-track timeline, we propose a new

test-time denoising method. This method can be integrated with

any pre-trained motion diffusion model to synthesize realistic

motions that accurately reflect the timeline. At every step of

denoising, our method processes each timeline interval (text

prompt) individually, subsequently aggregating the predictions

with consideration for the specific body parts engaged in each

action. Experimental comparisons and ablations validate that

our method produces realistic motions that respect the semantics

and timing of given text prompts.

*Work done during an internship at NVIDIA

1. Introduction

Motivated by applications in video games, entertainment,

and virtual avatar creation, recent work has demonstrated

substantial progress in learning to generate 3D human mo-

tion [27, 37, 44, 60]. Generating motions from text descriptions

is of particular interest; it has the potential to democratize anima-

tion with a natural language interface that is intuitive for beginner

and expert users alike. To this end, several methods have been

proposed that synthesize reasonable character animations given

a single text prompt and fixed duration as input [38, 53, 65].

While these methods are a promising first step towards faster

and more accessible animation interfaces, they lack the precise

control that is crucial for many animators. Consider the input

prompt (see Fig. 2d): “A human walks in a circle clockwise,

then sits, simultaneously raising their right hand towards the

end of the walk, the hand raising halts midway through the

sitting action.” Due to a lack of representative training data,

prior work struggles with such complex text prompts [38, 53].

Namely, the prompt includes temporal composition [4] where

multiple actions are performed in sequence (e.g., walking

then sitting), along with spatial composition [5] where several

actions are performed simultaneously with differing body parts

(e.g., walking while raising hand). Furthermore, such lengthy

prompts quickly become unwieldy for the user and, despite

their detailed descriptions, are still ambiguous with respect to

the timing and duration of the constituent actions.

To improve controllability, we propose the new problem of

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
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A person is walking in a circle clockwise and 
then sitting down while raising the right hand.

(a) Traditional text input (b) Temporal composition

(c) Spatial composition (d) Multi-track timeline control

Walking in a circle clockwise and then sitting down

Raising the right hand

Walking in a circle clockwise Sitting down

Raising the right hand

Walking in a circle clockwise  
while raising the right hand

Sitting down  

while raising  

the right hand

Figure 2. Text-driven motion synthesis tasks: Our framework

generalizes (a) traditional text-to-motion synthesis given one text and

one duration, (b) temporal composition given a sequence of texts for

non-overlapping intervals, and (c) spatial composition given a set of

texts for a single interval. (d) Multi-track timeline control uses a set

of texts for arbitrary intervals, allowing fine-grained control over the

timings of several complex actions.

multi-track timeline control for text-driven 3D human motion

synthesis. In this task, the user provides a structured and

intuitive timeline as input (Fig. 1), which contains several

(potentially overlapping) temporal intervals. Each interval

corresponds to a precise textual description of a motion. As

shown in Fig. 2d, the complex example prompt discussed

earlier becomes simple to specify within the timeline, and

allows animators to control the timing of each action. Such a

timeline interface is already common in animation and video

editing software, and is analogous to control interfaces that

have recently emerged from the text-to-image community [64],

e.g., image generation from a segmentation mask.

Multi-track timeline control for text-driven motion synthesis

is a generalization of several motion synthesis tasks, and

therefore brings many challenges. In particular, the multi-track

timeline input can achieve (see Fig. 2):

• Text-to-motion synthesis [18, 38] – specifying a single interval

(i.e., duration) with one textual description,

• Temporal composition [4, 66] – a sequence of textual

descriptions corresponding to non-overlapping intervals,

• Spatial (body-part) composition [5] – a set of text prompts

performed simultaneously with differing body parts.

Solving this task is difficult due to the lack of training data con-

taining complex compositions and long durations. For example,

a timeline-controlled model must handle the multi-track input

containing several prompts, rather than a single text description.

Moreover, the model must account for both spatial and temporal

compositions to ensure seamless transitions, unlike prior work

that has addressed each of these individually. The timeline also

relaxes the assumption of a limited duration (<10 sec) made

by many recent text-to-motion approaches [11, 53, 65].

To address these challenges, we introduce a method for

Spatio-Temporal Motion Collage (STMC). Our method copes

with the lack of appropriate training data by operating at test

time, leveraging a pre-trained motion diffusion model such

as off-the-shelf MDM [53] or MotionDiffuse [65]. At each

denoising step, STMC first applies the diffusion model on

each text prompt in the timeline independently to predict a

denoised motion for the corresponding intervals. Our key

insight is to stitch together such independent generations

in both space and time before continuing to denoise. For

spatial compositions, automatic body part associations [5]

allow coherently concatenating predictions together. Score

arithmetic [66] is used to ensure smooth transitions for temporal

compositions. To further improve the performance of STMC,

we introduce MDM-SMPL, which makes several improvements

to prior motion diffusion models [53], including directly using

the SMPL [34] body representation.

The performance of STMC on timeline control for

text-driven motion synthesis is verified through comprehensive

comparisons and a perceptual user study. In summary, the

central contribution of this work consists of: (i) the new problem

of multi-track timeline control for text-driven 3D human motion

synthesis, and (ii) a novel test-time technique, STMC, that

effectively structures the denoising process to ensure faithful

execution of all prompts in a timeline. As a side contribution,

(iii) we upgrade MDM to directly support the SMPL body

representation instead of skeletons, and reduce runtime through

fewer denoising steps. Code is released on the project page.

2. Related Work

Human motion synthesis. A large body of work in both vi-

sion and graphics has been dedicated to generating 3D hu-

man motions [70]. This generation process can be uncon-

ditional [36, 56] or conditioned on actions [10, 17, 37], mu-

sic [32, 50, 52, 57], speech [3, 69], goals [30, 51, 60], previous

motion [13, 15, 44, 62] (i.e., future motion prediction), sce-

nes/objects [21, 31, 58, 59], and text [1, 2, 11, 16, 19, 29, 53,

65]. Technical approaches vary from early statistical models

[8, 15] to modern generative models like VAEs [20, 37, 38],

GANs [6, 12, 49, 61], normalizing flows [22, 57], and diffu-

sion [11, 29, 30, 60, 68]. Our work is most related to recent

text-conditioned diffusion models [53, 65], however we solve

a new problem where the model is conditioned on a timeline

containing several text inputs instead of a single prompt.

Motion composition. Due to the lack of training data, a par-

ticular challenge for action and text-conditioned motion gen-

eration is to synthesize compositional motions. Several works

[4, 41, 66] focus on generating motions from a sequence of text

prompts and durations, i.e., temporal compositions. TEACH [4]

autoregressively generates one motion (per text prompt) at a

time, conditioning the next motion in the sequence with the

previous one. EMS [41] proposes a two-stage approach, by

first generating each action separately and then merging them

through a subsequent network. Diffusion models EDGE [54]

and PriorMDM [48] ensure consistency between adjacent mo-

tions by enforcing temporal constraints at transitions. Our ap-

proach to temporal composition is based on DiffCollage [66],

which stitches motions (or images) together throughout the de-

noising process via score arithmetic at overlapping transitions.

Other work generates motions from a set of texts to be

executed at the same time, i.e., spatial (body-part) composition.

SINC [5] labels ground truth motion capture (mocap) sequences

with corresponding body parts by prompting GPT-3 [9].
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These labels are used to create a synthetic dataset of motions

stitched together from mocap sequences with compatible

body parts, thereby improving performance of VAE-based

3D motion generation methods [38] for spatial composition.

MotionDiffuse [65] proposes a noise interpolation method to

control different body part motions separately. Our approach,

STMC, takes inspiration from SINC [5] by using body part

labels to stitch motions together during test-time denoising.

Overall, our problem of timeline-conditioned generation

generalizes temporal and spatial composition, and STMC must

tackle both issues simultaneously, unlike most prior work.

Controllable motion diffusion. Following success in im-

age [43, 46, 47], video [26], and 3D [33, 40, 63] domains,

diffusion has become a useful approach to generate high-

quality 3D human motions [3, 28, 54], especially from text

inputs [11, 14, 53, 65]. Some works focus on improving the

controllability of motion diffusion models, e.g., by enabling

temporal [48, 66] and spatial [65] composition of text prompts.

Other controls such as following specific keyframe poses, joint

trajectories, and waypoints have also been achieved using a mix

of test-time diffusion guidance [28, 30, 45], in-painting [48, 53],

and direct conditioning [60]. We focus on making text-to-

motion generation more controllable by handling several text

prompts in a fine-grained timeline format through a composi-

tional denoising process.

3. Human Motion Synthesis from Timelines

We first formulate the new problem setup of multi-track

timeline control (Sec. 3.1), then propose a motion denoising

strategy to handle timeline inputs (Sec. 3.2 and Sec. 3.3), and

finally summarize our improved diffusion model (Sec. 3.4).

3.1. Timeline Control Problem Formulation

Inputs. As illustrated in Fig. 1, the multi-track timeline enables

users to define multiple intervals, each linked to a natural lan-

guage prompt describing the desired human motion. For the

jth prompt in the timeline, we represent its temporal interval as

[aj,bj] and the corresponding prompt as Cj. The intervals are

arranged in a multi-track layout on the timeline, allowing for

overlaps. Both the duration of each interval and of the overall

timeline are variable, and users can add an arbitrary number of

tracks (rows) to the timeline (although, in practice, a character

can most often perform a handful of actions simultaneously).

Outputs. The goal is to generate a 3D human motion that fol-

lows all the text instructions at the specified intervals. A human

motion x lasting N timesteps is represented as a sequence of

pose vectors x=(x1,...,xN) with each pose xi∈R
d. Several

recent works [53, 65] use the pose representation from Guo

et al. [18] with d=263, which contains root velocities along

with local joint positions, rotations, and velocities. Other pose

representations like SMPL [34] can also be used (see Sec. 3.4).

3.2. Background: Motion Diffusion Models

Our generation method (Sec. 3.3) leverages a pre-trained motion

diffusion model such as MDM [53] or MotionDiffuse [65]

trained on single text prompts, which we briefly review here.

These methods follow a denoising diffusion scheme and

synthesize animations through iterative denoising of a noisy

pose sequence. Given a clean motion x0, a Gaussian diffusion

process is employed to corrupt the data to be approximately

N (0,I). Each step of this process is given by:

q(xt|xt−1)=N (xt;
√

1−βtxt−1,βtI) (1)

with βt defined by the noise schedule. Note the denoising step

t is not to be confused with the temporal timestep i, which

indexes the sequence of poses in the motion. In practice, one

can make sampling xt easier by using the reparameterization

trick xt=
√
ᾱtx0+

√
1−ᾱtϵ, where ϵ∼N (0,I), αt=1−βt,

and ᾱt=
∏t

s=0
αs.

Sampling from a diffusion model requires reversing this

process to recover a clean motion from random noise. While

q(xt−1|xt) is hard to compute, the probability conditioned on

x0 is tractable [25]:

q(xt−1|xt,x0)=N (xt−1;µt(xt,x0),Σt) , (2)

where

µt(xt,x0)=

√
αt(1−ᾱt−1)

1−ᾱt

xt+

√
ᾱt−1βt

1−ᾱt

x0 (3)

Σt=
1−ᾱt−1

1−ᾱt

βtI . (4)

Since xt is known at sampling time, we approximate the

reverse distribution by training a denoising model x̂θ(xt,t,C)
to estimate x0, where C is the text conditioning. This model

is trained with the simplified loss function as in Ho et al. [25]

(i.e., without the t-dependent factor):

L=Eϵ,t,x0,C∥x̂θ(xt,t,C)−x0∥22 (5)

with x0 and C sampled from a dataset of motion-text pairs,

step t sampled uniformly, and noise ϵ∼N (0,I) used to corrupt

the ground truth motion. To enable classifier-free guidance [24]

at sampling time, the text conditioning C is dropped with

some probability at each training iteration. At test time, the

sampling (reverse) process starts from random noise and

denoises iteratively for T steps to obtain a clean 3D human

motion. At each denoising step, the model is conditioned on

the single input text prompt (e.g., Fig. 2a).

3.3. STMC: Spatio­Temporal Motion Collage

STMC operates only at test time, enabling an off-the-shelf, pre-

trained denoising model to generate motion conditioned on a

multi-track timeline. At every denoising step, our method takes

as input the current noisy motion xt encapsulating the entire
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Figure 3. Overview of STMC: Before denoising, the multi-track timeline is first (a) partitioned into relevant body parts per text (using LLM-based

labeling [5]) to create body part timelines, which are then (b) extended to overlap, leading to the transition intervals used for temporal stitching per

body part with DiffCollage [66]. (c) At each denoising step, motions for each prompt are denoised independently before being combined based on the

body-part timelines. The composite motion is re-noised by samplingxt−1 fromN (µt(xt,x̂0),Σt) (as in Eq. (2)) before being passed to the next step.

timeline and outputs a corresponding clean motion x̂0. As

shown in Fig. 3c, STMC uses the denoising model to indepen-

dently predict a clean motion crop corresponding to each of the

input text prompts. These predictions are stitched together spa-

tially using body part annotations for each text prompt (Fig. 3a),

and stitched in time to ensure the clean motion smoothly spans

the entire timeline (Fig. 3b). This final composite motion be-

comes the output of the current step x̂0, which is used to sample

xt−1 with Eq. (2) and continue the denoising process. To enable

body part stitching, STMC assumes the denoiser operates on

explicit poses [53, 65], rather than in a latent space [11].

Motion cropping and denoising. The input xt at denoising

step t extends over the duration of the entire timeline. As shown

in Fig. 3c, we first temporally split the input into motion “crops”

to separately denoise each text prompt. For each interval [aj,bj],

the motion is cropped in time to x
aj:bj
t =xt[aj :bj]. The crop,

along with the text prompt Cj, is given to the denoising model

to predict a corresponding clean motion crop x̂
aj:bj
0 . Denoising

each text prompt independently gives high-quality motion from

pre-trained models since each prompt typically contains a single

action and the interval duration is reasonably short (<10 sec).

Two or more text prompts in the timeline may overlap in

time, meaning the predicted clean crops will also overlap. As

a concrete example, suppose the crops for “walking in a circle”

and “raising right hand” are overlapping, as in Fig. 3. In this

case, it is not clear which of the two generated motions should

be assigned to the overlapping region. To construct a motion that

matches both prompts, we need the leg motion from “walking

in a circle” and the right arm motion from “raising right hand”.

We therefore stitch together outputs from overlapping prompts

based on automatically labeled body parts, as detailed next.

Spatial (body-part) stitching. Spatial stitching follows

SINC [5], which proposed to combine compatible body-part

motions from mocap sequences through simple concatenation.

While SINC applies stitching only once, STMC does so at every

step of denoising, encouraging a more coherent composition

of movements by allowing the denoiser to correct any artifacts.

This is possible because the denoiser outputs explicit human

poses (i.e., we know which indices correspond to arms, legs,

etc. within the pose vector), so we can extract body-part mo-

tions from separate crops and spatially combine them to obtain

a composite motion. To achieve this, we first pre-process the

input timeline to assign a text prompt to each body part at every

timestep, thereby creating a separate motion timeline for every

body part (see Fig. 3a): left arm, right arm, torso, legs and head.

As shown in Fig. 3a, each text prompt in the multi-track

timeline is first annotated with a set of body parts involved in the

motion. This can be done automatically by querying GPT-3 [9]

as in SINC, or directly given by the user for additional creative

control. Then, each text prompt is assigned to its annotated

body parts within the corresponding time interval, which

assumes that body parts at overlapping intervals are compatible

(e.g., if a prompt is annotated with “legs”, then no other prompt

should involve legs throughout its entire interval). To fill in the

remainder of the body-part timelines where body parts have not

been annotated to a text prompt, heuristics similar to SINC are

used. Please see the Appendix B and the Fig. A.1 for full details.

Finally, during the denoising step (Fig. 3c), each crop x
aj:bj
t is

split into separated body-part motions and concatenated together

as specified by the body-part timelines to obtain the output x̂0.

Temporal stitching. Because the motion crops are denoised

independently, simple temporal concatenation of body-part mo-

tions from different text prompts will cause abrupt transitions.

To mitigate these potential artifacts, we apply DiffCollage [66]

to each body-part motion. As shown in Fig. 3b, instead of

directly denoising x
aj:bj
t for each text prompt, we denoise an

expanded time interval [aj−l,bj+l], where l is the desired over-

lap length between adjacent motion crops (e.g., fixed to 0.25
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sec). Concretely, for the temporal transition between prompts j

and k, we have x̂
aj−l:bj+l

0 and x̂
ak−l:bk+l
0 after denoising. We

then unconditionally denoise a small (0.5 sec) crop of motion

centered on the overlap between j and k to obtain x̂
uncond
0 . The

final predicted motion spanning intervals j and k is computed as

x̂0= x̂
aj−l:bj+l

0 +x̂
ak−l:bk+l
0 −x̂

uncond
0 , as depicted in Fig. 3c.

This equation derives from a factor graph representation of the

problem, as detailed in DiffCollage [66].

3.4. SMPL Support for Motion Diffusion Model

While STMC works well with off-the-shelf models [53, 65]

(see Sec. 4), we propose several practical improvements to

MDM [53] to further enhance results. Our model, MDM-

SMPL, employs a skinned human body SMPL [34]: we use

SMPL pose parameters instead of the joint rotation features in

the original pose representation of Guo et al. [18]. In contrast

to models that use the joint position outputs from the pose

representation of [18], this SMPL-based representation avoids

the need for expensive test-time optimization [7, 71] to fit

the generated motion on a SMPL body. Moreover, the local

joint rotations in SMPL, which are relative to parents in the

kinematic tree, are more amenable to body-part stitching than

root-relative joint positions. This is because any change to

a joint rotation is propagated to all children in the kinematic

tree, unlike root-relative joint positions which may not be

coherent when simply concatenated together. Additional

improvements include lowering the number of diffusion steps

to T=100 from 1000 to substantially speed up sampling, and

various architectural changes. We provide more details on

MDM-SMPL in Appendix D, together with its performance on

the standard HumanML3D text-to-motion synthesis benchmark.

4. Experiments

We first present the data (Sec. 4.1) and the evaluation protocols

(Sec. 4.2) used in the experiments. We then show comparisons

with baselines quantitatively (Sec. 4.3) and with a perceptual

study (Sec. 4.4), followed by qualitative results (Sec. 4.5). We

conclude with a discussion of the limitations (Sec. 4.6).

4.1. Datasets

HumanML3D [18] is a text-motion dataset that provides tex-

tual descriptions for a subset of the AMASS [35] and Human-

Act12 [17] motion capture datasets. It consists of 44970 text

annotations for 14616 motions. This dataset is used to train

all diffusion models used in our experiments. For MDM [53]

and MotionDiffuse [65], we use publicly available models pre-

trained on the released version of HumanML3D with the origi-

nal motion representation from Guo et al. [18]. Consequently,

these methods require test-time optimization to obtain SMPL

pose parameter outputs. For training our MDM-SMPL diffu-

sion model, which is designed to directly generate SMPL pose

parameters, we re-process the dataset and exclude the Human-

Act12 subset as SMPL poses are not available for this dataset.

Multi-track timeline (MTT) dataset. To properly evaluate our

new task, we introduce a new challenging dataset of 500 multi-

track timelines. Each timeline in the dataset is automatically

constructed and contains three prompts on a two-track timeline

(e.g., Fig. 2d). To construct these timelines, we first manually

collect a set of 60 texts covering a diverse set of “atomic” ac-

tions (e.g., “punch with the right hand”, “jump forward”, “run

backwards”, see Appendix C for the full list), and annotate the

involved body parts for each text. To serve as ground truth for

computing evaluation metrics (Sec. 4.2), we also select motion

samples from AMASS that correspond to each text. Based on

the atomic texts, we automatically generate timelines containing

three prompts and two tracks (rows). For each timeline, the first

track is filled with two consecutive prompts sampled from the

set of texts and given randomized durations. A third random

text with complementary body-part annotations is then placed

in the second track at a random location in time.

The main reasons for restricting the evaluation to three

prompts are (i) to keep the cognitive load for users low in the

perceptual study, subsequently increasing the reliability of the

results, and (ii) to construct a minimal setup where we can fairly

compare against baselines in a controlled setting, eliminating

confounding factors such as the number of prompts. Though

these timelines contain only three prompts, they already pose

a significant challenge (see Sec. 4.3). Examples of timelines

in the dataset are provided in Fig. A.2 and qualitative results

beyond three prompts can be found in the supplementary video.

4.2. Evaluation Metrics

Given the novelty of the task, identifying relevant metrics to

evaluate different methods is crucial. Instead of relying on a

single metric, we disentangle the evaluation of semantic cor-

rectness (how faithful individual motion crops are to the textual

descriptions) from that of realism (e.g., temporal smoothness).

Semantic metrics. Firstly, we evaluate the alignment between

the generated motion and the text description within the speci-

fied intervals on the timeline, which we term “per-crop semantic

correctness”. To assess this, we utilize the recent text-to-motion

retrieval model TMR [39]. Similar to how CLIP [42] functions

for images and texts, TMR provides a joint embedding space

that can be used to determine the similarity between a text and

motion. Using TMR, we encode each atomic text prompt and

corresponding motion from our MTT dataset to obtain ground

truth text and motion embeddings, respectively. Each generated

motion crop is also embedded and the TMR-Score, a measure of

cosine similarity ranging from 0 to 1, is calculated between the

generated motion embedding and the ground truth. We report

both motion-to-text similarity by comparing against the ground

truth text embedding (TMR-Score M2T) and motion-to-motion

similarity against the ground truth motion embedding (TMR-

Score M2M). Such embedding similarity measures are akin to

BERT-Score [67] for text-text, CLIP-Score [23] for image-text,

and more recently TEMOS-Score [4] for motion-motion similar-

ity. Since TMR is trained contrastively, its retrieval performance
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is better than TEMOS [38] which only trains with positive pairs,

leading to our decision to instead use TMR-Score. Moreover,

its embedding space is optimized with cosine similarity, making

the values potentially more calibrated across samples.

Ideally, the TMR-Score M2T between a generated motion

crop and the corresponding input text prompt should surpass

those of other texts. Hence, we also measure motion-to-text

retrieval metrics (as in [18]) including the frequency of the

correct text prompt being in the top-1 (R@1) and top-3 (R@3)

retrieved texts from the entire set of atomic texts.

Realism metrics. Secondly, we evaluate the realism of the gen-

erated motions, which includes transitioning smoothly between

actions. While the Frechet Inception Distance (FID) between

generated and ground truth motion in a learned feature space

(e.g., TMR) is a common metric for quality, the embedding

space of TMR is not trained on motions that are longer than 10

sec, and may therefore be unreliable for longer motions. Hence,

we follow DiffCollage [66] and compute the FID+ to evaluate

transitions. The FID+ metric measures FID based on 5 random

5-second motion crops from each timeline-conditioned motion

generation. Following TEACH [4], we also measure the tran-

sition distance as the Euclidean distance (in cm) between the

poses in two consecutive frames around the transition time. We

choose to compute this distance in the local coordinate system

of the body to more effectively capture transitions for individual

body parts, rather than being dominated by global motion. This

metric is sensitive to abrupt pose changes, and a motion should

not have high transition distance to remain realistic.

Perceptual study. Since no quantitative metric can fully cap-

ture the subtleties of human motion, we also conduct perceptual

studies, where human raters on Amazon Mechanical Turk judge

the quality of the generated motions [55]. To compare two

generation methods, raters are presented with two videos of

generated motions side-by-side rendered on a skeleton. The

multi-track timeline is also visible with an animated bar that

progresses along the timeline as the videos play. Users are

asked which motion is more realistic and which one is better at

following the text in the timeline; they may choose one of the

two motions or mark “no preference”. The studies presented in

Sec. 4.3 are performed on a set of 100 motions with multiple

raters judging each pair. The preference for each video is deter-

mined by a majority vote from all raters. Responses are filtered

for quality by using three “warmup” questions at the start of

each 15-question survey along with two “honeypot” examples

with objectively correct answers. The honeypot examples test a

rater’s understanding of the task: one example shows a motion

with obviously severe limb stretching (realism understanding

test) and the other displays a motion generated from a different

timeline than the one displayed (timeline understanding test). If

a rater fails to answer either of these questions correctly, all of

their responses are discarded.

4.3. Quantitative Comparison with Baselines

We apply our STMC test-time approach on the pretrained

diffusion models of MotionDiffuse [65], MDM [53], and

MDM-SMPL (ours). For each denoiser, we establish several

strong baselines by repurposing existing methods to the

timeline-conditioned generation task for comparison. Results

are shown in Tab. 1. Next to each method, the table indicates

how many tracks the input timelines have (#tracks) and how

many text prompts can be contained in a track (#crops). Next,

we introduce each baseline and analyze results.

Single-text input [53, 65] baseline. The simplest approach

to condition motion diffusion on a timeline is to convert the

timeline into a single text description, which aligns with the

model’s training input format (e.g., Fig. 2a). Given that our

timeline dataset is consistently comprised of three motions (A,

B, and C), we formulate single-text prompts as follows: “A and

then B while C”. While timing information can be included

in the prompt, e.g., “A for 4 seconds”, this is out-of-distribution

for models trained on HumanML3D, leading to worse results.

This method parallels the baseline strategies of SINC [5] for

spatial composition and TEACH [4] for temporal composition.

As shown for each denoiser in Tab. 1, this approach is

ineffective for both semantic correctness metrics and realism.

Since these models cannot generate motions longer than 10

sec and there is no timing information in the prompt, for this

experiment, outputs are limited to a maximum duration of

10 sec and semantic correctness metrics are reported over the

entire duration of the motion rather than per-crop. The poor

performance is a result of the models not being trained on

the types of complex compositional prompts that result from

collapsing the timeline to a single text description.

DiffCollage [66] baseline. Instead of converting the multi-track

timeline into a single prompt, one can collapse it into a single

track timeline containing a series of consecutive text prompts,

i.e., transform the problem to be one of temporal composition.

DiffCollage can then be used to temporally compose the se-

quence of actions. For example, the timeline in Fig. 2d would

be split into [“walking in a circle,” “walking in a circle while

raising the right hand,” “sitting down while raising the right

hand,” “sitting down”]. Note that, unlike the single-text baseline,

this splitting preserves the timings (#crops) in the timeline.

While the DiffCollage baseline generally produces smooth

transitions and reasonable FID scores, the semantic accuracy

is consistently worse than STMC. This is due to the complex

spatial compositions within the prompts after collapsing the time-

line into a single track, which models trained on HumanML3D

struggle with. In contrast, STMC uses body-part stitching

throughout denoising to compose actions from simpler prompts.

SINC [5] baseline. Rather than performing body-part stitching

iteratively at every denoising step, an alternative approach is

to stitch body motions together only once after all crops have

finished the entire denoising process. This is most similar to

SINC and forms the basis for two baselines that accept the full

multi-track timeline as input, similar to STMC.
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Input type Per-crop semantic correctness Realism

Method
#tracks #crops R@1 ↑ R@3 ↑ TMR-Score ↑

FID ↓ Transition

M2T M2M distance ↓
Ground truth - - 55.0 73.3 0.748 1.000 0.000 1.5

MotionDiffuse [65] Single Single 10.9 21.3 0.558 0.546 0.621 1.9

DiffCollage Single Multi 22.6 43.3 0.633 0.612 0.532 4.6

SINC w/o Lerp Multi Multi 23.8 45.9 0.656 0.630 0.554 3.8

SINC w/ Lerp ′′ ′′ 24.9 46.7 0.663 0.632 0.552 1.0

STMC (ours) ′′ ′′ 24.8 46.7 0.660 0.632 0.531 1.5

MDM [53] Single Single 9.5 19.7 0.556 0.549 0.666 2.5

DiffCollage Single Multi 24.9 42.3 0.636 0.623 0.600 2.2

SINC w/o Lerp Multi Multi 21.5 41.8 0.629 0.626 0.638 10.2

SINC w/ Lerp ′′ ′′ 23.3 43.1 0.634 0.628 0.630 2.8

STMC (ours) ′′ ′′ 25.1 46.0 0.641 0.633 0.606 2.4

MDM-SMPL Single Single 12.1 23.5 0.573 0.578 0.484 1.8

DiffCollage Single Multi 29.1 49.7 0.675 0.656 0.446 1.2

SINC w/o Lerp Multi Multi 32.3 50.5 0.676 0.667 0.463 4.2

SINC w/ Lerp ′′ ′′ 31.8 51.0 0.679 0.668 0.457 1.2

STMC (ours) ′′ ′′ 30.5 50.9 0.675 0.665 0.459 0.9

Table 1. Quantitative baseline comparison: Our method STMC is compared to several strong baselines when using three different denoising

models. The single-text and DiffCollage baselines struggle to handle complex compositional prompts that results from collapsing the timeline

down to a single track. The SINC baselines produce reasonable semantic accuracy by denoising prompts independently as in STMC, but cause

abrupt or unnatural transitions with higher transition distance (underlined) or FID.

Figure 4. Perception study results: Our STMC method is preferred

over baselines by human raters for both motion realism and semantic

accuracy. (Left) Comparison against the strong SINC with Lerp

baseline. (Right) Comparison against the DiffCollage baseline.

MDM [53] is used as the denoiser in these experiments.

SINC w/o Lerp concatenates body part motions at the end

of denoising without considering temporal transitions. As

a result, transitions tend to be abrupt as evidenced by high

transition distances in Tab. 1 and occasional “teleporting” limbs

in qualitative results. To mitigate this, SINC w/ Lerp employs

linear interpolation (lerp) at transitions for smoother results,

similar to the approach in TEACH [4]. Though this leads

to smoothness at transitions, FID scores tend to be slightly

higher than STMC. The cause is obvious qualitatively, where

the generated motion often appears mechanical and unnatural,

sometimes resulting in foot sliding. Despite issues with motion

quality, these SINC baselines effectively capture the semantics

of each motion crop since crops are denoised independently.

Analysis of the results. Our method STMC consistently per-

forms effectively across both semantic and realism metrics,

unlike baselines that tend to sacrifice performance in one cate-

gory for the other. For example, DiffCollage achieves the best

FID using MDM, but its inability to handle spatial compositions

results in worse semantics than STMC across all models. Addi-

tionally, SINC baselines perform best in terms of semantics for

MotionDiffuse and MDM-SMPL, but result in abrupt or unnatu-

ral transitions with FID or transition distance that is often higher

than STMC. Such transitions are also readily apparent in quali-

tative results (see supplementary video). It is also notable that

using MDM-SMPL with STMC performs on par with MDM

and MotionDiffuse, while enabling direct SMPL output and

significantly reducing (by 10×) the number of diffusion steps.

Fewer steps, combined with pre-computing text embeddings,

enable sampling MDM-SMPL in less than 5 seconds on average.

This is a substantial improvement over MDM, which takes 4

minutes to generate motions followed by 8 min of optimization

to obtain SMPL poses, on average.

While the performance of STMC is promising, the semantic

metrics for ground truth motions indicate room for improvement.

As discussed in Sec. 4.6, STMC is currently limited by the

pre-trained diffusion model that it leverages for each motion

crop; we expect improvements in these models to also boost

STMC. An additional experiment on varying the overlap length

for temporal stitching can be found in Appendix E, as well as

an evaluation of individual sub-motions.

4.4. Perceptual Study

We perform two separate user studies to compare STMC to

SINC with Lerp and DiffCollage when using MDM. Fig. 4

shows results of both studies, measuring human preference for

motion realism and semantic accuracy. On the left, STMC is

preferred or similar to SINC 66% of the time for realism and

62% of the time for semantic accuracy, with 4.2 raters judging
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Kick with the left foot Quickly walk backwards

Drink with the right hand

Jumping forward Walking forwards

Play the violin

Jumping jacks Run

Touches back of head 
with left hand

Walking in a circle clockwise Jump forward

Raising both hands in the air

(a) (b) (c) (d)

Hop to the right Quickly walk forwards

Throw something with 
the left hand

Walk in a circle clockwise Hop to the right

Applause

Touches back of head with right 

hand
Sit down

Punch with the left hand

Turn 180 degrees to the left Raise both arms in the air

Bow

(e) (f ) (g) (h)

Figure 5. Qualitative results: We visualize the results of STMC with MDM-SMPL on several input timelines and color the bodies depending

on their location in the timeline. We see that STMC is capable of generating realistic motions, which capture the semantics of the given text prompts

with the desired timing and duration. In (a) and (c), STMC generates motions that precisely follow the instructions, controlling a single arm while

still performing another action. The accurate timing of intervals is demonstrated in (b) where the arms are still up in the air when transitioning

from “walking” to “jumping”, which is difficult to achieve with alternative methods. In (c) and (d), we observe that STMC is capable of generating

compositions that were not present in the ground truth data, such as “walking backwards while eating” or “walking while playing violin”.

each video on average after filtering bad responses. Compared

to DiffCollage on the right, our method is preferred or similar

68% of the time for realism and 70% for semantic accuracy, with

2.8 raters judging each video after filtering. This demonstrates

that STMC improves the motion in ways that are discernible by

humans but may not be fully captured in quantitative metrics.

4.5. Qualitative Results

We visualize motions generated by STMC with MDM-SMPL

in Figure 5, given multi-track timelines as input from our MTT

dataset. The coloring follows the input text, prioritizing the

newest prompt when there is an overlap across tracks. These

results show that STMC is capable of generating realistic

motions for complex multi-prompt timelines, which follow

the timing and duration of the given intervals. Please see the

caption for full analysis of these examples, and we refer to

the supplementary video for additional qualitative results and

comparison to generated motions from baseline methods.

4.6. Limitations

While STMC expands the capabilities of pre-trained motion

diffusion models to take a multi-track timeline as input, it is also

limited by the models that it relies on. For example, our pro-

posed body-part stitching process produces spatially composed

motions throughout denoising that the off-the-shelf models are

not trained to robustly handle. One potential direction to amelio-

rate this is a more sophisticated stitching “schedule” where body

parts are not combined until later in the denoising process instead

of at every step. STMC also inherits the limitations of SINC,

e.g., restricting overlapping motions to have compatible body

part combinations. Finally, the generated motions might not fol-

low exactly the right timings. One reason could be due to a bias

in the training data, where the action often starts with a delay.

5. Conclusion

In this work, we proposed the new problem of multi-track time-

line control for text-driven 3D human motion generation. The

timeline input gives users fine-grained control over the timing

and duration of actions, while still maintaining the simplicity

of natural language. We tackled this challenging problem

using a new test-time denoising process called spatio-temporal

motion collage (STMC), which enables pre-trained diffusion

models to handle the spatial and temporal compositions present

in timelines. Finally, extensive quantitative and qualitative

evaluation demonstrated the advantage of STMC over strong

baseline methods and its ability to generate realistic motions

that are faithful to a multi-track timeline from the user.
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