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Figure 1. We present in2IN, a diffusion model architecture capable of generating human-human motion interactions using general in-
teraction descriptions to model the inter-personal dynamics and specific individual descriptions to model the intra-personal dynamics.
Furthermore, we propose DualMDM, a motion composition method that is able to combine predictions made by an interaction model and
by a single-person motion prior, thus increasing the intra-personal diversity of human motion interactions.

Abstract

Generating human-human motion interactions condi-
tioned on textual descriptions is a very useful application
in many areas such as robotics, gaming, animation, and the
metaverse. Alongside this utility also comes a great diffi-
culty in modeling the highly dimensional inter-personal dy-
namics. In addition, properly capturing the intra-personal
diversity of interactions has a lot of challenges. Cur-
rent methods generate interactions with limited diversity of
intra-person dynamics due to the limitations of the avail-
able datasets and conditioning strategies. For this, we intro-
duce in2IN, a novel diffusion model for human-human mo-
tion generation which is conditioned not only on the textual
description of the overall interaction but also on the individ-
ual descriptions of the actions performed by each person in-
volved in the interaction. To train this model, we use a large
language model to extend the InterHuman dataset with indi-
vidual descriptions. As a result, in2IN achieves state-of-the-

art performance in the InterHuman dataset. Furthermore,
in order to increase the intra-personal diversity on the ex-
isting interaction datasets, we propose DualMDM, a model
composition technique that combines the motions gener-
ated with in2IN and the motions generated by a single-
person motion prior pre-trained on HumanML3D. As a re-
sult, DualMDM generates motions with higher individual
diversity and improves control over the intra-person dynam-
ics while maintaining inter-personal coherence.

1. Introduction
Human Motion Generation refers to creating synthetic hu-
man movements that closely mimic those performed by ac-
tual individuals. This field has experienced significant ad-
vancements alongside the general progress in generative AI
over recent years [56]. However, unlike other areas of gen-
erative AI, such as image and text generation, annotated
motion datasets are scarce due to the need for expensive
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recording setups and actors. Controlling the generation
of a motion based on a given condition is extremely im-
portant for applications such as video games or robotics.
We can find many different condition types such as ac-
tions [12, 16, 32, 41], audio [27, 43, 47, 55], or natural
text [1, 12, 18–20, 25, 26, 33, 34, 40, 41, 48–51, 54]. In
contrast to discrete conditioning means such as actions, uti-
lizing text is advantageous due to its capacity to convey de-
tailed descriptions of specific motions. Natural text allows
for the specification of movements in different body parts,
at varying velocities, and within diverse contexts or emo-
tional states. Recent advancements with Large Language
Models (LLMs) have underscored the potency of text as a
versatile tool across various applications [10, 14, 42, 53].

Generating realistic individual human motion condi-
tioned on a textual description is a very challenging task due
to the complexity of the intra-personal dynamics as well as
the difficulty of aligning a textual description with a specific
motion. Additionally, motion is rarely done in isolation in
the real world. As an intelligent species, we adapt our mo-
tions depending on several factors, such as the environment
and other individuals that we might interact with [5, 13].
Modeling such interactions is extremely difficult due to
the intricacy of inter-personal dynamics [6, 21, 57]. More
specifically, a single person might behave in many different
ways under the same interaction. This individual diversity
can arise from variations in the joints trajectories, veloci-
ties, or even the action semantics. For example, two people
can salute each other by waving the left or the right hand,
slowly or quickly, or even bowing instead. Controlling such
intra-personal dynamics when generating human-human in-
teractions is an important and underexplored capability.

Available annotated interaction datasets such as Inter-
Human [28] contain a significant amount of annotated in-
teractions. However, neither of them [28, 36, 39] provides
enough individual diversity nor detailed textual descriptions
of the individual motions of the interaction. As a conse-
quence, recent human-human interaction generation meth-
ods [11, 28, 36, 39] tend to replicate the interactions from
the training datasets, showing limited diversity in the in-
dividual motions that encompass the interactions, and lack
individual control capabilities. To address all these prob-
lems, we could scale up by collecting bigger and more di-
verse datasets. This work, instead, proposes a new method-
ology that effectively exploits the individual diversity al-
ready present in the available datasets to improve the per-
formance and control when generating human-human inter-
actions. More particularly, our main contributions are:

• We propose in2IN, a novel diffusion model architecture
that is not only conditioned on the overall interaction de-
scription but also on the descriptions of the individual
motion performed by each interactant, as illustrated in
Fig. 1. To do so, we extend the InterHuman dataset [28]

with LLM-generated textual descriptions of the individ-
ual human motions involved in the interaction. Our ap-
proach allows for a more precise interaction generation
and achieves state-of-the-art results on InterHuman.

• We introduce a diffusion conditioning technique based
on the Classifier Free Guidance (CFG) [22] that allows
weighting independently the importance of each condi-
tion during the interaction generation. This enables a
higher control over the influence of individual and inter-
action descriptions on the sampling process.

• We propose DualMDM, a new motion composition tech-
nique to further increase the individual diversity and con-
trol. By combining our in2IN interaction model with a
single-person (individual) motion prior, we generate in-
teractions with more diverse intra-personal dynamics.

2. Related Work

2.1. Text-Driven Human Motion Generation

A literature review [56] reveals significant progress in this
domain over the past two years, with a plethora of explored
approaches. The first works proposed to align the text and
motion latent spaces using the Kullback-Leibler divergence
loss [1, 18, 33, 40]. A decoder is trained to convert the text
latents into the corresponding motion. The main limitation
of these approaches is that the scarcity of motion data might
lead to latent space misalignments and therefore semantic
mismatches between the text and the generated motion.

Based on the recent success of auto-regressive ap-
proaches in domains like language, with the advent of
LLMs [10, 14, 42, 53] powered by Transformers [44], new
approaches have emerged in the motion field [19, 25, 49,
54]. In these, motions are tokenized into discrete codes
from a learned codebook, and a Transformer architecture
is used to convert text tokens into motion tokens in an au-
toregressive manner. While these approaches generate more
realistic motions, they have some downsides. Firstly, while
tokenizing text is a relatively simple task, tokenizing motion
is not straightforward because there are no clear individual
logic units as can be the words or lemmas for text. Addi-
tionally, auto-regressive models cannot model bi-directional
dependencies. MMM [34] and MoMask [20] address this
limitation using masked attention in BERT [14] style.

Diffusion Models [23, 37] have emerged as the best op-
tion for many generative tasks [46], also achieving excel-
lent results in the text-to-motion field. FLAME [26] and
MotionDiffusion [51] employ a traditional diffusion model
with a Transformer as the noise predictor, achieving state-
of-the-art results. Instead of predicting the noise, MDM
[41] predicts the fully denoised motion at each step. This
strategy, typically called x0 reparametrization [7, 45], en-
ables the use of kinematic loss functions, leading to better
human motion generation. Other methods propose incorpo-
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rating physical constraints into the diffusion process [48],
using latent diffusion models for speeding up the sampling
[12], or leveraging retrieval-based methods [50]. Although
the sequential multi-step nature of diffusion models during
inference makes them very slow, it also empowers them to
generate very realistic samples with high diversity [15] and
fine-grained control capabilities. As a result, diffusion mod-
els are very powerful for human interaction generation.

2.2. Text-Driven Human Interaction Generation

ComMDM [36] extends MDM’s capabilities to generate
multi-human interactions. ComMDM is a cross-attention
module integrated into specific layers of the denoisers in
two frozen MDM models. This module processes the ac-
tivations from the two models and adjusts them to foster
interaction. In [39], a similar concept is employed but
this time with two distinct models. Interaction modeling
is achieved through a shared cross-attention module that
connects both models, an architecture particularly suited
for asymmetric interactions involving an actor and a re-
ceiver. However, they observed that their method overfitted
to the training dataset due to the lack of annotated inter-
action datasets. Recently, InterHuman [28] was released,
becoming the most extensive annotated dataset of human
interactions up to date. The authors also propose a baseline
method called InterGen, which is based on two coopera-
tive denoisers with shared weights. Finally, MoMat-MoGen
[11] extends the retrieval diffusion model proposed in [50]
and adapts it to human interactions, becoming the current
state of the art on InterHuman. In contrast to the previ-
ous approaches, we propose a diffusion model (in2IN) that
conditions the generation on both the general interaction de-
scription and a fine-grained description providing more de-
tails on the action performed by each individual involved
in the interaction. This results in a model that generates
adequate inter-personal dynamics and, at the same time, en-
ables precise control on the intra-personal dynamics.

2.3. Human Motion Composition

The iterative paradigm underlying diffusion models pro-
vides them the capability to combine data, such as multi-
ple images or motions, in a harmonized way [4, 52]. In
the realm of motion, the literature has traditionally differ-
entiated between temporal and spatial composition. Tem-
poral composition refers to combining multiple individual
motions into a larger sequence [2, 8, 36], making smooth
and realistic transitions among them emerge. On the other
hand, spatial composition refers to combining multiple mo-
tions to generate a new motion of the same length that com-
bines certain elements of the original motions, such as the
actions, the trajectory, or joint-specific movements [3, 40].
However, they all share the same limitation: they apply to
single-person motion composition. In a broader sense, [36]

proposed a generic model composition technique to com-
bine the sampling processes of two different diffusion mod-
els, thus generating a harmonized motion. However, they
used a fixed score-merging technique along the whole de-
noising process, which we prove is a suboptimal strategy
in more complex scenarios like ours. Instead, we propose
a novel model composition technique (DualMDM) that can
combine 1) individual motions generated with a prior pre-
trained on a single-person motion dataset, and 2) interactive
motions generated by any human-human interaction model.
Our interactions show more diverse intra-personal dynam-
ics while preserving the inter-personal coherence.

3. Method
In this section, we introduce our main contributions. First,
in Sec. 3.1, we describe in2IN, our proposed interaction-
aware diffusion model conditioned on both the interaction
and the individual textual descriptions. Then, we introduce
the multi-weight CFG technique, which increases the user
control over the influence that each condition has over the
generation process. Finally, in Sec 3.2, we discuss how our
second contribution, DualMDM, can increase the control
and diversity of the intra-personal dynamics generated by
pre-trained interaction models such as in2IN.

3.1. in2IN: Interaction diffusion model

The architecture of our interaction diffusion model (in2IN)
is founded on the principle that interactions between two
persons exhibit a commutative property [28], denoted as
{xa, xb}, which is considered to be equivalent to {xb, xa}.
Building on this concept, we introduce a Transformer-based
diffusion model in a Siamese configuration [9]. Two copies
of the diffusion model are made, sharing parameters. Each
network is responsible for processing its respective noisy
motion inputs, xt

a and xt
b, and aims to produce the denoised

versions, x0
a and x0

b respectively. We predict the x0 di-
rectly [7, 45] as this allows us to use kinematic losses. Once
the losses have been calculated, the motions of both inter-
actants, generated by each one of the copies of the model,
are noised back to xt−1 to become the inputs of the next
denoising iteration.

Similarly to [28, 39], our diffusion model architecture
(Fig. 2) has a multi-head self-attention module that learns
the intra-personal dynamics of the motion, and a multi-head
cross-attention module that combines the self-attention out-
put with the motion of the other individual in the interaction,
thus modeling the inter-personal dynamics. We also condi-
tion the generation with adaptive normalization layers [30].
However, in contrast to previous approaches, we introduce
different conditions for the different attention modules. For
the self-attention module, where only the individual motion
matters, we provide the specific textual description of the
individual motion as conditioning. On the other hand, in
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Figure 2. in2IN diffusion model. Our proposed architecture consists of a Siamese Transformer that generates the denoised motion of each
individual in the interaction (x0

a and x0
b). First, a self-attention layer models the intra-personal dependencies using the encoded individual

condition and noisy motion of each person (xt
a and xt

b). Then, a cross-attention module models the inter-personal dynamics using the
encoded interaction description, the self-attention output, and the noisy motion from the other interacting person.

the cross-attention module, where the whole interaction is
important, we provide the interaction textual description as
conditioning. More specifically, on one of the copies of the
model, xt

a and its individual description are fed together
into the self-attention module, while xt

b is injected in the
cross-attention one. Conversely, the other copy uses xt

b for
the self-attention and xt

a at the cross-attention. This allows
for a more precise control of the intra- and inter-personal
dynamics.

Multi-Weight Classifier-Free Guidance. Our condi-
tioning strategy for the diffusion model builds upon CFG,
initially proposed by Ho et al. [22]. Generally, diffusion
models have a significant dependency on CFG to gener-
ate high-quality samples. However, incorporating multi-
ple conditions using CFG is not trivial. We address this by
employing distinct weighting strategies for each condition.
The equation representing our model’s sampling function,
denoted as GI(xt, t, c), is as follows:

GI
(
xt, t, c

)
= G

(
xt, t, ∅

)
+ wc ·

(
G
(
xt, t, c

)
−G

(
xt, t, ∅

))
+ wI ·

(
G
(
xt, t, cI

)
−G

(
xt, t, ∅

))
+ wi ·

(
G
(
xt, t, ci

)
−G

(
xt, t, ∅

))
,

(1)

where G(xt, t, ∅) is the unconditional output of the
model, and G(xt, t, c), G(xt, t, cI), and G(xt, t, ci) denote
the model outputs conditioned on the whole conditioning
c = {cI , ci}, only the interaction, and only the individual,
respectively. The weights wc, wI , and wi ∈ R adjust the in-
fluence of each conditioned output relative to the uncondi-
tional baseline. A notable limitation of this approach is the
necessity to perform quadruple sampling from the denoiser,
as opposed to the double sampling required in a conven-

tional CFG methodology. In exchange, this method allows
for more refined control over the generation process, ensur-
ing that the model can effectively capture and express the
nuances of both individual and interaction-specific condi-
tions. If a weight is set to 0, then that particular conditioning
is ignored during the generation process.

3.2. DualMDM: Model composition

In our second contribution, we propose a motion model
composition technique that allows us to combine interac-
tions generated by an interaction model with the motions
generated by an individual motion prior trained with a
single-person motion dataset. This method uses a single-
person human motion prior to provide the generated human-
human interactions with a higher diversity of intra-personal
dynamics. This model composition technique is built on top
of the method proposed in DiffusionBlending [36]:

Ga,b(xt, t, ca, cb) = Ga(xt, t, ca)

+ w · (Gb(xt, t, cb)−Ga(xt, t, ca)),
(2)

where w ∈ R is the blending weight, and Ga(xt, t, ca)
and Gb(xt, t, cb) are the outputs of the diffusion models a
and b, respectively. Since the original proposal was made
to combine single-person diffusion models, we adapt the
previous formula to our scenario:

GI,i(xt, t, c) = GI(xt, t, c)

+ w · (Gi(xt, t, ci)−GI(xt, t, c)),
(3)

where GI(xt, t, c) is the output of the interaction diffu-
sion model and Gi(xt, t, ci) is the output of the individual
motion prior. By choosing w to be constant, authors from
[36] assumed that the optimal blending weight is the same
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Figure 3. Different weights schedulers tested for DualMDM: Ex-
ponential , Inverse Exponential, Constant, and Linear.

along the whole sampling process. However, in line with
[24], we argue that the optimal blending weight might vary
along the denoising chain, depending on the particularities
of each scenario. To account for this, we propose to replace
the constant w with a weight scheduler w(t) that parameter-
izes the blending weight used to combine the denoised mo-
tion from both models, making it variable on the sampling
phase (Fig. 3). As a generalization of the DiffusionBlend-
ing technique, DualMDM is a more flexible and powerful
strategy to combine two diffusion models.

4. Experimental Evaluation
4.1. Data

Our experiments are conducted with the InterHuman [28]
and HumanML3D [17] datasets. InterHuman is the largest
annotated interaction dataset. There, each motion is rep-
resented as xi=

[
jpg, j

v
g , j

r, cf
]
, where xi, the i-th mo-

tion timestep, encompasses joint positions and velocities
jpg, j

v
g ∈R3Nj in the world frame, 6D representation of lo-

cal rotations jr ∈R6Nj in the root frame, and binary foot-
ground contact features cf ∈R4. N is the number of joints.
In our case N = 22. As InterHuman does not provide tex-
tual descriptions of the individuals’ motions within an inter-
action, we have automatically generated them using LLMs.

InterHuman focuses on providing a wide range of inter-
actions rather than individual diversity in its motions. For
this reason, we have trained an individual motion prior with
the HumanML3D dataset, which contains a much wider
range of annotated individual motions. For compatibility
purposes, we converted the HumanML3D motion represen-
tation to the one used in the InterHuman dataset. More
details on the LLM-based generation of the individual de-
scriptions and the implementation details of our individual
motion prior can be found in the Supp. Material.

4.2. Evaluation Metrics

We utilize the evaluation metrics proposed in [17]. More
concretely, R-Precision and Multimodal-Dist evaluate how
semantically close the generated motions are to the input

prompts. The FID score is used to measure the dissimilar-
ity between the distributions of generated motions and the
actual ground truth motions. Diversity is assessed to gauge
the range of variation within the generated motion distribu-
tion, while MultiModality calculates the average variance
for motions generated from a single text prompt. To com-
pute these metrics, we need encoders that align the text and
motion latent representation, which we borrow from [28].

None of the previous evaluation metrics assesses the
alignment of the generated interactions with the individ-
ual descriptions. Due to the lack of ground-truth individ-
ual annotations, we cannot train single-person motion and
text encoders for InterHuman. Therefore, we cannot re-
liably assess the individual alignment using R-Precision,
Multimodal-Dist, or FID. Still, such metrics are not only
sensitive to the global quality of the interaction, but also
to the coherence of the intra-personal dynamics within the
interaction context. In other words, they are sensitive to
wrong intra-personal dynamics during an interaction. For
instance, if an interactant is kicking a ball, the salute to each
other interaction is not coherent, and the generated motion
will have low R-Precision. However, these metrics cannot
assess the influence of using distinct individual descriptions
on the generation of varied intra-personal dynamics. For
example, an interaction generated with {cI=salute to each
other, ci1=ci2=wave right hand} will be different from the
one generated with the same set with ci2=bows forward in-
stead. However, such difference might come from: 1) the
intrinsic diversity of the generative model, quantified by the
MultiModality metric (i.e., different ways of waving with
the right hand, and not bowing at all); or 2) the extrinsic di-
versity caused by differences in the individual descriptions
used, thus showing control capabilities over the generated
intra-personal dynamics. Thus, to quantify the latter, we in-
troduce a new evaluation metric called Extrinsic Individual
Diversity (EID).

Extrinsic Individual Diversity (EID). In order to assess
the extrinsic diversity of the model, we need to disentangle
it from the intrinsic one. To do so, we generate two empir-
ical distributions that will serve as a proxy for quantifying
the intrinsic diversity of 1) the ground-truth scenario, and 2)
a synthetic scenario where the individual descriptions are
randomly changed. In particular, for every set of interac-
tion and individual descriptions {cI, ci1 , ci2} in the dataset,
we proceed as follows: 1) we build DGT as the set of N
motions generated with {cI, ci1 , ci2}, and 2) we build Drand
as the set of N motions generated randomly replacing ci1
and ci2 with other individual descriptions from the dataset.
Then, we define the EID as the Wasserstein distance be-
tween DGT and Drand. A higher distance means more in-
fluence of the individual descriptions on the diversity of the
generated motions, arguably leading to higher control on
the intra-personal dynamics of the interaction. This met-
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ric can be combined with others such as the R-Precision
and FID to analyze the trade-off between individual diver-
sity and interaction quality and fidelity. In our experiments,
we set N=32. To quantify the additional extrinsic diversity
provided by the DualMDM technique, we build DGT with
in2IN and Drand with in2IN combined with the DualMDM.

4.3. Implementation Details

Our in2IN models consist of 8 consecutive multi-head at-
tention layers with a latent dimension of 1024 and 8 heads.
We utilize a frozen CLIP-ViTL/14 model [35] as our text
encoder. We set the number of diffusion timesteps to 1,000
and employ a cosine noise schedule [31]. During inference,
we use DDIM sampling [38] with η = 0 and 50 timesteps,
and our proposed multi-weight CFG variation. To enable
the latter, 10% of the CLIP embeddings are randomly set
to zero during training. All models have been trained us-
ing the AdamW optimizer [29] with betas of (0.9, 0.999),
weight decay of 2 · 10−5, maximum learning rate of 10−4,
and a cosine learning rate schedule with an initial 10-epoch
linear warm-up period. They have been trained using the
L2 loss and, thanks to the use of the x0 parameterization,
kinematic losses have also been used. These include the
foot contact and the velocity losses from the MDM frame-
work [41], and the bone length, the masked joint distance
map, and the relative orientation losses suggested in Inter-
Gen [28]. Additionally, we have used the kinematic loss
scheduler from InterGen. All models have been trained for
2,000 epochs with a batch size of 64 and 16-bit mixed pre-
cision, taking 5 days using two Nvidia 3090 GPUs.

DualMDM schedulers. We test these functions:
constant, or w(t) = λ
linear, or w(t) = t/T

exponential, or w(t) = e−λ·(T−t),

inverse exponential, or w(t) = 1− e−λ·(T−t),

(4)

where t is the actual denoising step, T the total number
of denoising steps, and λ the parameter that determines the
slope of our scheduler function. We visualize them in Fig. 3.

4.4. Quantitative Analysis

4.4.1 in2IN: Interaction Generation

Tab. 1 shows the quantitative evaluation of our in2IN archi-
tecture with respect to the previously existing methods eval-
uated on the InterHuman dataset. It can be observed that
by using individual information we have been able to ob-
tain better results than all previous methods. As might rea-
sonably be anticipated, the additional information used only
by in2IN in form of LLM-generated individual descriptions
reduces the spectrum of valid motions fulfilling the interac-
tion description, which reflects as a lower MultiModality.

With respect to the Multi-Weight CFG, we evaluate the
isolated effect of each weight on the evaluation metrics in

0 1 2 3 4 5 6 7

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0 1 2 3 4 5 6 7

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

0 1 2 3 4 5 6 7

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5 6 7

14.00

14.25

14.50

14.75

15.00

15.25

15.50

15.75

0 1 2 3 4 5 6 7

6

8

10

12

14

16

0 1 2 3 4 5 6 7
5

10

15

20

25

30

35

40

Interaction + Individual

R
-P

re
c

is
io

n
F

ID

Interaction Individual

Figure 4. R-Precision and FID for the different weights on the
Multi-Weight CFG tested in isolation. Each column ablates a dif-
ferent weight (wc, wI , wi). wc has been ablated with wI=wi=0.
wI and wi with wc=1, and the other weight set to 0.

Fig. 4. As can be observed, for weights wc and wI , 4 is the
best weight individually. On the other hand, for weight wi,
2 is the best weight. More than that turns into a decrement
in performance. We find the best combination with a grid
search in a validation subset: wc=3, wI=3, and wi=1.

4.4.2 DualMDM: Individual Diversity

In Tab. 2, the EID metric is compared with the R-Precision
and FID on different DualMDM schedulers. In general, we
can observe that in all the schedulers, the ones that assign
more weight to the individual model obtain higher indi-
vidual diversity, in exchange for a lower interaction qual-
ity. The constant scheduler with λ=0 uses only the inter-
action model, representing an upper bound in terms of in-
teraction quality (R-Precision and FID), and a lower bound
for the individual diversity (EID). While a constant sched-
uler with λ=0.25 seems to achieve good quantitative values,
we can observe that the exponential weight scheduler with
λ=0.00875 provides a better trade-off between individual
diversity and interaction quality. This is fundamental, as
we want to have high intra-personal diversity while keeping
the inter-personal coherence. We hypothesize that the good
trade-off acquired by the exponential schedule is due to the
fact that the intra-relationships of the motion (provided by
the individual motion prior) are much more important dur-
ing the early stages of denoising. However, as the sampling
advances, the inter-relationships of the motions interaction
become more relevant. Also, when the individual model
is used during the later stages of denoising, it deteriorates
the denoised inter-personal dynamics. On the contrary, if
the weight on this individual prior is gradually reduced, the
interaction model is able to recover these dynamics in the
later stages of the denoising. In Sec. 4.5, we validate these
hypotheses by means of a qualitative analysis.
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Methods
R-Precision ↑

FID ↓ MM Dist ↓ Diversity → MModality ↑
Top 1 Top 2 Top 3

Ground Truth 0.452±.008 0.610±.009 0.701±.008 0.273±.007 3.755±.008 7.948±.064 -
TEMOS [33] 0.224±.010 0.316±.013 0.450±.018 17.375±.043 6.342±.015 6.939±.071 0.535±.014

T2M[17] 0.238±.012 0.325±.010 0.464±.014 13.769±.072 5.731±.013 7.046±.022 1.387±.076

MDM [41] 0.153±.012 0.260±.009 0.339±.012 9.167±.056 7.125±.018 7.602±.045 2.35±.080

ComMDM [36] 0.223±.009 0.334±.008 0.466±.010 7.069±.054 6.212±.021 7.244±.038 1.822±.052

InterGen [28] 0.371±.010 0.515±.012 0.624±.010 5.918±.079 5.108±.014 7.387±.029 2.141±.063

MoMat-MoGen [11] 0.449±.004 0.591±.003 0.666±.004 5.674±.085 3.790±.001 8.021±.035 1.295±.023

in2IN* 0.425±0.008 0.576±0.008 0.662±0.009 5.535±0.120 3.803±0.002 7.953±0.047 1.215±0.023

in2IN 0.455±0.004 0.611±0.005 0.687±0.005 5.177±0.103 3.790±0.002 7.940±0.030 1.061±0.038

Table 1. Comparison of our model (in2IN) to the state of the art in human-human interaction motion generation on the InterHuman dataset.
*in2IN model only using wI (conditioning only on the interaction during sampling). All evaluations have been executed 10 times to elude
the randomness of the generation ± indicates the 95% confidence interval. We highlight the best and the second best results.

Scheduler λ
R-Precision ↑

FID ↓ EID ↑
(Top-3)

0.00 0.687±.005 5.177±.103 1.238±.011

0.25 0.577±.004 33.75±.293 1.516±.005

0.50 0.383±.006 91.99±.000 1.972±.018

0.75 0.218±.016 127.8±.691 2.188±.010

1.00 0.094±.004 130.4±.226 2.118±.010

0.0100 0.589±.006 19.76±.232 1.461±.007

0.00875 0.574±.003 22.86±.190 1.492±.006

0.0075 0.565±.007 26.20±.129 1.534±.013

0.00625 0.530±.013 31.23±.211 1.596±.009

0.0050 0.500±.007 39.36±.301 1.680±.004

0.0100 0.232±.006 114.3±.433 2.140±.013

0.0075 0.251±.004 111.1±.316 2.115±.008

0.0050 0.282±.006 106.8±.386 2.088±.009

- 0.235±.005 98.27±.528 2.118±.010

Table 2. EID and interaction metrics of different weight sched-
ulers: Exponential, Inverse Exponential, Constant [36], and
Linear. Bold represents the best value for each scheduler.

4.5. Qualitative Analysis

As depicted in Fig. 5 and Fig. 6, our in2IN model can gen-
erate more realistic interactions aligned with the textual de-
scription. Upon qualitative evaluation, our model consis-
tently outperforms InterGen across various scenarios. Fig. 7
illustrates the effect of the different weighting strategies for
our DualMDM motion composition method. It can be ob-
served how the exponential scheduler provides more co-
herent results, preserving the interaction semantics while
generating individual motions that match the individual de-
scriptions, yielding a superior fine-grained control. While a
constant scheduler might quantitatively provide decent re-
sults, the qualitative evaluation demonstrates the superior-
ity of the exponential scheduler. For the constant sched-
ulers, we notice that increasing the weight assigned to the
individual prior leads to a degradation of the inter-personal
dynamics, particularly concerning trajectories and orienta-
tions. As a limitation of the exponential scheduler, we can
observe that the λ value selected for each case is critical and
might not be the same for all compositions. The selection of

this value will depend on the specific characteristics of the
interaction and individual motions that we want to combine.
More visualizations are included in the Supp. Material.

5. Conclusion

We presented in2IN, an interaction diffusion model that
leverages both interaction and individual textual descrip-
tions to generate better inter- and intra-personal dynamics
in the human-human motion interaction generation. With a
more precise conditioning, in2IN has become the new state-
of-the-art in the InterHuman dataset. We also introduced
DualMDM, a motion model composition technique that in-
jects the single-person dynamics learned by a pre-trained
individual motion prior into the generated interactions. As
a result, combining in2IN with DualMDM provides better
control over the intra-personal dynamics of the interaction.

Limitations and Future work. LLM-generated individ-
ual descriptions might not faithfully match the individual
motion. In future work, more complex techniques for gen-
erating individual descriptions will be tested. Additionally,
one of our main reasons to propose DualMDM is that the
optimal strategy for combining the outputs of the individual
and the interaction models changes along the sampling pro-
cess. However, we observed in Sec. 4.5 that these dynamics
vary as well depending on the descriptions, or even on the
stochasticity of the generation itself. Future work includes
exploring better blending strategies for which the user does
not need to define any scheduler parameter.
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Figure 5. Interaction Description: The two guys meet, grip each other’s hand, and nod in agreement. The X-axis represents time.

Figure 6. Interaction Description: One person spots the other person on the street, lifts the right hand to greet, and the other person
glances towards one person. The X-axis represents time.

Figure 7. Interaction Description: Two persons are in an intense boxing match. Individual Description #1: An individual throws a kick
with his right leg. Individual Description #2: An individual is boxing. The X-axis represents time.
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Säckinger, and Roopak Shah. Signature verification using a
”siamese” time delay neural network. In Advances in Neural
Information Processing Systems. Morgan-Kaufmann, 1993.
3

[10] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, Sand-
hini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom
Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are
few-shot learners. Advances in neural information process-
ing systems, 33:1877–1901, 2020. 2

[11] Zhongang Cai, Jianping Jiang, Zhongfei Qing, Xinying Guo,
Mingyuan Zhang, Zhengyu Lin, Haiyi Mei, Chen Wei, Ruisi

Wang, Wanqi Yin, Xiangyu Fan, Han Du, Liang Pan, Peng
Gao, Zhitao Yang, Yang Gao, Jiaqi Li, Tianxiang Ren, Yukun
Wei, Xiaogang Wang, Chen Change Loy, Lei Yang, and Zi-
wei Liu. Digital life project: Autonomous 3d characters with
social intelligence. arXiv preprint arXiv:2312.04547, 2023.
2, 3, 7

[12] Xin Chen, Biao Jiang, Wen Liu, Zilong Huang, Bin Fu, Tao
Chen, and Gang Yu. Executing your commands via motion
diffusion in latent space. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 18000–18010, 2023. 2, 3

[13] David Curto, Albert Clapes, Javier Selva, Sorina Smeureanu,
Julio C.S. Jacques Junior, David Gallardo-Pujol, Georgina
Guilera, David Leiva, Thomas B. Moeslund, Sergio Es-
calera, and Cristina Palmero. Dyadformer: A multi-modal
transformer for long-range modeling of dyadic interactions.
In Proceedings of the IEEE/CVF international conference on
computer vision, pages 2177–2188, 2021. 2

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional trans-
formers for language understanding. In Proceedings of
NAACL-HLT, pages 4171–4186, 2019. 2

[15] Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo
Zhang, Dongdong Chen, Lu Yuan, and Baining Guo. Vec-
tor quantized diffusion model for text-to-image synthesis. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 10696–10706, 2022. 3

[16] Chuan Guo, Xinxin Zuo, Sen Wang, Shihao Zou, Qingyao
Sun, Annan Deng, Minglun Gong, and Li Cheng. Ac-
tion2motion: Conditioned generation of 3d human motions.
In Proceedings of the 28th ACM International Conference on
Multimedia. ACM, 2020. 2

[17] Chuan Guo, Shihao Zou, Xinxin Zuo, Sen Wang, Wei Ji,
Xingyu Li, and Li Cheng. Generating diverse and natural 3d
human motions from text. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 5152–5161, 2022. 5, 7

[18] Chuan Guo, Shihao Zou, Xinxin Zuo, Sen Wang, Wei Ji,
Xingyu Li, and Li Cheng. Generating diverse and natural 3d
human motions from text. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 5152–5161, 2022. 2

[19] Chuan Guo, Xinxin Zuo, Sen Wang, and Li Cheng. TM2T:
Stochastic and Tokenized Modeling for the Reciprocal Gen-
eration of 3D Human Motions and Texts. In European Con-
ference on Computer Vision, pages 580–597. Springer, 2022.
2

[20] Chuan Guo, Yuxuan Mu, Muhammad Gohar Javed, Sen
Wang, and Li Cheng. Momask: Generative masked model-
ing of 3d human motions. arXiv preprint arXiv:2312.00063,
2023. 2

[21] Wen Guo, Xiaoyu Bie, Xavier Alameda-Pineda, and
Francesc Moreno-Noguer. Multi-person extreme motion pre-
diction. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 13053–
13064, 2022. 2

[22] Jonathan Ho and Tim Salimans. Classifier-free diffusion

1949



guidance. In NeurIPS 2021 Workshop on Deep Generative
Models and Downstream Applications, 2021. 2, 4

[23] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-
fusion probabilistic models. Advances in neural information
processing systems, 33:6840–6851, 2020. 2

[24] Ziqi Huang, Kelvin CK Chan, Yuming Jiang, and Ziwei
Liu. Collaborative diffusion for multi-modal face generation
and editing. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 6080–
6090, 2023. 5

[25] Biao Jiang, Xin Chen, Wen Liu, Jingyi Yu, Gang Yu, and Tao
Chen. Motiongpt: Human motion as a foreign language. Ad-
vances in Neural Information Processing Systems, 36, 2024.
2

[26] Jihoon Kim, Jiseob Kim, and Sungjoon Choi. FLAME: Free-
form Language-based Motion Synthesis & Editing. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
pages 8255–8263, 2023. 2

[27] Nhat Le, Thang Pham, Tuong Do, Erman Tjiputra, Quang D
Tran, and Anh Nguyen. Music-driven group choreography.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 8673–8682, 2023. 2

[28] Han Liang, Wenqian Zhang, Wenxuan Li, Jingyi Yu, and
Lan Xu. Intergen: Diffusion-based multi-human motion
generation under complex interactions. arXiv preprint
arXiv:2304.05684, 2023. 2, 3, 5, 6, 7

[29] Ilya Loshchilov and Frank Hutter. Decoupled weight de-
cay regularization. In International Conference on Learning
Representations, 2019. 6

[30] Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav
Shyam, Pamela Mishkin, Bob McGrew, Ilya Sutskever, and
Mark Chen. Glide: Towards photorealistic image generation
and editing with text-guided diffusion models, 2022. 3

[31] Alexander Quinn Nichol and Prafulla Dhariwal. Improved
denoising diffusion probabilistic models. In International
conference on machine learning, pages 8162–8171. PMLR,
2021. 6

[32] Mathis Petrovich, Michael J Black, and Gül Varol. Action-
conditioned 3d human motion synthesis with transformer
vae. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 10985–10995, 2021. 2

[33] Mathis Petrovich, Michael J Black, and Gül Varol. TEMOS:
Generating diverse human motions from textual descriptions.
In European Conference on Computer Vision, pages 480–
497. Springer, 2022. 2, 7

[34] Ekkasit Pinyoanuntapong, Pu Wang, Minwoo Lee, and Chen
Chen. Mmm: Generative masked motion model. arXiv
preprint arXiv:2312.03596, 2023. 2

[35] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual
models. In International conference on machine learning,
pages 8748–8763. PMLR, 2021. 6

[36] Yonatan Shafir, Guy Tevet, Roy Kapon, and Amit H
Bermano. Human Motion Diffusion as a Generative Prior.
arXiv preprint arXiv:2303.01418, 2023. 2, 3, 4, 7

[37] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan,
and Surya Ganguli. Deep unsupervised learning using
nonequilibrium thermodynamics. In International confer-
ence on machine learning, pages 2256–2265. PMLR, 2015.
2

[38] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denois-
ing diffusion implicit models. In International Conference
on Learning Representations, 2020. 6

[39] Mikihiro Tanaka and Kent Fujiwara. Role-Aware Interac-
tion Generation from Textual Description. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 15999–16009, 2023. 2, 3

[40] Guy Tevet, Brian Gordon, Amir Hertz, Amit H Bermano,
and Daniel Cohen-Or. Motionclip: Exposing human motion
generation to clip space. In European Conference on Com-
puter Vision, pages 358–374. Springer, 2022. 2, 3

[41] Guy Tevet, Sigal Raab, Brian Gordon, Yoni Shafir, Daniel
Cohen-or, and Amit Haim Bermano. Human motion diffu-
sion model. In The Eleventh International Conference on
Learning Representations, 2023. 2, 6, 7

[42] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste
Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aure-
lien Rodriguez, Armand Joulin, Edouard Grave, and Guil-
laume Lample. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023. 2

[43] Jonathan Tseng, Rodrigo Castellon, and Karen Liu. Edge:
Editable dance generation from music. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 448–458, 2023. 2

[44] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 2

[45] Zhisheng Xiao, Karsten Kreis, and Arash Vahdat. Tackling
the generative learning trilemma with denoising diffusion
GANs. In International Conference on Learning Represen-
tations (ICLR), 2022. 2, 3

[46] Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Run-
sheng Xu, Yue Zhao, Wentao Zhang, Bin Cui, and Ming-
Hsuan Yang. Diffusion models: A comprehensive survey of
methods and applications. ACM Computing Surveys, 56(4):
1–39, 2023. 2

[47] Hongwei Yi, Hualin Liang, Yifei Liu, Qiong Cao, Yandong
Wen, Timo Bolkart, Dacheng Tao, and Michael J Black.
Generating holistic 3d human motion from speech. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 469–480, 2023. 2

[48] Ye Yuan, Jiaming Song, Umar Iqbal, Arash Vahdat, and Jan
Kautz. Physdiff: Physics-guided human motion diffusion
model. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 16010–16021, 2023. 2,
3

[49] Jianrong Zhang, Yangsong Zhang, Xiaodong Cun, Shaoli
Huang, Yong Zhang, Hongwei Zhao, Hongtao Lu, and Xi
Shen. T2M-GPT: Generating Human Motion from Textual
Descriptions with Discrete Representations. arXiv preprint
arXiv:2301.06052, 2023. 2

1950



[50] Mingyuan Zhang, Xinying Guo, Liang Pan, Zhongang Cai,
Fangzhou Hong, Huirong Li, Lei Yang, and Ziwei Liu. Re-
modiffuse: Retrieval-augmented motion diffusion model. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 364–373, 2023. 3

[51] Mingyuan Zhang, Zhongang Cai, Liang Pan, Fangzhou
Hong, Xinying Guo, Lei Yang, and Ziwei Liu. MotionDif-
fuse: Text-Driven Human Motion Generation with Diffusion
Model. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2024. 2

[52] Qinsheng Zhang, Jiaming Song, Xun Huang, Yongxin Chen,
and Ming-Yu Liu. Diffcollage: Parallel generation of large
content with diffusion models. In 2023 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 10188–10198. IEEE, 2023. 3

[53] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei
Wang, Yupeng Hou, Yingqian Min, Beichen Zhang, Junjie
Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen,
Zhipeng Chen, Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu
Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong
Wen. A survey of large language models. arXiv preprint
arXiv:2303.18223, 2023. 2

[54] Chongyang Zhong, Lei Hu, Zihao Zhang, and Shihong Xia.
Attt2m: Text-driven human motion generation with multi-
perspective attention mechanism. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 509–519, 2023. 2

[55] Lingting Zhu, Xian Liu, Xuanyu Liu, Rui Qian, Ziwei
Liu, and Lequan Yu. Taming diffusion models for audio-
driven co-speech gesture generation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10544–10553, 2023. 2

[56] Wentao Zhu, Xiaoxuan Ma, Dongwoo Ro, Hai Ci, Jinlu
Zhang, Jiaxin Shi, Feng Gao, Qi Tian, and Yizhou Wang.
Human motion generation: A survey. IEEE Transactions
on Pattern Analysis and Machine Intelligence, pages 1–20,
2023. 1, 2

[57] Wentao Zhu, Jason Qin, Yuke Lou, Hang Ye, Xiaoxuan Ma,
Hai Ci, and Yizhou Wang. Social motion prediction with
cognitive hierarchies. Advances in Neural Information Pro-
cessing Systems, 36, 2024. 2

1951


	. Introduction
	. Related Work
	. Text-Driven Human Motion Generation
	. Text-Driven Human Interaction Generation
	. Human Motion Composition

	. Method
	. in2IN: Interaction diffusion model
	. DualMDM: Model composition

	. Experimental Evaluation
	. Data
	. Evaluation Metrics
	. Implementation Details
	. Quantitative Analysis
	in2IN: Interaction Generation
	DualMDM: Individual Diversity

	. Qualitative Analysis

	. Conclusion

