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Abstract

Identifying robust and accurate correspondences across
images is a fundamental problem in computer vision that
enables various downstream tasks. Recent semi-dense
matching methods emphasize the effectiveness of fusing
relevant cross-view information through Transformer. In
this paper, we propose several improvements upon this
paradigm. Firstly, we introduce affine-based local attention
to model cross-view deformations. Secondly, we present
selective fusion to merge local and global messages from
cross attention. Apart from network structure, we also iden-
tify the importance of enforcing spatial smoothness in loss
design, which has been omitted by previous works. Based
on these augmentations, our network demonstrate strong
matching capacity under different settings. The full ver-
sion of our network achieves state-of-the-art performance
among semi-dense matching methods at a similar cost to
LoFTR, while the slim version reaches LoFTR baseline’s
performance with only 15% computation cost and 18% pa-
rameters.

1. Introduction

Robust and accurate image matching serves as a criti-
cal front-end task for a wide range of applications that
require estimating geometry from RGB input, such as
Structure-from-Motion (SfM) [14, 34], Simultaneous Lo-
calization And Mapping (SLAM) [26, 27] and Visual Lo-
calization [33]. Conventionally, image matching is com-
prised of several individual stages, including keypoint ex-
traction, feature description, and feature matching. In the
past few years, the research community has observed a re-
markable progress in replacing traditional steps with their
learning-based counterparts [6, 9, 23, 24, 36, 46, 51], lead-
ing to promising improvements. More recently, increasing
efforts have been made towards more unified and end-to-
end image matching systems, which are typically imple-

mented in dense or semi-dense fashion by incorporating
Transformer structure [3, 12, 35, 38, 42], cost-volume regu-
larization [18, 28, 29, 39, 40] and coarse-to-fine scheme [10,
11, 35], which process image pairs directly and bypass limi-
tations imposed by pre-extracted keypoints, such as repeata-
bility issue and inability to handle low-texture areas.

Specifically, in Transformer-based matchers, striking a
balance between token granularity and computation effi-
ciency is crucial. To address this challenge, recent works [3,
50] propose global-local attention frameworks which uti-
lizes global attention at a coarse level to model long-range
dependencies, while local attention facilitates fine-level
message exchange. Although these methods demonstrate
the ability to concentrate attention span into specific areas,
we consider below limitations still persist.

On the one hand, the local attention usually adopts rect-
angular grid areas to sample tokens, disregarding complex
local deformation. Due to the nature of two-view match-
ing tasks, corresponding regions in image pairs are usually
related by some extent of deformations, including scaling,
shearing and rotation. Consequently, a rectangular patch in
the source view will be projected to a deformed area in the
target image, which should be considered in token sampling
for local attention to maximize the overlap ratio between
sampling areas in source/target feature maps.

On the other hand, the global-local message fusion in
previous works are usually conducted through learned pri-
ors [3, 38, 50], without considering the differences in re-
liability among sampled patches. Due to the imprecision
in intermediate flow estimation and the existence of non-
overlapping areas, accepting all local message equally in-
troduces noise for feature update, not to mention the local
message from non-overlapped regions. In this regard, an
ideal global-local message fusion should suppress local in-
formation from unreliable or non-related local areas.

Apart from network designs, we also review the de-
factor loss design for semi-dense matching methods [3, 35,
38, 42, 44]. In this series of works, classification-based
loss (such as focal loss) is applied to assignment matrix to

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

4254



Figure 1. Visualization of the proposed deformable attention. Through piece-wise deformation estimation, we project source patches (left)
to the target image (right) to sample tokens in local attention.

maximize (minimize) positive (negative) entries. Although
classification-based loss is essential for learning distinctive
features, it should be noticed that spatial relationship is not
considered in such supervision since all entries are treated
equally. To compensate for this lack of spatial supervision,
we propose to additionally apply spatial softmax-based loss
upon assignment matrix.

Based on aforementioned observations, this paper in-
troduces AffineFormer, a novel cross-view Transformer
equipped with geometric-aware deformable local attention
and selective global-local message fusion, supervised by
hybrid spatial softmax/classification-based loss. Following
previous work [3], we regress intermediate flow map during
attention process, from which an affine-based deformation
field is estimated. This deformation field is then utilized to
project the local attention span from the source view to the
target view. In parallel with local attention, we also incor-
porate coarse global attention, where the local and global
messages are fused based on the reliability of the flow. As
supervision, we apply a Extensive experiments on both two-
view pose estimation and visual localization demonstrate
the effectiveness of our method.

2. Related Works
2.1. Global-Local Attention for Image Matching

Employing Transformer in dense/semi-dense matching
boosts the matching capability of original features ex-
tracted from a single view, as has been studied by previous
works [2, 3, 35, 38, 42, 50], yet the quadratic complexity
of vanilla Transformer imposes challenges. Recently, some
researchers [3, 38, 50] propose to combine coarse global at-

tention and sparse local attention to handle high-resolution
input while maintaining modest computation costs. Specif-
ically, global attention establishes correlation across source
and target tokens to guide local attention. In QuadTree At-
tention [38], full token sets are gradually tailored into dif-
ferent groups where sparse attention is performed only at
more related target tokens at a fine level. AspanFormer [3]
regresses intermediate flow maps with uncertainty to adap-
tively adjust attention span. ASTR [49] utilizes neighbor-
hood around intermediate matching points to generate local
attention region for better local consistency.

Sharing a similar practice with ASpanFormer, we regress
intermediate flow field during cross attention process. How-
ever, instead of relying on learned uncertainty to deter-
mine attention pattern, we base our method on a geometric
ground, where piece-wise affine deformation field are esti-
mated to shape local attention span.

2.2. Deformable Attention

In the context of the general Vision Transformer [8], de-
formable attention [45, 56] is introduced as an augmentation
to the vanilla attention framework. It dynamically shapes at-
tention span based on local features, similar to the concept
of deformable convolution in CNNs [15, 16]. Deformable
attention predicts a set of offsets from sampled tokens to
modify the sampling position. While it has shown effec-
tiveness in various applications, plain deformable attention
is not directly applicable to cross-view attention in image
matching tasks. Additionally, the current deformable atten-
tion approach follows a fully data-driven method, making it
challenging to interpret the learned deformation clearly. In
contrast to the free-form deformable attention, we propose a
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geometry-driven deformable operation that explicitly mod-
els local deformation introduced by view changes, as shown
in Fig. 1.

2.3. Local Deformation Estimation

Estimating local deformation patterns is a highly focused
subject in the field of image matching. In the pre-deep
learning era, traditional descriptors relied on manually de-
signed shape detectors to guide the generation of local
patches [1, 22]. With rapid advancements of deep learning
techniques, numerous studies have explored learning-based
approaches for estimating deformations. OriNet [48] and
LIFT [47] proposed to learn a canonical orientation for fea-
ture points, AffNet [25] predicts additional affine parame-
ters to enhance modeling capabilities. UCN [4] and LF-
Net [47] take images as input and apply spatial transforma-
tion networks to intermediate features. Some CNN-based
local features [24, 53, 54] employs deformable convolution
to generate dense deformation fields.

Unlike the aforementioned works that focus solely on
single-view feature descriptions, we embed local shape es-
timation into a cross-view attention framework in a more
principled manner.

3. Methodology

In Fig. 2, we provide an overview of our network archi-
tecture, which inherits the paradigm of semi-dense match-
ing [35]. Taking an image pair IA, IB as input, our network
generates coarse correspondences and then refine them. The
nework begins with a CNN-based encoder to extract initial
features in 1

8 resolution for both images. These features are
position-encoded through element-wise summation of sinu-
sodinal signals [41] and passed through iterative self/cross
attention blocks for enhancing. All self attention blocks are
conducted at 1

32 scale. For each cross attention, global at-
tention is conducted at 1

32 resolution, while affine-based lo-
cal deformable attention is conducted at 1

8 resolution. Local
and global messages are then fused based on uncertainty of
intermediate flow estimation to suppress unreliable local in-
formation. Self attention is also conducted at 1

32 resolution
between two cross attention blocks.

3.1. Global Attention

In this part, we introduce global attention at 1
32 resolution,

which is used in self attention blocks and global branch
in cross attention blocks.Formally, the input source/target
features Fs, Ft at 1

8 scale are downsampled to 1
32 through

strided 2 average pooling. Vanilla dot-product attention is
then performed to retrieve coarse message mc, which is bi-
linear upsampled back to 1

8 and fused with Fs through a

feed-forward network (FFN).:

F ′
s = Avgpool2×2(Fs) (1)

F ′
t = Avgpool2×2(Ft) (2)

m′ = Attn(WqF
′
s,WkF

′
t ,WvF

′
t ) (3)

m = Up2×2(m
′) (4)

F̂s = Fs + FFN(Fs,m) (5)
= Fs + LN(DWConv(Fs + MLP(m)) (6)

Here, W(q/k/v) denotes the linear transformation matrix for
query/key/values vectors, DWConv means depth-wise con-
volution, LN means layer normalization. F̂s is the updated
source features, which is fed into following attention layers.

Note that global msg will additionally be combined with
local message in cross attention blocks, which will be intro-
duced in the next section. We also would like to mention
that even without local branch in cross attention, this basic
global attention blocks has been a very competitive base-
line, which is validated both in our experiment in Sec. 4.3
and a concurrent LoFTR’s follow up work [44].

3.2. Local Deformable Attention

Global attention ensures long-range dependency, yet in-
evitably lost fine-level information due to lack of concen-
tration and downsampling. To alleviate this issue, previous
works [3, 38, 50] propose to enhance global attention with
parallel fine-level attention. However, these works either
adopts irregular sparse sampling or data-driven rectangular
sampling, neglecting the importance to align local deforma-
tion across two-views. Further more, fixed learned prior are
used to fuse global and local message, yet not all local mes-
sage are equally reliable due to inherent uncertainty.

To address these issues, we propose affine-based de-
formable attention and selective message fusion. Con-
cretely, we estimate intermediate deformation filed to align
the focusing region for each token group. The retrieved
message in local attention are further fused with global mes-
sage based on estimated uncertainty. In the following part,
we introduce the workflow and insights of this operation.

3.2.1 Intermediate Flow Regression

As mentioned in Sec. 3.1, global cross attention is con-
ducted parallel with each local attention, which outputs
coarse retrieved message mc ∈ R

H
32×

W
32×C and attention

matrix A ∈ RN×M×H . Here N,M denotes the number of
source and target tokens, and H denotes the head number in
multi-head attention. Naturally, the attention matrix reflects
the similarity between cross-view features and thus can be
used to decode a rough intermediate flow map. Inspired
by the global decoder in dense matching methods [10, 11],
we utilize weighted sum of position embeddings and a de-
coder to regress intermediate flows. Formally, mean of A
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Figure 2. The overall structure of our proposed network. The network adopts iterative global-local attention operations to pass cross-view
messages at both global and local scales. After identifying coarse level matches at 1/8 resolution, a convolution refiner follows to predict
correspondence residuals.

along the head dimension is computed as Â ∈ RN×M ,
which is used to aggregate weighted positional embeddings
Pt ∈ RM×D from the target image. Here, D is the posi-
tional embeddings’ channel number. A convolution-based
decoder is followed to regress flows and uncertainty:

Φ = Conv(ÂP ), Φ ∈ R
H
32×

W
32×4. (7)

Each element ϕi = [uxi, uyi, σxi, σyi] from Φ indicates
the corresponding flow coordinates uxi, uyi and uncertainty
σxi, σyi in each location. Drawing inspiration from previ-
ous works [3, 40, 55] that adopts a probabilistic framework
to model flow uncertainty, we take uncertainty σxi, σyi as
stand deviation in a two-dimensional Gaussian distribution
and train them in a self-supervised manner. The estimated
flow map is bilinear upsampled to 1

8 resolution and is used
to estimate patch-wise affine field.

3.2.2 Affine Field Estimation

Flow maps recovered by coarse attention matrix roughly re-
flect corresponding regions for each location in the source
feature map, yet flow in free-form is inevitably corrupted
by outliers and doesn’t reflect priors in two-view geometry.
For example, point correspondences from a local area with-
out large depth fluctuation can be well approximated by an
affine transformation.

To embed geometric priors into deformation field, we es-
timate piece-wise affine parameters from intermediate flow
map Φ. Concretely, source flow map Φ is grouped by non-
overlapping windows with size l. For each l × l window,
a set of affine parameters is estimated from the local flow.
Formally, we denote coordinates of each point i in a local
window as [xi, yi], while its corresponding flow as [x̂i, ŷi].
The affine to be estimated is denoted as A ∈ R2×3. We set
the last column of A as difference between mean of [xi, yi],
[x̂i, ŷi], [

a13
a23

]
=

1

N

N∑
i=1

[
xi − x̂i

yi − ŷi

]
(8)

The rest of elements in A are estimated through linear least
squares,[

a11 a12
a21 a22

]T
= (CTC)−1CT


x̂′
1 ŷ′1

x̂′
2 ŷ′2

. . . . . . . .
x̂′
N ŷ′N

 (9)

where

C =


x′
1 y′1

x′
2 y′2

. . . . . . . .
x′
N y′N

 (10)

(11)
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and

x′
i = xi − a13, y

′
i = yi − a23 (12)

x̂′
i = ŷi − a13, ŷ

′
i = ŷi − a23 (13)

To reduce misalignment caused by noisy flow, we fur-
ther regularize the estimated A through a series of opera-
tions, including constraining the underlying scale, rotation
and shearing. More details about affine regularization are
provided in supplementary materials.

As a result, the flow field Φ ∈ R
H
8 ×W

8 ×4 is converted to
affine parameters field Faff ×R

H
8l×

W
8l ×6.

3.2.3 Deformable Attention

Ideally, the source/target patch in local attention should be
aligned to capture the most relevant features. However,
achieving this alignment with a rectangular attention pat-
tern is often infeasible due to complex local deformations.

To address this issue, we leverage the estimated affine
field to sample a deformed target patch for each source
patch. Concretely, we reuse the non-overlapping windows
with size l in previous affine field estimation as source
patches. For each source patch S, we use the corresponding
affine parameters faff ∈ R6 from Faff to project an affine
patch Ŝ in target feature map. To ensure better coverage,
the size of target patch is set as αl, which is α times larger
than the source token patch. Illustration of this process can
be seen Fig. 2.

Given query and key/value feature maps Fq, Fk/v, we
sample tokens uniformly in S, Ŝ, which yields tokens fq ∈
Rl2×D, fk/v ∈ Rα2l2×D for each patch. Local attention is
performed within each patch pair to generate local message.

3.3. Selective Message Fusion

Simply averaging or concatenating global and local mes-
sage mg,ml is a straightforward way for message fusion,
which, however, is problematic since ml may come from
inaccurate flow estimation or non-overlapping regions. To
address this issue, we use predicted uncertainty to weight
local message. Concretely, for each position in the source
feature map, we index the corresponding uncertainty σx, σy

from the intermediate flow map. The fused message is cal-
culated as a weighted sum of mg,ml:

m = p1mg + p2ml, (14)

[p1, p2] = softmax(α, β[(1 + γReLu(σx + σy)]
−1) (15)

α, β are learnable parameters to balance prior weight
for global and local messages, which are modified by
uncertainty-related factor. A learnable parameter γ controls
its sensitivity. Through this formulation, large uncertainty
results in lower weight in message fusion. The obtained

fuse message m is used to update source features through a
feed-forward network as introduced in Sec. 3.1. An illus-
tration of learned fusion heatmap can be seen in Fig 4. The
produced score map helps our network to sharply focus on
co-visible and salient regions, discarding the non-relevant
areas in message fusion.

3.4. Match Determination

After all attentional blocks, the enhanced features F̃A ∈
Rn×c, F̃B ∈ Rm×c are fisrt used to generate correlation
matrix C = τF̃AF̃

T
B ∈ Rn×m, where τ is a temperature

parameter, followed by dual-direction softmax operation to
produce assignment matrix S. We retain coarse-level cor-
respondences Mc by mutual nearest neighbor (MNN) and
threshold of 0.2 on dual-softmax score.

To refine coarse matches Mc are in 1/8 resolution, a lo-
cal correlation-based refinement block is adopted. For each
coarse match, we sample a local window with size w from
the source and target feature map in 1/2 resolution, which
yield local patches ps, pt ∈ Rw×w×D. For feature in source
patch ps, we calculate its correlation score with target patch
pt, which are flattened into correlation feature and fed into
a convolutional refiner to predict fine level residuals condi-
tioned on coarse match.

3.5. Loss Formulation

Loss of our method consists of three parts, (1) coarse-level
loss, (2) fine-level loss, (3) flow estimation loss.

Coarse level loss includes two terms, the classification
loss Lce and spatial softmax loss Lcs. In cogruent with pre-
vious works, we re-reproject points in each image pair us-
ing ground-truth depth and camera poses, where the mutual
nearest match Mgt are considered as ground truth match.
The classification loss Lce is defined as a focal loss using
assignment matrix S:

Lce =−
∑

(i,j)∈Mgt

(1− S(i, j))γ log(S(i, j))

−
∑

(i,j)/∈Mgt

S(i, j)γ log(1− S(i, j)). (16)

One limitation of classification loss is that all mismatches
suffer the same loss penalty no matter how far they are from
the ground truth. Taking inspiration from previous works on
learned descriptor [43], we adopt an additional spatial soft-
max loss as compensation, where close mismatch should
produce lower loss than ’distant’ ones.

Lcs =
1

|Mgt|
∑

i∈Mgt[:,0]

[
∑
j

S(i, j)Pij − P gt
i ]2 (17)

Here, Pij denotes coordinates for each entry in the as-
signment matrix, while P gt

i denotes the ground truth match
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LoFTR ASpanFormer Ours

Figure 3. Visualization of image matches from LoFTR [35], ASpanFormer [3] and our method, where green lines represent inlier matches,
while red lines represent outlier matches.

coordinate for left point i. Spatial softmax loss encour-
age maximization of positive entries in assignment matrix,
which is in the same direction of classification loss. Addi-
tionally, it also considers spatial relationship and penalizes
mismatch according to their distance to the ground truth. In
our ablation study in Sec. 4.3, we fine the simple modifica-
tion on loss term largely benefit overall performance.

For intermediate flow, we follow previous works [3, 55]
to minimize the log-likelihood for the estimated Gaussian
distribution. Formally, given flow estimation Φ from each
layer and ground truth flow Dgt, Lflow is defined as:

Lflow = − 1

|Dgt|
∑
ij

log(P (Dgt
ij |Φij)). (18)

More details about flow regression are provided in the sup-
plementary material.

The fine-level loss is defined as the l2-distance between
regress refine offset and ground truth.

In summary, we formulate the loss as:

L = Lce + Lf + λ1Lcs + λ2Lflow. (19)

3.6. Implementation Details

Our network uses ResNet-18 [13] CNN backbone. We use
4 interleaved self/cross attention blocks for feature update.
For local cross attention, we set window size l = 4. For
fine-level refinement, we set local window size w = 5. For
supervision, we set λ1 as 1 for outdoor model and 5 for
indoor model, λ2 is set as 0.1.

We train two different models for indoor and outdoor
scenes respectively on ScanNet and Megadepth. Both mod-
els follows the same training scheme in previous works [3,
35, 38], which lasts for 30 epochs on 8 V-100 GPUs. More
details of implementation and training are available in the
supplementary material.

4. Experiments
4.1. Two-view Pose Estimation

Datasets. We use ScanNet [5] and MegaDepth [19] datasets
to evaluate the matching ability of our method in indoor
scenes and outdoor scenes. We follow evaluation pro-
tocols to select 1500 image pairs from two datasets re-
spectively, where the relative poses are recovered through
OpenCV ransac, as is done in previous works [3, 35,
38, 50]. For ScanNet, we resize all images to [640,480]
resolutions. For MegaDepth, we resize all images to
[1152,1152]. LoFTR(E) and TopicFM only reports outdoor
trained model, thus the corresponding number for indoor
evaluation are omitted.

Comparative methods. We compare the proposed method
with 1) sparse approaches, 2) semi-dense approaches that
outputs 1/8 resolution coarse matches with local refine-
ment, including LoFTR [35], QuadTree Attention [38], AS-
panFormer [3], TopicFM [12] and efficient LoFTR [44]. We
also include a series fully dense methods producing dense
warp for reference.

Results. As presented in Table 1, our method outperforms
all sparse and semi-dense methods on both indoor and out-
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Figure 4. Heatmap for selective local fusion score.

Method ScanNet MegaDepth

AUC@5 AUC@10 AUC@20 AUC@5 AUC@10 AUC@20

SP [6]+SuperGlue [31] 16.2 33.8 51.8 49.7 67.1 80.6
SP [6]+LightGlue [21] 14.8 30.8 47.5 49.9 67.0 80.1

LoFTR [35] 22.0 (16.9) 40.8 (33.6) 57.6 (50.6) 52.8 69.2 81.2
QuadTree [38] 24.9 (19.0) 44.7 (37.3) 61.8 (53.5) 54.6 70.5 82.2

MatchFormer [42] 24.3 (15.8) 43.9 (32.0) 61.4 (48.0) 53.3 69.7 81.8
ASpanFormer [3] 25.6 (19.6) 46.0 (37.7) 63.3 (54.4) 55.3 71.5 83.1

TopicFM [12] - (17.3) - (35.5) - (50.9) 54.1 70.1 81.6
LoFTR (E) [44] - (19.2) - (37.0) - (53.6) 56.4 72.2 83.5

Ours 27.1 (22.0) 47.5 (40.9) 64.8 (58.0) 57.3 72.8 84.0
PDCNet+(H) [40] 20.3 39.4 57.1 51.5 67.2 78.5

CasMTR [2] 27.1 47.0 64.4 59.1 74.3 84.8
DKM [11] 29.4 50.7 68.3 60.4 74.9 85.1
RoMa [10] 31.8 53.4 70.9 62.6 76.7 86.3

Table 1. Two-view pose estimation results on ScanNet dataset [5] in indoor scenes and MegaDepth dataset [20] in outdoor scenes. Figures
in bracket are results of evaluating outdoor-trained model on ScanNet dataset.

door dataset. We also report cross-dataset generalization
results by evaluating MegaDepth model on ScanNet. Even
without training on any indoor scenes, our outdoor model
demonstrates high accuracy on indoor scenerios.

The speed-optimized efficient loftr demonstrates impres-
sive performance with several advanced network designs,
including rotary positional encoding, two stage refinement
and RepVGG backbone, which can also be adopted to en-
hance our method (the reported results don’t use these en-
hancements).

4.2. Visual Localization

Datasets. Apart from two-view pose estimation, we fur-
ther evaluate our network in the visual localization pipeline,

where two stand benchmarks InLoc [37] and Aachen Day-
Night v1.1 [32, 33, 52] are used to demonstrate the per-
formance in indoor and outdoor scenes. We embed our
method to Hloc [30] pipeline for evaluation. We use the
model trained on the MegaDepth to localize both inloc and
Aachen datasets. All input images are resized so that the
longest dimension is 1024.
Results. The results are reported on Table 2. Our
method demonstrates highest accuracy on Aachen dataset,
and similar performance with a concurrent work efficient
LoFTR [44] on InLoc dataset. Noted that the improvements
proposed in our method is orthogonal to efficient LoFTR.
Generally, our method shows strong generalization ability
in visual localization settings.
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Method DUC1 DUC2 Mean Day Night Mean
(0.25m,2) / (0.5m,5) / (1m,10)

SP [7]+SuperGlue [31] 47.0 / 69.2 / 79.8 53.4 / 77.1 / 80.9 67.90 89.8 / 96.1 / 99.4 77.0 / 90.6 / 100.0 92.15
SP [7]+LightGlue [21] 49.0 / 68.7 / 80.8 55.0 / 74.8 / 79.4 67.95 90.2 / 96.0 / 99.4 77.0 / 91.1 / 100.0 92.28

LoFTR [35] 47.5 / 72.2 / 84.8 54.2 / 74.8 / 85.5 69.83 88.7 / 95.6 / 99.0 78.5 / 90.6 / 99.0 91.90
MatchFormer [42] 46.5 / 73.2/ 85.9 55.7 /71.8 / 81.7 69.13 - /- / - - / - / - -
ASpanFormer [3] 51.5 / 73.7 / 86.4 55.0 / 74.0 / 81.7 70.38 89.4 / 95.6 / 99.0 77.5 / 91.6 / 99.5 92.10

PATS [17] 55.6 / 71.2 / 81.0 58.8 / 80.9 / 85.5 71.45 89.6 / 95.8 / 99.3 73.8 / 92.1 / 99.5 91.68
TopicFM [12] 52.0 / 74.7 / 87.4 53.4 / 74.8 / 83.2 72.17 90.2 / 95.9 / 98.9 77.5 / 91.1 / 99.5 92.18

LoFTR (E) [44] 52.0 / 74.7 / 86.9 58.0 / 80.9 / 89.3 73.63 89.6 / 96.2 / 99.0 77.0 / 91.1 / 99.5 92.06
Ours 56.1 / 74.7 / 86.9 55.0 /79.4 / 87.0 73.18 89.9 / 96.2 / 98.9 79.1 / 91.1 / 99.5 92.45

Table 2. Visual localization results on InLoc [37] and Aachen Day-Night v1.1 dataset.

4.3. Ablation Study

We conducted an ablation study on the ScanNet dataset, fol-
lowing the protocol outlined in Section 4.1. The results in
shown in Table 3. Our baseline uses 4 interleaved self/cross
attention, where the cross attention is only conducted at 1

32
scale without fine-level local attention.

To study the effect of loss design, we test two settings:
(1) replace focal loss with spatial softmax loss (row 2),
(2) use spatial softmax loss as an additional term (row 3).
We observe that direct replacement results in worse re-
sults, indicating focal loss is essential for learning distinc-
tive features. Adding spatial softmax loss brings consider-
able improvement, reflecting the importance to enforce spa-
tial smoothness in loss design.

We then sequentially add local attention with fixed-size
rectangular span (row 4), add uncertainty-based selective
fusion in Sec. 3.3 (row 5), and apply affine-based deforma-
tion (row 6). All proposed components make notable con-
tributions over baseline, validating the effectiveness of our
method designs.

Design Pose Estimation AUC

@5 @10 @20

baseline 24.0 44.4 61.5
replace focal loss with s.s. loss 21.5 40.1 57.9
+s.s. loss 25.1 45.6 62.8
+local attn. 26.0 46.1 63.4
+selective fusion 26.6 46.8 63.9
+affine estimation. 27.1 47.5 64.8

Table 3. Ablation study on ScanNet dataset [5].

4.4. Efficiency Evaluation

In this section, we conduct a comparison of different semi-
dense methods on their model size and inference cost. In ad-
dition to our normal setting, we also provide a light variant
with very slim backbone (600k parameters) and 2 attention

Method AUC@5/10/20 #Parameters(M) GFLOPs Latency(ms)

LoFTR 52.8 / 69.2 / 81.2 11.1 1767 281.6
LoFTR-L 49.6 / 66.7 / 79.6 2.3 235 89.3
Ours-L 52.4 / 69.8 / 81.7 2.1 265 98.5
QuadTree 54.6 / 70.5 / 82.2 13.2 1792 335.2
ASpanFormer 55.3 / 71.5 / 83.1 15.5 1855 312.3
Ours 57.3 / 72.8 / 84.0 12.8 1678 296.4

Table 4. Performance-cost trade-off for different methods, we re-
port auc on megadepth dataset. Ours-L denotes our light variants.
Flops and latency for all methods are measured with image resize
to 1200/1152 resolution. We use one V100 GPU for testing.

layers (denoted as ours-L). Details for the light setting can
be found in supplementary materials. We apply the similar
light-weight modifications to LoFTR (denoted as LoFTR-
L).

As can be seen in Tab. 4, our normal version network
shares similar cost and model size with LoFTR while de-
livers significant performance gain. Our light version net-
work uses only 15% flops and 18% parameters to reach
LoFTR’s performance, while reducting LoFTR to the same
level results in largely degenerated performance. Overall,
our method shows good performance under different cost
budget.

5. Conclusion
In this paper, we introduce AffineFormer, a novel semi-
dense matcher equipped with affine-based deformable lo-
cal attention and selective message fusion. We capture lo-
cal deformation caused by viewpoint changes through the
estimation of affine transformation field, which is used to
shape local attention patterns. We then propose to fuse
global-local message robustly through adaptive fusion. The
effectiveness of spatial softmax-based loss is also studied,
which is neglected in previous works. Extensive experi-
ments demonstrates our method’s effectiveness in geometry
estimation.
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