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Abstract

RGB-Thermal (RGB-T) image retrieval is crucial in
scenarios where RGB data alone is insufficient for reli-
able decision-making. These include all-day, all-weather
surveillance and security operations, search and rescue op-
erations and autonomous navigation systems. However,
RGB-T image retrieval remains underexplored due to the
nature of the currently available datasets. Specifically,
these datasets do not lend themselves to training models
in the standard RGB visual place recognition (VPR) set-
ting. Therefore, we explore and analyse the effectiveness
of existing RGB pre-trained models in addressing the RGB-
T image retrieval problem. In particular, we evaluate the
performance of numerous pre-trained models on the RGB-
T image retrieval task. The efficacy of the models is evalu-
ated on eight RGB-T datasets. Quantitatively, recall rates,
Central Kernel Alignment (CKA), and the proposed cen-
troid condition are used for evaluation. Qualitative analysis
uses distance plots, t-SNE plots and heatmaps like Saliency
Based Similarity Maps (SBSM). Interestingly, and surpris-
ingly, some of the pre-trained models deliver good cross-
domain retrieval performance. To the best of our knowl-
edge, this analysis is the first of its kind in RGB-T image
retrieval with the available RGB-T datasets. We believe this
will serve as a baseline for future work in this area of re-
search.

1. Introduction

In video-based applications like surveillance and au-
tonomous navigation systems that operate all-day and in all-
weather conditions, the role of RGB and Thermal (RGB-T)
imaging sensors cannot be overemphasized. RGB sensors
capture the colour and texture information, while thermal
sensors detect infrared radiation and capture the tempera-
ture variations in the scene. As seen in the first two rows of
Fig. 1, their complementary capabilities address challenges
due to low-light conditions (dawn, dusk, night) and adverse
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Figure 1. Rows 1 and 2: Corresponding RGB and thermal image
pairs from the M3FD [31] dataset. Row 3: A corresponding pair
from the VIS-NIR [7] dataset.

weather conditions (fog, mist, smoke etc.). Aligning fea-
tures across these modalities can be complex due to visual
inconsistencies like smoothened edges, lighting conditions,
and the nature of information conveyed by each of the two
modalities. Additionally, variabilities in the pixel intensi-
ties, distribution and domain shifts in RGB-T datasets add
another layer of complexity to this task. The ultimate goal
of using RGB-T data is to design systems that deliver high-
quality and reliable performance irrespective of illumina-
tion and weather conditions.

In this work, we are particularly interested in image
retrieval solutions in scenarios where both modalities are
crucial for comprehensive perception and decision-making.
However, the state-of-the-art (SOTA) image retrieval litera-
ture [4], [18], [3], [50] focuses mainly on the Visual Place
Recognition (VPR) task using RGB imagery. The problem
of RGB-T image retrieval remains an open challenge due to
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the lack of corresponding RGB-T datasets similar to VPR

datasets. This shortcoming impedes the training of deep

learning models on RGB-T data in VPR settings for the

RGB-T image retrieval task. Furthermore, current SOTA

VPR algorithms often struggle when evaluated on RGB-T

datasets.

We make the following contributions in this work:

1. An extensive evaluation of ImageNet pre-trained models
including AlexNet [29], VGG16 [42], SqueezeNet [22],
ResNet-N [20] where N = 18, 34,50, 101, 152 on the
RGB-T image retrieval task on eight RGB-T datasets.
These datasets serve as benchmarks for object detec-
tion, pedestrian detection, image translation, image fu-
sion, and segmentation under challenging scenarios.

2. A demonstration that the above pre-trained models per-
form better than the SOTA VPR and multimodal tech-
niques on the image retrieval task.

3. An explanation of the factors contributing to the superior
performance of pre-trained models on RGB-T datasets.
Specifically, we assess the models’ ability to distinguish
between the visually closest and farthest images using
various quantitative measures such as CKA [27], the pro-
posed centroid condition, and recall rates. Qualitative
measures such as distance plots, feature visualizations
using t-SNE [43] and heatmaps like SBSM [12] are used
for model explainability.

2. Related Work

Existing studies on matching images from different modal-
ities primarily focus on solving pair-wise image similarity
rather than image matching through retrieval. This process
involves assigning a similarity score for a given pair of im-
ages. Of late, matching multi-spectral images from wave-
lengths outside the visible spectrum has received significant
attention. These multi-spectral images include VIS-NIR
(visible - near-infrared), VIS-SWIR (visible - short wave in-
frared), VIS-LWIR (visible - long wave infrared), and VIS-
thermal (or RGB-T). Among these, a majority of papers fo-
cus on matching VIS-NIR images (row 3 in Fig. 1). The lit-
erature can be broadly categorized into four types: 1) classi-
cal key-point-based techniques, 2) learning-based key-point
extraction, 3) image patch matching/similarity, and 4) vi-
sual place recognition (VPR) methods.

2.1. Classical Key-Point-Based Techniques

The performance of traditional handcrafted methods like
SIFT [33], SURF [6], ORB [40] and BRISK [30] in ex-
tracting corresponding keypoints in RGB-T images is sub-
par due to the colour and texture inconsistencies at the
pixel level. However, some works try to address this is-
sue on VIS-NIR datasets. For instance, MSIFT [7] extend
the idea of opponent colour spaces to VIS-NIR, [34] uses
SIFT [33] descriptors of VIS-LWIR along with time infor-

mation. HCGEC [38] tries to enhance the rough structures
and suppress the detailed texture information. HoDMs [14]
uses DMs and DBMs to capture the common structure
and texture properties between the multi-spectral images.
DDCE [14] is based on consistent edge structures, and [46]
proposes an OMF method based on self-similarity maps.
HGEO [44] uses combined features of maximum gradient
and edge-orientated histograms.

2.2. Learning-Based Key-Point Extraction

These methods extract key point correspondences between
a given pair of images using a learning mechanism trained
on specific data. A majority of the models in this category
employ either a Siamese network (with shared weights)
or a pseudo-Siamese network (with unshared weights) for
the given spectral images. [41] trains a regression model
to align the MN-SIFT descriptors of the VIS-NIR im-
ages before matching, [21] incorporates Unsuperpoint [9]
with CLR [8] loss function to learn VIS-NIR feature point
descriptors, [5] and CMM-Net [10] uses both Siamese
and pseudo-Siamese networks to learn modality-shared and
modality-specific features. S2-Net [36] employs a self-
supervised strategy based on detect and describe methods to
learn modality-invariant features. Since the above methods
focus on finding the key point correspondences, the evalua-
tion is based on the Number of Correctly Matched (NCM)
corresponding key points, Correctly Matched Ratio (CMR),
RMSE, and percentage of repeatability.

2.3. Image Patch Matching/Similarity

Multi-spectral image patch similarity methods utilize
patches of varying sizes, including 32 x 32, 64 x 64, and
96 x 96. In our setting, however, we consider the com-
plete image for analysis. Unlike feature point matching,
these methods produce a binary output of whether a given
patch pair is similar or not. [2] trains a two-channel network,
Siamese and pseudo-Siamese networks independently with
concatenated VIS-NIR inputs for a two-channel network.
In contrast to regular methods that use higher-level fea-
tures, AFD-Net [39] uses multi-level feature differences to
enhance feature discrimination. MFD-Net [48] employs
multiple feature difference networks to reduce the loss of
feature difference information at multiple levels, SPIM-
Net [26] performs domain translation and matching using
two U-Net-based domain translation networks to translate
each spectral image to the opposite domain (VIS-NIR) and
a dual Siamese network for feature extraction. FIL-Net [49]
introduces a feature interaction learning module to under-
stand richer and deeper feature relations between multi-
spectral images in a two-branch residual feature extrac-
tion network. [25] presents a review of multimodal image-
matching methods and their applications.
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2.4. Visual Place Recognition Methods

Both key point matching and image patch similarity meth-
ods might fail when applied to higher resolution images
as these methods focus on extracting features in a local
neighbourhood. Matching a higher resolution image (say
480 x 640, 1024 x 1280) as opposed to patch matching
is quite challenging as it requires a deeper understanding of
the semantic relationships between the objects and elements
present in the scene. In this work, we focus on solving the
RGB-T image retrieval problem with higher resolution im-
ages by retrieving the visually closest image from the refer-
ence database as a place recognition task. We evaluate the
SOTA VPR models like NetVLAD [4] which has a train-
able VLAD pooling layer to learn cluster centres for CNN
feature maps, PatchNetVLAD [18] which uses global and
local patch features at different scales from [4] to rerank the
matches, MixVPR [3] which proposes an all-MLP aggrega-
tor to learn a compact global descriptor; and R?Former [50]
which uses correlation and attention scores of transformer
tokens to rerank the retrievals. To verify the effectiveness
of multimodal models that use ViT features, we evaluate
Omnivore [16] trained for classifying images, videos and
3D data (all RGB) and Imagebind [17] which is capable
of binding information from six modalities by learning a
single embedding space. We use models trained on RGB
and thermal images from Imagebind for our evaluation. We
consider thermal geo-localization [45] as the current SOTA
baseline in RGB-T image retrieval literature. The model is
trained to match satellite (RGB) images with thermal im-
agery similar to the problem we are interested in. It uses a
NetVLAD aggregator over a CNN backbone along with do-
main adaptation [15] loss function trained on the captured
and synthetically generated Boson-nighttime [45] dataset.

3. RGB-T Image Retrieval

The majority of the multi-spectral methods mentioned
above are trained on patches from the VIS-NIR dataset [7],
which has images of nine categories. Some of these meth-
ods are trained on only one category and use the remaining
categories and other VIS-NIR datasets for evaluation. Un-
like traditional matching using descriptors, these methods
treat it as a classification problem by evaluating whether
a given patch pair belongs to a class or not using FPR9S5.
Furthermore, all of these methods focus on specific local
regions or features within a patch. Matching VIS-Thermal
(RGB-T) images at higher resolutions is more complex than
VIS-NIR. This is because NIR images are captured from a
band that is very close to the visible spectrum and there-
fore have a high visual correlation in the information cap-
tured between VIS and NIR images. Thermal images, on
the other hand, are far from the visible spectrum and have
no direct visual correlation. As seen in row 3 of Fig. 1,

the fine details in the NIR image are visible and are visu-
ally similar to those in an RGB image. These observations
summarize the challenges in RGB-T image retrieval.

3.1. Problem Setting

In this work, we analyze the efficacy of the pre-trained mod-
els trained on RGB images for different tasks like classifica-
tion, image retrieval and VPR on the RGB-T image retrieval
task on various RGB-T datasets.

Let Q be a set of query images from the RGB domain
and R be a set of corresponding thermal images treated as a
reference database (or gallery). The objective is to retrieve
the closest image I, € R for a given I; € Q. Note that the
query can also be a thermal image with its reference images
as RGB images. A thermal image with the corresponding
RGB query index is considered as a positive sample, while
all other thermal images are considered as negative samples.
It is expected that an ideal model should possess a shared
latent space where the query images are much closer to the
corresponding positive images and farther away from the
negative samples in the feature domain. We use Euclidean
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Figure 2. Overview of the RGB-T image retrieval pipeline used for
analyzing the pre-trained models. The retrieved image is consid-
ered to be a successful match only when ‘q’ (query index) equals
‘r’ (retrieved image index).

distance as a metric to find the distance between the RGB
query image I, € Q and thermal reference image I, € R
by comparing their feature representations as

d(‘[qv-[r) = ”f(Iq) - f(Ir)”Qa (D

where f(I,) and f(I,) represent the normalized (in chan-
nel dimension) flattened feature maps obtained from the last
convolutional layer, right before the classifier head, for all
ImageNet pre-trained models. For all other models, they
represent the output feature vectors for an RGB image and
a thermal image, respectively. We compute the distance be-
tween the query image I, and all reference images in R
using Eq. (1). The distances are then sorted in ascend-
ing order and the top 10 indices with the lowest distance
values are chosen to compute the Recall@N as discussed
in Sec. 3.4, while the image with the least distance value
is considered as the best match (top@1) retrieved by the
model. Fig. 2 shows the evaluation pipeline.
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3.2. Pre-trained Models

We evaluate the performance of the following Ima-
geNet [11] pre-trained classification models: AlexNet [29],
VGG16 [42], SqueezeNet [22], and ResNet-IV [20]. We
evaluate the following VPR models trained on RGB data
for the RGB-T retrieval task: NetVLAD [4], Patch-
NetVLAD [18], MixVPR [3] and R%Former [50]. Also, the
efficacy of the following multimodal models is evaluated:
Omnivore [16], Imagebind [17]. Finally, SGM [45] a state-
of-the-art RGB-T retrieval method for geo-localization is
used as a baseline for comparison.

3.3. Datasets

The lack of RGB-T image retrieval task-specific datasets in
the literature led us to explore alternative RGB-T datasets
designed for tasks like object detection, image fusion,
object tracking, segmentation, 121 translation and pedes-
trian detection. These datasets have pixel-wise correspon-
dences in both RGB and thermal images. The LLVIP [24]
dataset has images captured in low-light conditions. The
M3FD [31], Roadscene [47], and FLIR_ADAS [1] datasets
are mainly used for image fusion and detection tasks. The
INO [23] dataset is used for pedestrian detection and seg-
mentation, while the VOT [28] and VTUAV [37] datasets
are used for tracking applications. These datasets contain
various categories, including people, vehicles like motorcy-
cles, bikes, cars, trucks, vans, trees, and traffic lights, taken
in different weather conditions. The Boson-nighttime [45]
dataset is the only RGB-T dataset constructed for the
thermal geo-localization task. To maintain consistency,
we resize all higher resolution images to 320 x 320 as
MixVPR [3] was trained on the same resolution images.
For datasets that have high temporal correlation, we sample
frames at regular intervals and include them for evaluation.
Although thermal images are single-channel images, we use
thermal images with repeated channels to ensure compati-
bility with the existing pre-trained models. Visual samples
of all the datasets are given in the suppl. material Sec. 1.

3.4. Evaluation

We use Recall@N with N = 1, 5 for evaluating the accuracy
of amodel. We treat a prediction to be correct only when the
model retrieves the exact corresponding image index from
the opposite domain. We don’t consider any bin or range to
declare a prediction to be a correct match.

4. Experiments and Results

All the experiments have been carried out in inference mode
only. No fine-tuning of any of the models has been done.
As described in Sec. 3.2 we evaluate the popular ImageNet
pre-trained models which are widely used as backbones

for many downstream tasks in computer vision, the current
SOTA VPR models and the multimodal models.

4.1. Quantitative Evaluation

4.1.1 Recall Rates

The recall rates are used to evaluate the models’ abil-
ity to retrieve the visually closest images for a dataset.
From Tab. 1, the R@1 recall rates of SqueezeNet [22]
have outperformed all other models used for evaluation.
This superior performance of SqueezeNet is consistent
across all datasets, except the Boson-nighttime [45] dataset.
The SGM_ResNet-18 [45] that was trained on the Boson-
nighttime dataset has the highest recall rates on it. How-
ever, it is notable that SGM_ResNet-18 fails to generalize
over other existing RGB-T datasets. On the other hand,
SqueezeNet has demonstrated much better generalizabil-
ity compared to other ImageNet pre-trained models, SOTA
VPR models, multimodal models, and the thermal geo-
localization SGM _Resnet-18 model. In datasets that have
temporal correlation, we notice a significant increase in re-
call rates between R@1 and R@5. This is because we only
consider a retrieved image to be a correct match if it matches
the query image index exactly. When data is temporally cor-
related, the model may sometimes miss an exact location
retrieval, leading to a decrease in the R@1 recall rate.

412 CKA

Central Kernel Alignment (CKA) [27] is an index that mea-
sures the similarity between the neural network represen-
tations that are learned during the training of the model.
CKA helps us understand how correlated the pre-trained
models’ representations are in the feature space when eval-
uated on RGB and thermal images. Due to the space con-
straints, we chose to present results from the five mod-
els, including the top three ImageNet pre-trained models
(SqueezeNet, VGG16, and AlexNet), the best VPR model
(PatchNetVLAD), and the baseline SGM_ResNet-18. From
Tab. 2, it is evident that the SqueezeNet feature representa-
tions of RGB are closer to thermal feature representations
across all the datasets followed by VGG16 and AlexNet.

4.1.3 Centroid Condition

We propose a centroid condition to determine how well a
model can distinguish visually similar and distinct location
images. The analysis for the centroid condition is done in
the higher-dimensional feature space. We consider RGB-T
datasets LLVIP [24], INO [23] and VOT [28] that have tem-
porally correlated images from different locations. We com-
pute the mean of the feature embeddings of images from
each location, representing it as a centroid feature repre-
sentation of that location. We then calculate the Euclidean
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Models/Datasets LLVIP [24] | M3FD [31] | Roadscene | Boson- FLIR INO [23] VOT [28] VTUAV [37
[47] nighttime [45] ADAS [1]
R@I (%) | 30.67 7333 85.52 16.91 11.73 12.14 38.84 89.53
AlexNet [29]
R@5 (%) | 64.84 91 93.67 30.83 39.47 32.24 71.35 96.51
VGG16 [42] R@I (%) | 43.64 76.66 93.66 25.56 .73 13.78 29.75 88.66
R@5 (%) | 68.33 95 95.64 45.49 42.93 3271 58.5 97.38
SqueczeNet [22] R@1 (%) | 518 80.67 96.38 35.71 14.13 15.65 41.87 94.77
queezelet =2 R@5 (%) | 78.8 94.67 99.10 56.39 44.80 37.85 77.69 98.84
R@I (%) | 25.69 63.33 84.16 10.15 8.00 10.05 16.80 69.77
ResNet-18 [20]
R@5 (%) | 54.86 87.33 95.02 18.05 28.80 27.80 4325 91.28
R@I (%) | 22.94 57.33 84.62 10.9 773 9.11 13.50 65.99
ResNet-34 [20] R@5 (%) | 48.88 84.33 95.02 21.80 25.60 23.60 3278 87.21
R@1 (%) | 3142 63.67 §9.59 10.90 8.53 9.81 19.28 76.45
- bl
ResNet-30 [20] R@5 (%) | 55.11 89.33 96.83 2331 30.13 28.04 40.50 90.99
R@I (%) | 2693 65.33 90.95 11.28 7.20 10.05 14.60 70.35
Q ~ Pl
ResNet-101 [20] R@5 (%) | 55.11 92.00 96.38 23.68 28.53 26.40 38.29 89.83
R@I (%) | 2643 65.33 88.24 11.28 747 748 12.12 70.06
ResNet-152 [20] R@5 (%) | 57.61 91.00 97.29 25.19 29.87 23.60 36.36 89.24
,, R@1 (%) | 11.47 45 67.42 6.02 56 467 579 36.05
NetVLAD [4] R@5 (%) | 35.56 77.33 83.26 17.67 2347 14.49 23.14 71.22
, R@1 (%) | 38.65 70.33 93.67 10.15 12 88 19.56 85.47
PatchNetVLAD [18] @590y 70.07 87.67 98.19 22.18 40.0 3131 4931 95.06
MixVPR [3] R@I (%) | 1571 66.00 §7.78 2143 10.4 490 11.84 67.44
: R@5 (%) | 43.64 95.0 98.19 3571 36.26 19.62 35.81 88.08
‘ R@I1 (%) | 12 557 63.8 7.9 99 44 9.1 36
2 5
R Former [50] R@5 (%) | 33.4 797 82.8 19.5 333 16.8 30.9 70.9
Omnivore [16] R@1 (%) | 3.24 15.66 14.93 375 1.06 2.1 4.95 2.90
R@5 (%) | 11.97 4133 28.95 10.15 533 7.24 14.87 10.17
Imagebind [17] R@I (%) | 2.99 0.66 0.45 037 0.26 0.46 027 0.29
eebl R@5 (%) | 10.22 133 271 1.87 133 2.1 0.82 1.16
| R@1 (%) | 22.69 61.66 84.61 7744 12.26 724 18.45 61.91
SGM ResNet-18 [45bp @5 7)1 49.87 83.66 91.40 98.87 28.53 22.66 44.90 78.77

Table 1. Comparison of R@1 and R@5 recall rates on popular pre-trained models trained on different tasks. Clearly, SqueezeNet’'s R@1
scores outperform all other models on seven out of eight RGB-T datasets. The best score is indicated in bold, and the next best score is

indicated in underline for each dataset.

Datasets/Models LLVIP [24] | M3FD [31] | Roadscene | Boson [45] | FLIR INO [23] | VOT [28] | VTUAV [37]
[47] ADAS [1]

AlexNet [29] 0.9569 0.8530 0.7483 0.6135 0.9424 0.9894 0.9508 0.9139

VGG16 [42] 0.9732 0.8748 0.8481 0.6939 0.9558 0.9910 0.9614 0.9329

SqueezeNet [22] 0.9785 0.8766 0.8738 0.7616 0.9563 0.9924 0.9688 0.9540

PatchNetVLAD [18] | 0.8483 0.7654 04718 0.4257 0.7915 0.9675 0.8482 0.8173

SGM ResNetI8 [45] | 0.8022 0.6965 0.6306 0.6367 0.8406 0.9639 0.8369 0.8269

Table 2. The CKA similarity index is calculated by comparing the features of the query and reference database. A higher CKA score
indicates that the RGB and thermal features of a particular model are similar. This shows the domain invariant characteristic of the model’s

feature representations

distance between the centroid feature representations of the
RGB and thermal locations. The resulting matrix is ex-
pected to have lower distance values across diagonal ele-
ments, indicating that RGB features of a location are closer
to its corresponding thermal images than to other locations
in the opposite domain. A model that satisfies the centroid
condition is awarded a score of +1 for each location. We re-
peat this process for all three datasets and sum up the scores
to get a single cumulative score.

In Tab. 3, it is observed that SqueezeNet [22] can ac-
curately identify 32 out of 42 locations. However, all the
models fail to identify the corresponding locations in the

LLVIP dataset. This is because the images in LLVIP have
a static background location but have significant changes
in the foreground when compared to the VOT and INO
datasets.

4.2. Qualitative Evaluation

4.2.1 Distance Plots and top@1 Retrievals

The distance plots visualize how the distances vary for a
query I, € Q with the reference images in R set using
Eq. (1). A model with discriminative capability will ideally
have a clear minimum at the corresponding query index in
the distance plot.
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Datasets / Models | No. of locations | AlexNet [29] | VGG16 [42] | SqueezeNet [22] | PatchNetVLAD [18] | SGM_ResNet18 [45]
LLVIP [24] 19 7 8 9 8 13
INO [23] 9 9 9 9 7 9
VOT [28] 14 13 12 14 7 13
Total _score 42 29 29 32 22 35

Table 3. Centroid condition scores comparison between the best-performing models. Bold indicates the highest scoring model which
retrieved the maximum number of locations correctly out of the total number of locations. Underline indicates the next best model that

satisfies the centroid condition.

(a) SqueezeNet [22]
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(c) AlexNet [29]
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Figure 3. t-SNE plots for the RGB and thermal images of the INO dataset in the first and second rows. To help identify corresponding
locations in the plot, similar colors have been used. For example, dark green is used to denote location 3 images in the INO RGB gallery,
while light green is used for the corresponding location 3 images in the INO thermal gallery. PCA and UMAP visualizations can be seen

in Sec. 3.3 in the suppl. material.

From Fig. 4, we observe that for a given query, the
SqueezeNet [22] model has a clear minimum at the exact
corresponding query index in the reference database. How-
ever, all other models fail to differentiate between similar
and dissimilar images and end up with minima at incorrect
indices resulting in a wrong retrieval.

Fig. 5 shows top@1 best retrieved visual results by
the best-performing models under various scenarios. The
qualitative results in rows 1 and 3 in Fig. 5 highlight that
SqueezeNet is good at identifying even minute differences
between neighbouring frames that are temporally correlated
(which is very useful in security-related applications). Row
2 shows the visual results in abnormal weather conditions
with the reference database in not-so-good quality. Even
in these cases, SqueezeNet continues to retrieve the exact
best thermal image for the given RGB query. Additionally,
rows 1 and 4 serve as examples of low-illumination settings
where SqueezeNet does well again. We also observe that
SqueezeNet consistently retrieves the same location images
as its second and third-best retrievals, while other models
fail to retrieve the exact match even amongst their top three
retrievals. Distance plots and the additional qualitative re-
sults can be found in the suppl. material in Sec. 3.1, 3.2.

4.2.2 Feature Visualizations

We use t-SNE [43] to reduce the high-dimensional feature
representations of the pre-trained models to a lower dimen-
sion and visualize them for different locations. We test

the models on three datasets: LLVIP [24], INO [23], and
VOT [28] as they have temporally correlated images from
different locations. We expect the models to cluster the fea-
ture representations of each location together. This helps us
evaluate the models’ ability to compactly represent the fea-
tures of a location and also understand the global and local
relationship between the data samples.

Fig. 3 displays low-dimensional t-SNE feature visual-
izations for the INO dataset on the best-performing models.
Different colour shades are used to indicate correspondence
between RGB and thermal images at various locations. For
most of the models, we see compact clusters for INO in t-
SNE plots and VOT in UMAP [35] plots. The feature visu-
alizations of PCA and UMAP on LLVIP and VOT datasets
respectively can be found in Sec. 3.3 in the suppl. material.

4.2.3 Heatmaps

Heatmaps are useful to identify which parts of an image
have influenced a model’s decision when making a pre-
diction. In this context, we use Saliency Based Similar-
ity Maps (SBSM) [12] which are typically used to ex-
plain models in Content-Based Image Retrieval (CBIR) sys-
tems. SBSM works by highlighting the importance of a
patch when masked, which affects the similarity between
the query image and the reference image. To understand
which regions of the images have contributed to the deci-
sion or prediction, we apply the SBSM technique only to
the top@1 best-retrieved image by the model.
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Figure 4. Distance plots between a query [40] sample and the reference database of the VOT dataset using pre-trained models. SqueezeNet
(highlighted in green) has a sharp clear minimum at the corresponding 40" index, while other models have oscillating curves and have
minima at incorrect indices. The title of each plot shows the query index and the top@ 1 best-retrieved image index by the respective model.

(a) Query (b) SqueezeNet [22] (c) VGG-16 [42]

(d) AlexNet [29] (e) PatchNetVLAD [18] (f) SGM_ResNet-18 [45]

Figure 5. Qualitative examples with an RGB query sample vs top@1 retrieved thermal best match by the best performing models of
Tab. 1. The samples are chosen to understand the models’ behaviour under a variety of conditions. SqueezeNet continues to outperform
other models. SqueezeNet is very good at capturing even the minute changes in the foreground despite the background being static.

The heatmaps in Fig. 6 show that the SqueezeNet top@ 1
retrieved SBSM maps (in (d)) are in correlation with the
reference maps (in (b)) that are generated from the ground
truth images. It is also clear that other models’ features are
not correlated with the ground truth.

4.3. Discussion

Based on the above analysis, we present plausible explana-
tions for the success of ImageNet pre-trained classification
models on the RGB-T image retrieval task.

The VPR models considered were primarily trained for
place recognition task, which involves learning the unique
characteristics of a location in a given scene. However,
these models treat foreground objects like trees, traffic
lights, vehicles, and people as occlusions and focus more on
learning the background aspects of the image. On the other
hand, the ImageNet pre-trained models address the classi-
fication task with 1000 classes, including many common
classes such as motorbikes, cars, trucks, trees, poles, and

people that are also present in the RGB-T datasets used for
evaluation. Since the ImageNet [11] dataset is vast and con-
tains a diverse range of classes, it may have helped the Im-
ageNet pre-trained models create more powerful discrimi-
native representations than other models, resulting in better
recall rates than most SOTA VPR models.

In the case of the multimodal models, Omnivore uses
a Swin Transformer [32] which is jointly trained on vari-
ous classification tasks on images, videos and single-view
3D data (all RGB). On the other hand, Imagebind uses
ViT [13] architectures fine-tuned for person classification
on the LLVIP dataset. When evaluated with the pre-trained
weights, these models with transformer features fail to com-
pete with ImageNet pre-trained models. The SGM_ResNet-
18 [45] model trained on the Boson-nighttime [45] dataset
gives the highest recall rates for the same dataset. However,
it fails to generalize well on all other RGB-T datasets be-
cause the Boson-nighttime dataset on which the model was
trained, does not have variation or distinctive features as we
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Figure 6. Column (a) shows an RGB query and its corresponding ground truth (GT) thermal image pair. Column (b) shows the mask
and the resulting SBSM visualizations for the image pair in column (a). Similarly, column (c) displays the RGB query and the top@1
best-retrieved thermal image, while column (d) has a mask and a map for the corresponding image pair in column (c). This is to understand
what is expected and what the model actually sees in a given RGB-T pair. SqueezeNet’s SBSMs are correlated while others fail.

see in other datasets. The Boson-nighttime dataset was cap-
tured in the desert area and so is the reason for the SGM [45]
model’s poor generalizability.

The SqueezeNet’s unique architecture may also con-
tribute to its superior performance compared to other mod-
els. Unlike traditional CNN models such as VGG, AlexNet,
and ResNet, SqueezeNet mainly uses fire modules instead
of convolutional layers and incorporates delayed downsam-
pling. The fire module significantly reduces the number
of model parameters by replacing large-sized kernels with
smaller 1 x 1 and 3 x 3 kernels and the larger activation
maps due to delayed downsampling can lead to higher accu-
racies [19]. This makes SqueezeNet lightweight and much
faster in inference mode, which is highly valued in real-time
applications, particularly in resource-constrained environ-
ments. Tab. 4 shows the comparison of the parameters of
the ImageNet pre-trained models. SqueezeNet has less than
a million parameters while every other model used for eval-
uation has a higher number than SqueezeNet. The VPR,
multimodal models and SGM_ResNet-18 use one of these
ImageNet pre-trained models as their backbones and hence
have a higher number of parameters than SqueezeNet.

5. Conclusion

We evaluated the suitability of pre-trained deep learning
models trained on RGB data for the RGB-T image-retrieval

Models AlexNet [29] VGGI16 [42] SqueezeNet [22] | ResNet-18 [20]
# params (M) 2.46 14.71 0.72 11.17

Models ResNet-34 [20] | ResNet-50 [20] | ResNet-101 [20] | ResNet-152 [20]
# params (M) 21.28 23.50 42.50 58.14

Table 4. Comparison of model parameters in millions (omitting
the classifier head). SqueezeNet, with less than a million parame-
ters, is ideal for real-time applications.

task. Based on a thorough analysis of various factors, in-
cluding model architectures, datasets, and quantitative and
qualitative measures, we observe that ImageNet pre-trained
models generalize well for the RGB-T image retrieval task.
SqueezeNet [22] is a clear standout and is a good choice
for real-time applications, consistently demonstrating supe-
rior performance and generalization capabilities when com-
pared to other models. While our experiments with Ima-
geNet pre-trained models focused on the features of the last
convolutional layer, we would like to explore the capabil-
ities of early CNN layers as they capture the low-level se-
mantics like basic patterns, structures, edges and other at-
tributes that may aid in improving the task performance in
the future work and also investigate the recent foundational
models for RGB-T image retrieval task. We also emphasize
the need for VPR-related RGB-T datasets for the RGB-T
image-retrieval task.
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