
Supplementary

1. Implementation Details
We provide addition implementation details in this part, in-
cluding auxiliary flow regression, affine estimation and gen-
eral training settings.

1.1. Intermediate Flow Regression

We inherit formulation of auxiliary flow regression from
ASpanFormer [1], where the flows are treated as random
variables in 2D gaussian distribution. Concretely, for a pixel
in source image, the probability that it correspond to (x, y)
in target image is given by
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The mean ux, uy and standard deviation σx, σy is pre-
dicted by a network introduced in main paper Sec. 3.2.1.
During training, we use log liklihood loss to supervise flow
prediction. More specifically, for each pixel the flow loss is
given by
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where [xgt, ygt] is ground truth correspondences coordi-
nates. After Denoting wx = logσx, wy = logσy and drop-
ping log2π, then
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First two terms encourage the network to decrease pre-
diction uncertainty. Last two terms use inverse exponential
to weight l2-distance between ground truth and predicted
coordinates, which encourages prediction with lower accu-
racy to have a higher standard deviation (or lower confi-
dence). As a whole, the flow loss encourages lower flow
estimation error and adjust uncertainty accordingly.

1.2. Regularizing Affine Estimation

As mentioned in main paper, the accuracy of estimated
affine matrices can be affected by noisy intermediate flow.
To alleviate this issue, we further apply regularization upon
each affine matrix.

Concretely, we pick top 50% points w.r.t. flow uncer-
tainty within each local patch to estimate affine. The esti-
mated A will be decomposed into scale, rotation and shear-
ing factor as following,
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which yields,
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We constrain the scale sx, sy to be in range of [0.5, 4],
the shearing factor m to be in range [-0.5, 0.5] and the ro-
tation angle θ to be in range [−π

3 ,
π
3 ]. We further deprecate

local message from border grids (setting the corresponding
selective fusion score as 0). In Tab. 1, we provide ablation
on affine estimation w. and w/o regularization.

Design Pose Estimation AUC

@5 @10 @20

w. affine regularization 27.1 47.5 64.8
w/o affine regularization 26.5 46.9 63.9

Table 1. Effect of affine regularization on ScanNet dataset [2].

1.3. Training Settings

We inherit data splits from LoFTR [6] and its following
works [1, 7, 9] to train our model on both ScanNet [3] and
MegaDepth [5]. ScanNet model is trained with batch size
32 and initial learning rate 3e−3, where a linear warm-up us
applied for the first epoch. Learning rate is halved at epoch
[3, 6, 9, 12, 15, 18, 21, 24, 27]. Megadepth model is trained
with batch size 8 and initial learning rate 1e−3, where a lin-
ear warm-up us applied for the first 3 epoches. Learning
rate is halved at epoch [8,12,16,20,24].

1.4. Light-weight variant

We reduce our full model on 3 points to obtain the light-
weight version: (1) channel number for all attention layers
is cut from 256 to 128, (2) number of interleaved attention
blocks is cut from 4 to 2, (3) CNN backbone is reduced
from ResNet-18 to a light vgg style network, of which the
structure can be seen in Fig 1.



2. More Visualizations
We provide additional visualizations on matches and affine
attention span in Fig. 2

3. Limitations and Future Works
For a fair comparison with previous works, our network is
based on a relatively old fashion, including ResNet back-
bone and absolute sinusoidal positional encoding, which
can be replaced by advanced feature extractor [4, 8] and
rotary positional encoding [8]. Furthermore, although our
method is effective in general scenarios, we find the affine-
based deformation may not hold in some special settings,
such as non-rigid scenes or objects with very fine-grained
geometry. Potential future works include modernize our
network with recent progress in backbone/Transformer de-
signs and further improve the robustness of local deforma-
tion modeling.
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Figure 1. Network structure for backbone of light-weight variant. The backbone takes a full scale grayscale image as input and outputs
coarse/fine feature map in 1
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respectively. The coarse feature is fed into our attention-based cross-view network for feature update, while
the fine level network is used for match coordinate refinement.
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Figure 2. Matching results and estimated affine filed (top 20 according to uncertainty).
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