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Önder Tuzcuoğlu1,3 Aybora Köksal1,3 Buğra Sofu4 Sinan Kalkan2,3 A. Aydın Alatan1,3

1 Dept. of Electrical and Electronics Eng. 2 Dept. of Computer Eng.
3 Center for Image Analysis, Middle East Technical University, Ankara, Turkey

4 ROKETSAN Inc., Ankara, Turkey
1,2,3{tuzcuoglu.onder, aybora, skalkan, alatan}@metu.edu.tr, 4bugra.sofu@roketsan.com.tr

Abstract

We introduce, XoFTR, a cross-modal cross-view method

for local feature matching between thermal infrared (TIR)

and visible images. Unlike visible images, TIR images are

less susceptible to adverse lighting and weather conditions

but present difficulties in matching due to significant tex-

ture and intensity differences. Current hand-crafted and

learning-based methods for visible-TIR matching fall short

in handling viewpoint, scale, and texture diversities. To

address this, XoFTR incorporates masked image model-

ing pre-training and fine-tuning with pseudo-thermal im-

age augmentation to handle the modality differences. Addi-

tionally, we introduce a refined matching pipeline that ad-

justs for scale discrepancies and enhances match reliabil-

ity through sub-pixel level refinement. To validate our ap-

proach, we collect a comprehensive visible-thermal dataset,

and show that our method outperforms existing methods

on many benchmarks. Code and dataset at https://

github.com/OnderT/XoFTR.

1. Introduction

Matching local features across different views of a 3D scene

is a fundamental step for e.g. visual camera localization

[11, 64], homography estimation [24], and structure from

motion (SfM) [66]. Matching features between visible-

thermal images is a special case in image matching. Un-

like visible images, thermal infrared (TIR) images are ro-

bust against adverse light and weather conditions such as

rain, fog, snow, and night [19, 40]. However, visible-TIR

image matching faces challenges due to differences in tex-

ture characteristics and nonlinear intensity differences be-

tween the thermal and visible spectra, stemming from dis-

tinct radiation mechanisms: Thermal images depict thermal

radiation, while visible images capture reflected light [47].

TIR cameras also typically have lower resolution and field

of view [40, 71], affecting matching performance.

To match TIR-visible images, many hand-crafted [10,

29, 35, 37, 45] and learning-based [1, 8, 15, 17, 55] methods
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Figure 1. Our XoFTR provides significant improvements over

LoFTR [69] on visible and thermal image pairs. Only the inlier

matches after RANSAC are shown, and matches with epipolar er-

ror below 5× 10
−4 are drawn in green.

have been proposed. Despite the promising results reported,

performances across different viewpoints, scales, and poor

textures have been sub-optimal. Learning-based methods

for visible image matching have addressed many of these

challenges but often overlook extreme modality differences

in thermal-visible pairs [14, 38, 49, 69, 89].

To address this gap, our study endeavors to extend the

methods for visible image matching advancements to the

visible-TIR matching problem, choosing the LoFTR net-

work [69] as our baseline model. LoFTR, recognized for its

effectiveness in matching through the use of self-attention

layers and a correlation-based refinement at the subpixel

level, is robust in challenging scenarios, partially also due

to the training on the MegaDepth dataset [46]. However,

visible-only training sets limit performance in visible-TIR

matching. To address this, we propose a two-stage ap-

proach adapting (i) masked image modeling (MIM) pre-

training and (ii) fine-tuning with augmented images. In-

spired by PMatch’s MIM [89], our strategy introduces the

model to TIR-visible differences, enhancing overall perfor-

mance. For fine-tuning, we use a robust pseudo-TIR image

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
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the final published version of the proceedings is available on IEEE Xplore.
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augmentation method to adapt to modality-induced varia-

tions, extending the cosine transform [27, 83].

As highlighted in prior work [38], LoFTR faces chal-

lenges with scale differences, often in thermal imaging due

to lower resolutions and narrower fields of view. Inspired

by AdaMatcher [38], we introduce one-to-one and one-to-

many matches at 1/8 the original resolution during coarse

matching and propose a fine matching pipeline that up-

scales these matches to 1/2 scale with a customized decoder

for both pre-training and fine-tuning, enhancing visible-

thermal matching. Re-matching at 1/2 scale filters low-

confidence matches, improving reliability of textural struc-

tures. Matches are then refined at sub-pixel level using

a regression mechanism, preventing a point in one image

matching with multiple points in the other.

The absence of a suitable urban visible-thermal bench-

mark has led us to develop a new dataset for evaluating

our method, covering a wide range of viewpoint differences

and weather conditions (sunny and cloudy) for comprehen-

sive evaluation. We also evaluate our method’s homogra-

phy estimation performance on publicly available datasets,

demonstrating that it surpasses strong baselines, achieving

state-of-the-art performance.

Contributions. Our main contributions are as follows:

• We introduce a novel two-stage training approach

for visible-thermal image matching, addressing dataset

scarcity by leveraging masked image modeling pre-

training and fine-tuning with augmented images.

• We propose an innovative fine matching pipeline suitable

for the pre-training phase of visible-thermal image match-

ing, enabling one-to-many matching and ensuring reliable

texture matching at a reduced scale of 1/2.

• We curate a novel challenging visible-TIR image match-

ing dataset covering various viewpoint differences and

weather conditions.

• Through rigorous experiments, we show that our ap-

proach outperforms strong baselines, achieving state-of-

the-art results in visible-thermal image matching.

2. Related Work

Local Feature Matching. Detector-based methods for lo-

cal feature matching can be categorized into handcrafted

and learning-based approaches. Following the success of

[9, 12, 54, 61], handcrafted methods used to be popular be-

fore the rise of deep learning based techniques [25, 70, 84].

Deep networks such as Superpoint [20] and R2D2 [59] in-

troduced self-supervised models and joint learning tech-

niques for improved keypoint detection and descriptor dis-

crimination. Graph-based methods such as SuperGlue [63]

and LightGlue [49] improved efficiency and matching ac-

curacy through graph neural networks and optimized algo-

rithms.

Detector-based approaches often struggle in low-texture

Method Year Multimodal Multiview

LoFTR [69] 2021 × ✓

DKM [26] 2023 × ✓

Shape-Former [15] 2023 ✓ ×
MIVI [23] 2023 ✓ ×

AdaMatcher [38] 2023 × ✓

PMatch [89] 2023 × ✓

XoFTR Ours ✓ ✓

Table 1. A comparative study of our approach with prior work.

areas, a problem which is mitigated in detector-free end-to-

end learning-based methods [26, 60, 72, 73, 87]. The use

of Transformer in detector-free matching provided state-of-

the-art results [14, 38, 69, 80, 89]. A prominent example,

LoFTR [69], utilizes a Transformer architecture for local

image feature matching, generating matches from coarse

to fine, especially in low-texture regions. Other more re-

cent examples include AdaMatcher [38] and PMatch [89].

AdaMatcher tackles large-scale and viewpoint variations

with an innovative feature interaction module and adaptive

matching for precise patch-level accuracy. PMatch [89] re-

defines dense geometric matching through a novel approach

to masked image modeling, a cross-frame transformer, and

a unique loss function that improves performance in tex-

tureless areas.

While all these methods attain high performances in visi-

ble imagery, their application to multimodal visible-thermal

pairs is limited. Some studies focus to fill this gap, ranging

from handcrafted techniques [10, 29, 36, 50, 51] to learning-

based solutions [1, 3, 7, 17, 55, 76]. ReDFeat [18] re-

couples detection and description constraints with a mutual

weighting strategy, increasing the training stability and the

performance of the features. Shape-Former [15] and MIVI

[23] represent advanced matching methods for multimodal

image pairs, emphasizing feature matching and structural

consensus.

As summarized in Tab. 1, proposed work distinguishes

itself from previous approaches by supporting both multi-

modality and multiview simultaneously. XoFTR is robust

across various angles and scales, as well as textures on ob-

jects in images of different modalities.

Unsupervised Pre-training in Vision. Following BERT

[22] and GPT [58] in NLP, unsupervised pre-training (UPT)

has become widely used in computer vision, notably with

DINO [13]. Inspired by context autoencoders [57], denois-

ing autoencoders [75], and masked language modeling as a

UPT task in BERT, many studies [6, 86, 88] has been intro-

duced MIM as a UPT for learning useful representations of

images by predicting masked image regions. Approaches

using MIM explored different masking and UPT strategies:

e.g., the Masked Autoencoder (MAE) [34] focuses on par-

tially observed patches, whereas SimMIM [81] operates by

random selection from fully observed patches.

Despite the unprecedented success of UPT strategies in
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tasks using RGB imagery, the research on UPT in multi-

modal settings has been sparse and only very recent. Multi-

MAE [4] is one of the few attempts that enhances cross-

modal learning by reconstructing masked patches from

different modalities, improving task performance without

needing specific multi-modal datasets. Complementary

Random Masking [68] targets RGB-Thermal segmentation

with unique masking and self-distillation approach, reduc-

ing modality dependency. Additionally, a multi-modal

transformer [16] employs masked self-attention for efficient

learning with incomplete multi-modal data.

Our presented approach differs from the aforementioned

studies on multi-modal UPT by introducing a scheme to

adapt the paired pre-training method of PMatch [89] to the

network structure of LoFTR for Visible to Thermal image

applications. This method is adaptable for both pre-training

and fine-tuning stages.

RGB - Thermal Image Conversion. The literature dis-

cusses hand-crafted and learning-based methods for RGB to

thermal image conversion. One of the simplest yet notewor-

thy hand-crafted approaches is the cosine transform, intro-

duced by Fookes et al. [27] and further explored by Yaman

and Kalkan [83]. This method is simple and computation-

ally light but produces images lacking true thermal charac-

teristics.

To generate more realistic thermal imagery, several stud-

ies have introduced learning-based methods for RGB to

TIR, e.g., using Generative Adversarial Network (GAN)

based unpaired image to image translation [21, 42, 85, 90].

The central goal in such approaches is to understand the

correlation between RGB an TIR images and simulate ther-

mal image as realistic as possible. However, GANs may

generate artifacts, if test images differ significantly from

training data. To mitigate this, contrastive learning [56] and

dual contrastive learning [30] have been proposed. A multi-

domain translation network introduced by Lee [44], and its

edge-preserving modification [43], use separate vectors for

content and style, aiding in domain translation and preserv-

ing edges, respectively, even in the absence of annotated

TIR datasets.

Despite these recent advancements, generative networks

for TIR conversion still produce outputs with assumptions

and artifacts, leading to pixel inaccuracies [19]. Therefore,

the cosine transform method is preferred for the purposes of

this work due to its reliability.

3. Methods

Our method XoFTR utilizes a ResNet-based [33] CNN

for multi-scale feature extraction from visible and thermal

images, integrating three modules: coarse-level and fine-

level matching modules, and a sub-pixel refinement mod-

ule, for precise image match predictions at multiple resolu-

tions. Starting with feature extraction, the approach pro-

gresses through coarse and fine-level matching to deter-

mine image feature correspondence across scales, and con-

cludes with sub-pixel refinement for accurate match local-

ization. We introduce a new paired masked image model-

ing (MIM) method of PMatch [89] for semi-dense match-

ing, pre-training with real image pairs and fine-tuning with

pseudo-thermal images created from visible image datasets

through cosine transform augmentation. An overview of the

proposed method is presented in Fig. 2.

3.1. CoarseLevel Matching Module

The coarse-level matching module aims to predict matches

at a 1/8 scale of the original image resolution using coarse-

level features FA
1/8, F

B
1/8 derived from the CNN backbone.

Unlike the original LoFTR architecture, which employs

one-to-one assignment for coarse-level match predictions,

we adopt the many-to-one/one-to-many/one-to-one assign-

ment strategy proposed in AdaMatcher [38]. This ap-

proach addresses feature inconsistency caused by large-

scale or viewpoint variations common in visible-thermal

image matching, eliminating the need for manual methods

such as image cropping.

LoFTR Module: We directly adopted the LoFTR module

[69], which consists of linear self- and cross-attention [41]

blocks, to correlate the feature maps FA
1/8 and FB

1/8, provid-

ing refined feature maps denoted as F̂A
1/8 and F̂B

1/8.

Matching Layer: Given F̂A
1/8 and F̂B

1/8, firstly, the simi-

larity matrix S is calculated as:

S(i, j) =
1

τ
·
〈

Linear(F̂A
1/8(i)),Linear(F̂

B
1/8(j))

〉

, (1)

where Linear(·) is linear layer, i and j indices of features

in feature map F̂A
1/8 and F̂B

1/8, and ⟨·, ·⟩ stands for the inner

product. Inspired by [38], coarse-level matching probability

matrices are obtained by:

P0(i, j) = Softmax (S (i, ·))j ,

P1(i, j) = Softmax (S (·, j))i .
(2)

From the matching probability matrices P0, we select

pairs (i, j) as matches when the corresponding confidence

values are higher than a threshold value θc and than any

other element along its rows. Similarly, for P1, indexes

higher than the threshold and other elements in the column

were selected as match predictions. We represent coarse-

level match predictions as:

Mc = {
(

ĩ, j̃
)

| P0 (̃i, j̃) = max
k

P0 (̃i, k),P0
(

ĩ, j̃
)

≥ θc}
⋃

{
(

ĩ, j̃
)

| P1 (̃i, j̃) = max
k

P1(k, j̃),P1
(

ĩ, j̃
)

≥ θc}.
(3)

3.2. FineLevel Matching Module

Given the coarse-level match predictions (Mc), FLMM is

employed to attain matches at the 1/2 scale of the origi-
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Figure 2. Overview of the proposed method. XoFTR consists of four modules: (1) A CNN backbone which extracts features at scales of

1/8, 1/4, and 1/2. (2) The coarse-level matching module (CLMM), which correlates the features and creates coarse-level match predictions

(at 1/8 scale), allowing one-to-one and one-to-many assignment. (3) The fine-level matching module (FLMM), which re-matches coarse-

level match predictions at 1/2 scale and creates fine-level match predictions, filtering low-confidence matches. (4) The sub-pixel refinement

module (SPRM) for refining fine-level match predictions at the sub-pixel level with a regression mechanism, preventing a point in one image

from matching with multiple points in the other image.

nal image resolution. For this purpose, we designed a cus-

tomized decoder architecture that permit it to be used both

in the pre-training phase and to carry the information pro-

cessed by the LoFTR module to upper layers, enhancing

fine-level visible-thermal matching ability. Furthermore,

matches at the 1/2 scale undergo reassessment based on

confidence values, enabling the selection of texturally more

reliable matches.

In the decoder structure, firstly, we concatenate F̂A
1/8 and

FA
1/8 along the channel dimension. Then, we apply a point-

wise convolution, decreasing the channel size to be equal

to the channel size of FA
1/4, followed by a depth-wise con-

volution operation with a kernel size of 3 × 3. The same

procedure is applied to F̂B
1/8 and FB

1/8. More formally:

F̄ ∗
1/8 = Conv3×3

(

Conv1×1(F̂
∗
1/8 ∥ F ∗

1/8)
)

, (4)

where ∗ is either A or B. For each coarse match (̃i, j̃), we

crop pairs of local windows at corresponding locations from

{F̄A
1/8, F̄

B
1/8}, {FA

1/4, F
B
1/4} and {FA

1/2, F
B
1/2} with sizes

(1 × 1), (3 × 3) and (5 × 5) respectively. For one match

pair (̃i, j̃), these windows are denoted as {fA
1×1, f

B
1×1},

{fA
3×3, f

B
3×3} and {fA

5×5, f
B
5×5}. If an index i or j is ob-

served more than once in matches, the corresponding win-

dow is copied more than once for each pair (̃i, j̃). Next, to

pass information between local window layers, we down-

sample the channel dimension of fA
1×1 and concatenate with

fA
3×3, and then pass it through a transformer layer with

a self-attention. From the output of the transformer, the

windows are splinted back and denoted as f̄A
1×1 and f̄A

3×3.

These steps can be formulated as:

{f̄A
1×1, f̄

A
3×3} = Split

(

Trself

(

Cat(Down(fA
1×1), f

A
3×3)

))

, (5)

where Cat and Split are token-wise concatenation and

splitting operation. Trself is a transformer layer with self-

attention, and Down denotes downsampling along the chan-

nel dimension. The same procedure is applied to fB
1×1 and

fB
3×3 as well with outputs f̄B

1×1 and f̄B
3×3. After this step, to

pass information across images, we use another transformer

layer with cross-attention between f̄A
3×3 and f̄B

3×3, where

the outputs are denoted as f̃A
3×3 and f̃B

3×3 as expressed by

{f̃A
3×3, f̃

B
3×3} = Trcross(f̄

A
3×3, f̄

B
3×3) where Trcross is trans-

former layer with cross-attention.

Next, we apply the same steps from the start for win-

dow pairs {f̃A
3×3, f

A
5×5} and {f̃B

3×3, f
B
5×5}, and obtain the

outputs f̃A
5×5 and f̃B

5×5. For every coarse match predic-

tion (̃i, j̃), the similarity matrix S ĩ,j̃
f between fine-level win-

dows f̃A
5×5 and f̃B

5×5 is calculated by S ĩ,j̃
f (i, j) = 1

τ ·

⟨f̃A
5×5(i), f̃

B
5×5(j)⟩. Then, we employ dual-softmax oper-

ation to obtain fine-level matching probability matrix P ĩ,j̃
f :

P ĩ,j̃
f (i, j) = Softmax

(

S ĩ,j̃
f (i, ·)

)

j
· Softmax

(

S ĩ,j̃
f (·, j)

)

i
. (6)

Finally, for each coarse match prediction (̃i, j̃), we select

the pairs (̂i, ĵ) for which P ĩ,j̃
f (i, j) is higher than a thresh-

old of θf and all other elements to obtain fine-level match

predictions Mf . As a result for each coarse-level match

prediction (̃i, j̃), we constructed a fine-level match predic-

tion (̂i, ĵ).
In the employed transformer architectures, we use

vanilla attention [74] and bidirectional attention [49, 77] for

self and cross-attention layers respectively making it more

robust to input variations without increasing computational

complexity due to small window size and shared query and

key projections. Furthermore, we add absolute positional

bias to each window feature before sending it to transformer
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layers to leverage position information effectively. Inspired

from [32, 53], we utilize a 2-layer MLP to embed the abso-

lute 2D token location into the feature dimension.

3.3. Subpixel Refinement Module

In this module, we convert fine-level match predictions to

sub-pixel matches by defining a simple regression mecha-

nism on matches. In contrast to [79], we regress pixel loca-

tions for both images. For this purpose, we concatenate the

feature vectors of f̃A
5×5 and f̃B

5×5 at (̂i, ĵ) and apply MLP
layer and Tanh function to jointly regress local sub-pixel

coordinates δxA
, δyA

, δxB
, δyB

as follows:

{δxA
, δyA , δxB

, δyB} = Tanh
(

MLP(f̃A
5×5 (̂i) ∥ f̃B

5×5(ĵ))
)

. (7)

Then, sub-pixel matches (x̂A, x̂B) ∈ Msub are obtained

by summing local sub-pixel coordinates and coordinates of

fine-level matches on the images. The sequence of fine-

level matching followed by sub-pixel refinement for each

coarse match allows us to prevent one point in image IA

from being matched to more than one point in the other im-

age IB and vice versa.

3.4. Masked Image Modeling

Before learning to match RGB-IR images, we introduce our

model to real multi-modal image pairs with non-linear in-

tensity differences belonging to visible and thermal spectra

by utilizing MIM pre-training. Inspired by Pmatch [89],

we pre-train our network to reconstruct randomly masked

visible-thermal image pairs while conveying pre-trained en-

coder and decoder layers together to the fine-tuning task.

Masking Strategy: To use different scale feature maps in

the encoder layer used in FLMM, we create the mask in

the fine-scale and upscale it up to the original image resolu-

tion as in ConvNextv2 [78]. For both images, the masks are

generated randomly to cover 50% of the image with 64×64
size patches. Instead of 32 × 32 as in [78, 81, 89], we use

64× 64 patches with a larger input image size of 640× 410
to enable the network to learn intensity differences in ther-

mal and visible spectra in more detail. We start the masking

procedure by applying the binary masks directly on the in-

put images to avoid leakage of masked patches. After pass-

ing through the CNN backbone, similar to [6, 81, 89], we

use learnable masked token vectors to replace the masked

patches on feature maps FA
1/8, FA

1/4, FA
1/2.

Decoder: After the LoFTR module, we directly employ the

decoder architecture in FLMM to reconstruct the images.

To implement this in practice, for each masked token in

coarse scale, we create the local window f̃5×5 as described

in FLMM section and then project it to original image reso-

lution by Ĩ10×10 = Linear(f̃5×5) to reconstruct the image.

In other words, we reconstruct the image using 10× 10 im-

age windows for each coarse-level masked token. Thanks

TI
R

V
�s�

bl
e 

(g
ra

y)

Masked Image Reconstructed Image

Figure 3. Visualization of reconstructed images using MIM pretext

task. Input images are from [39].

to the low disparity in the selected dataset [39], the same

location of the feature maps for both images are used with

the FLMM layer to benefit from the cross-attention layer.

To supervise MIM, we use mean square error (MSE) be-

tween the target image and reconstructed image similar to

[34, 78]. A sample masked sample images and their recon-

struction results are shown in Fig. 3.

3.5. Data Augmentation

Due to the lack of urban visible-thermal datasets to be

used in image matching, we propose a simple but highly

effective image augmentation method to generate pseudo-

thermal images from visible images during the fine-tuning

stage. To create a pseudo-thermal image, first, we randomly

change the hue, saturation, and value intensities of the vis-

ible band RGB image. After converting the image to the

grayscale, we apply a modified version of the cosine trans-

formation [27, 83] to generate a variety of randomly gener-

ated images to represent thermal images with different in-

tensity differences. For the grayscale image Iij ∈ [0, 1] ,

the randomized cosine transformation is calculated by:

Ipseudo = Norm
(

cos
(

w̄ × (I − 0.5) + θ̄
))

, for

w̄ = w0 + |α0| × wr,

θ̄ = π/2 + α1 × θr,

(8)

where Norm stands for the min-max normalization of the

image between 0 and 1. α0 and α1 are random vari-

ables with Normal distribution. w0, wr and θr are hyper-

parameters chosen as 2π/3, π/2 and π/2 intuitively. We ad-

ditionally apply random Gaussian blur operation with ker-

nel size 5× 5. Some generated pseudo-thermal image sam-

ples are shown in Fig. 4 together with real counterparts.

By practicing the proposed augmentation method to one of

the image pairs during fine-tuning, our network gains en-

durance against nonlinear intensity variations which is the

crucial part for visible-thermal image matching.

3.6. Supervision

Our loss function consists of three components which are

coarse-level matching loss, fine-level matching loss and

sub-pixel refinement loss.
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 RGB TIR Pseudo-Thermal

Figure 4. Pseudo-thermal image samples generated with the pro-

posed augmentation method together with real counterparts.

Coarse-Level Matching Loss: To supervise the matching

probability matrices P 0 and P 1, we apply the Focal Loss

(FL) [48] following LoFTR [69] and AdaMatcher [38]:

Lc =
(

FL(P 0, P̂ ) + FL(P 1, P̂ )
)

, (9)

where P̂ is coarse-level ground-truth matching matrix. We

obtain ground-truth coarse matches similar to LoFTR [69]

but without a mutual nearest neighbor constraint. For this

purpose, we create 2D position grids for each image at the

1/8 scale, and we project these grids to each other using

depth maps and camera poses. Then, we assign projected

grid points as positive matches using re-projection distances

allowing one-to-many and many-to-one assignments.

Fine-Level Matching Loss: Although we select only one

point as a match from fine-level windows f̃A
5×5 and f̃B

5×5,

we supervise all fine-level features correspondences in P ĩ,j̃
f .

We define fine-level matching loss as follows:

Lf =
1

|Mc|

∑

(̃i,j̃)∈Mc

FL
(

P ĩ,j̃
f , P̂ ĩ,j̃

f

)

, (10)

where P̂ ĩ,j̃ is fine-level ground-truth matching matrix for

a coarse-level match (̃i, j̃). P̂ ĩ,j̃ is calculated at 1/2 scale

similar to coarse-level ground-truth matching matrix with

an addition of mutual nearest neighbor constraint allowing

only one-to-one matches.

Sub-pixel Refinement Loss: Inspired by TopicFM+ [28],

we implemented the symmetric epipolar distance function

[31] to calculate the sub-pixel refinement loss. This ap-

proach eliminates the need for explicit ground-truth match-

ing pairs and enables us to supervise both matching coor-

dinates jointly. Given an estimated matching coordinate

pair (x̂A, x̂B) in normalized image coordinates (in homo-

geneous form), the sub-pixel refinement loss is defined as:

Lsub =
1

|Mc|

∑

(x̂A,x̂B)

∥x̂T
AEx̂B∥2

(

1

∥ET x̂A∥20:2
+

1

∥Ex̂B∥20:2

)

,

(11)

where E is the ground-truth essential matrix obtained using

camera poses.

Overall Loss: Our total loss is calculated by:

Ltotal = λcLc + λfLf + λsubLsub, (12)

where λc, λf and λsub are hyperparameters chosen as 0.5,

0.3 and 104 respectively.

4. Proposed Dataset

To showcase the effectiveness of our method XoFTR, we

introduce METU-VisTIR, a novel dataset featuring thermal

and visible images captured across six diverse scenes with

ground-truth camera poses. Four of the scenes encompass

images captured under both cloudy and sunny conditions,

while the remaining two scenes exclusively feature cloudy

conditions. This diverse dataset facilitates the evaluation

of matching algorithms across various challenges, including

extreme viewpoint variations and weather-induced changes

in lighting and temperature.

We captured sequential images of the scenes using cam-

eras of DJI Mavic 3 Thermal drone whose thermal and

visible band cameras are positioned closely. The thermal

camera boasts a resolution of 640 × 512 pixels, a FOV of

61°, and operates within the wavelength range of 8-14 µm.

Meanwhile, the visible band RGB camera features a reso-

lution of 3840 × 2160 pixels and a FOV of 84°. Ground-

truth poses were recovered using offline systems such as

COLMAP [65, 67] and HLOC [62] methods with RGB im-

ages. Since the cameras are auto-focus, we obtained GT

camera parameters for both cameras using COLMAP in the

same modality, supplemented by distortion parameter esti-

mation using a calibration pattern. Although the auto-focus

nature of the cameras may result in slight imperfections in

the ground truth camera parameters, they are adequate for

the purpose of method evaluation. Some images from our

dataset are shown in Fig. 5.

We created two benchmark sets from the captured im-

ages, totaling 1382 and 1208 image pairs, labeled as cloudy-

cloudy and cloudy-sunny. The cloudy-cloudy set consists of

thermal and RGB image pairs with corresponding GT cam-

era poses, all captured under cloudy conditions. Conversely,

the cloudy-sunny set contains thermal and RGB image pairs

with GT poses, capturing one image in sunny and the other

in cloudy conditions.

Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Scene 6

RG
B
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R
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C
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Figure 5. Visualization of some images from our dataset.
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LoFTR DKM XoFTR (Ours)
err_t: 9.29 °
err_R: 16.06 °
Precision(5.00e-04) (53.8%): 14/26

err_t: 76.77 °
err_R: 14.46 °
Precision(5.00e-04) (49.0%): 289/590

err_t: 7.16 °
err_R: 8.85 °
Precision(5.00e-04) (84.4%): 135/160

err_t: 26.75 °
err_R: 18.71 °
Precision(5.00e-04) (60.0%): 12/20

err_t: 32.69 °
err_R: 15.66 °
Precision(5.00e-04) (12.1%): 120/991

err_t: 6.52 °
err_R: 2.19 °
Precision(5.00e-04) (98.0%): 148/151

err_t: 20.76 °
err_R: 7.11 °
Precision(5.00e-04) (34.8%): 8/23

err_t: 26.96 °
err_R: 24.28 °
Precision(5.00e-04) (71.9%): 1216/1692

err_t: 2.31 °
err_R: 0.74 °
Precision(5.00e-04) (84.7%): 696/822

Figure 6. Qualitative results for pose estimation. XoFTR (right column) is compared to DKM and LoFTR in METU-VisTIR dataset.

Only the inlier matches after RANSAC are shown, and matches with epipolar error below 5× 10
−4 are shown in green lines.

Category Method
Pose estimation AUC

@5° @10° @20°

Detector-based
D2-Net [25]+NN 2.16 6.01 12.80
SP [20]+SuperGlue [63] 3.90 8.75 16.35
SP [20]+LightGlue [49] 1.17 3.97 9.60
ReDFeat [18] 2.36 5.45 11.26

Detector-free

LoFTR [69] 2.63 6.55 14.11
LoFTR-MTV [52] 1.54 3.89 8.80
ASpanFormer [14] 1.82 4.73 10.60
DKM [26] 5.79 11.47 19.17
XoFTR (Ours) 22.03 39.03 55.06

Table 2. Evaluation on METU-VisTIR cloudy-cloudy dataset.

Relative pose estimation results for visible-thermal image pairs

taken under cloudy weather conditions.

5. Experiments

5.1. Implementation Details

We pre-train our model on the KAIST Multispectral Pedes-

trian Detection [39] dataset, containing 95,000 visible-

thermal pairs from a moving vehicle, with a focus on the

top 640×480 region to avoid road-dominant lower parts.

We use Adam for pre-training with an initial learning rate

of 2.5 × 10−4 and a batch size of 2 for 9 epochs, taking

24 hours on 2 A5000 GPUs. For fine-tuning, we use the

MegaDepth [46] dataset with a 16 batch size at 640 × 640
resolution for padded images, employing Adam with a

2×10−3 learning rate, converging after 24 hours on 8 A100

GPUs. Augmentation is applied randomly to one of the im-

ages IA or IB . θc, θf thresholds: 0.3, 0.1 respectively.

5.2. Experiment 1: Relative Pose Estimation

Evaluation protocol: To evaluate our method with the

METU-VisTIR, following [69], we assess pose error us-

ing area under curve (AUC) at 5°, 10°, and 20° thresh-

olds, defined as the maximum angular deviation from GT

Category Method
Pose estimation AUC

@5° @10° @20°

Detector-based
D2-Net [25]+NN 1.13 3.66 8.96
SP [20]+SuperGlue [63] 4.06 10.70 19.91
SP [20]+LightGlue [49] 3.12 8.39 15.29
ReDFeat [18] 1.16 3.24 7.22

Detector-free

LoFTR [69] 2.77 7.71 16.36
LoFTR-MTV [52] 0.92 2.79 6.82
ASpanFormer [14] 3.18 7.13 14.01
DKM [26] 7.26 14.63 23.60
XoFTR (Ours) 12.59 27.90 45.03

Table 3. Evaluation on METU-VisTIR cloudy-sunny dataset.

Relative pose estimation results for visible-thermal images taken

under the cloudy and the sunny weather conditions.

in rotation and translation. We employ RANSAC and a 1.5

threshold to solve for the essential matrix with predicted

matches, setting the longer image side to 640 pixels dur-

ing testing. Evaluations were independently conducted for

cloudy-cloudy and cloudy-sunny sets.

Compared methods: We compared our XoFTR with the

following publicly available methods: (1) Detector-based

methods including D2-Net [25], SuperGlue [63], Light-

Glue [49] and ReDFeat [18] , and (2) detector-free match-

ers including LoFTR [69], LoFTR-MTV [52], ASpan-

Former [14] and DKM [26]. LoFTR-MTV [52] is LoFTR

trained with aerial visible-TIR image pairs. Prior work

in multi-modal image matching often lack public code or

aren’t readily benchmarked as multi-modal baselines.

Results: As shown in Tab. 2 and 3, XoFTR outperforms

the other methods by a large margin in terms of relative pose

estimation, demonstrating XoFTR’s effectiveness. When

examining the LoFTR-MTV model trained on real aerial

thermal and visible band images, it becomes evident that

the proposed training approach is crucial for achieving ac-

curate matching in urban settings. When we compare Tab.
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Category Method
Homography est. AUC

@5° @10° @20°

Detector-based
D2-Net [25]+NN 2.17 6.10 16.85
SP [20]+SuperGlue [63] 4.76 15.99 37.95
SP [20]+LightGlue [49] 5.57 15.83 35.42
ReDFeat [18] 3.72 12.13 29.21

Detector-free

LoFTR [69] 6.34 14.22 30.23
LoFTR-MTV [52] 4.56 8.57 16.23
ASpanFormer [14] 9.50 18.87 36.42
DKM [26] 2.79 9.55 25.87
XoFTR (Ours) 8.19 23.37 48.15

Table 4. Homography estimation on LGHD LWIR/RGB [2]

and FusionDN [82] datasets. The AUC of the corner error is

reported in percentage.

2 and 3, we observe a decrease in the performance of our

method due to the varying weather conditions. The qualita-

tive results in Fig. 6 support the quantitative results.

5.3. Experiment 2: Homography Estimation

Dataset: We utilized the LGHD LWIR/RGB [2] dataset

along with the RoadScene dataset from FusionDN [82],

which contains 221 pairs of aligned visible-infrared images

of road scenes with vehicles and pedestrians. The LGHD

LWIR/RGB dataset comprises 44 pairs of aligned visible-

thermal images of buildings. By merging these datasets, we

obtained a new dataset. For each image pair, we generated

5 different homographies to serve as ground truth (GT) and

applied them to the images, yielding a total of 1325 image

pairs. Generated GT homographies include random scaling

of [0.8, 1.2], random perspective distortion [−0.15,+0.15],
and random rotation [−15,+15] degrees.

Evaluation protocol: We used the same evaluation proto-

col that LoFTR uses for the HPatches [5] dataset, present-

ing results in terms of the area under the cumulative curve

(AUC) for corner error distances of 3, 5, and 10 pixels.

Results: Tab. 4 demonstrates that XoFTR surpasses other

baseline methods across for 10 and 20 pixel error thresholds

by a notable margin while Aspanformer [14] gets the best

result for the 5-pixel error threshold. Notably, the perfor-

X
o
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T
R

L
o
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T
R

Figure 7. The qualitative homography estimation results for

XoFTR and LoFTR [69].

Method
Pose estimation AUC

@5° @10° @20°

(1) without pretraining 11.81 26.51 42.93
(2) without augmentation 2.92 7.43 14.94
(3) with only one-to-one assignment 9.95 22.60 38.73
(4) with coarse-to-fine module of LoFTR 6.31 14.46 26.77
(5) without SPRM 12.31 27.39 44.68
(6) without the second thresholding θf 11.58 26.08 43.56
(7) without the positional bias in FLMM 12.23 26.99 43.36
Full (XoFTR) 12.59 27.90 45.03

Table 5. Ablation study of XoFTR. All variants of XoFTR are

evaluated on METU-VisTIR cloud-sunny for pose estimation.

mance disparity between LoFTR and alternative approaches

widens as the correctness threshold increases. This exper-

iment confirms that our model performs well beyond our

dataset, demonstrating its success in various situations. For

qualitative comparison, see Fig. 7.

5.4. Experiment 3: Ablation Study

We assess five different variants of XoFTR evaluated on

our METU-VisTIR cloudy-sunny dataset (Tab. 5). The re-

sults suggest that: (1) Training from scratch for only image

matching w/o pretext task yields an AUC drop as expected.

(2) Fine-tuning w/o augmentation leads to a significant drop

in AUC, showing the effectiveness of our proposed aug-

mentation method. (3) Allowing only one-to-one assign-

ment in coarse matching as in LoFTR results in a consid-

erable drop in AUC, demonstrating the importance of one-

to-many assignment. (4) Replacing our FLLM and CLMM

with LoFTR’s coarse-to-fine module (with one-to-one as-

signment) leads to a serious drop in AUC, showing the ef-

fects of the methods we use when bringing coarse matches

to sub-pixel resolution. (5) Matching at the 1/2 scale w/o

SPRM yields an AUC drop due to imprecise matches. (6)

Removing the second thresholding (θf ), which filters low

confidence matches at 1/2 scale, lowers AUC. (7) Remov-

ing the absolute positional bias from FLMM results in a

drop in AUC.

Running Time On an A5000 GPU, XoFTR runs 116 ms

at 640 × 512 resolution while LoFTR [69] runs 102 ms:

One-to-many assignment increases the number of the coarse

matches leading to a small amount of process time increase.

6. Conclusion

We have introduced XoFTR as a novel pipeline for cross-

view visible-thermal image matching. Our two-stage ap-

proach significantly outperforms the compared methods on

several benchmarks. To better evaluate methods, we have

also introduced a novel challenging dataset.
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TÜBITAK ULAKBIM, TRUBA.

4282



References

[1] Florian Achermann, Andrey Kolobov, Debadeepta Dey,

Timo Hinzmann, Jen Jen Chung, Roland Siegwart, and

Nicholas Lawrance. Multipoint: Cross-spectral registration

of thermal and optical aerial imagery. In Conference on

Robot Learning, pages 1746–1760. PMLR, 2021. 1, 2

[2] Cristhian Aguilera, Angel D. Sappa, and Ricardo Toledo.

Lghd: A feature descriptor for matching across non-linear

intensity variations. In Image Processing (ICIP), 2015 IEEE

International Conference on, page 5. IEEE, 2015. 8

[3] Moab Arar, Yiftach Ginger, Dov Danon, Amit H Bermano,

and Daniel Cohen-Or. Unsupervised multi-modal image

registration via geometry preserving image-to-image trans-

lation. In Proceedings of the IEEE/CVF conference on com-

puter vision and pattern recognition, pages 13410–13419,

2020. 2

[4] Roman Bachmann, David Mizrahi, Andrei Atanov, and Amir

Zamir. Multimae: Multi-modal multi-task masked autoen-

coders masked inputs multimae predictions target masked

inputs multimae predictions target masked inputs multimae

predictions target, 2023. 3

[5] Vassileios Balntas, Karel Lenc, Andrea Vedaldi, and Krys-

tian Mikolajczyk. Hpatches: A benchmark and evaluation of

handcrafted and learned local descriptors. In CVPR, 2017. 8

[6] Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit:

Bert pre-training of image transformers. In ICLR 2022 -

10th International Conference on Learning Representations,

2022. 2, 5

[7] Elad Ben Baruch and Yosi Keller. Multimodal matching us-

ing a hybrid convolutional neural network. PhD thesis, Ben-

Gurion University of the Negev, 2018. 2

[8] Elad Ben Baruch and Yosi Keller. Joint detection and match-

ing of feature points in multimodal images. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 44(10):

6585–6593, 2021. 1

[9] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf:

Speeded up robust features. In Computer Vision–ECCV

2006: 9th European Conference on Computer Vision, Graz,

Austria, May 7-13, 2006. Proceedings, Part I 9, pages 404–

417. Springer, 2006. 2

[10] Guillaume-Alexandre Bilodeau, Atousa Torabi, and François

Morin. Visible and infrared image registration using trajec-

tories and composite foreground images. Image and Vision

Computing, 29(1):41–50, 2011. 1, 2

[11] Samarth Brahmbhatt, Jinwei Gu, Kihwan Kim, James Hays,

and Jan Kautz. Geometry-aware learning of maps for cam-

era localization. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 2616–2625,

2018. 1

[12] Michael Calonder, Vincent Lepetit, Christoph Strecha, and

Pascal Fua. Brief: Binary robust independent elementary

features. In Computer Vision–ECCV 2010: 11th European

Conference on Computer Vision, Heraklion, Crete, Greece,

September 5-11, 2010, Proceedings, Part IV 11, pages 778–

792. Springer, 2010. 2

[13] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
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