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We present additional results in support of the claims
made in the main paper.

1. Dataset Comparison
The comparison between the RGB-T datasets is shown in
Fig. 1, which includes an RGB-T pair from each evaluated
dataset. The title of each image indicates the name of the
dataset from its respective RGB and thermal (Thr) galleries.
Additionally, Fig. 2 displays some samples from the VIS-
NIR [4] dataset. It is worth noting that the near-infrared
images have clear detailing of the elements, similar to the
RGB images, except for the color information. The lumi-
nance variations can be easily observed in the near-infrared
images, which is not the case for the thermal images. In
thermal images, we can only see the temperature aspects of
an object without additional detailing. Thus, these figures
visually demonstrate the complexity of the RGB-thermal
datasets compared to VIS-NIR datasets present in the lit-
erature.

2. Recall Rates on VIS-NIR Dataset
To further support that VIS (RGB)-NIR image retrieval
is much easier than RGB-T image retrieval problem, we
evaluate the ImageNet pre-trained models on VIS-NIR [4]
dataset on each of the nine categories present in it. From
Tab. 1 we see that most of the models perform well on all
the categories during inference. The numbers in the table
indicate that VIS-NIR is a less complex dataset compared
to RGB-T datasets for the image retrieval task.

3. Additional Results
3.1. Distance plots

Fig. 3 show the distance plots for all the pre-trained models
for query 141 in the VOT dataset. All the models shown in
red retrieve a wrong match, while SqueezeNet continues to
retrieve a correct match.

3.2. Qualitative Plots

Fig. 4 shows top@1 retrieval for all the models used for
evaluation. A green bounding box indicates a correct re-
trieval while red indicates incorrect retrieval by a model.

Fig. 5 shows a few other visual cases of query vs top@1
best retrieved image for the best performing models as dis-
cussed in the main paper. Fig. 4 shows the top@1 best
thermal retrievals by all the models for a given RGB query
image. Fig. 6 shows the comparison of the top three best-
retrieved images among the best-performing models for a
given same query image. The captions of each image in-
dicate the corresponding retrieved index by the respective
model. We see that SqueezeNet is consistent in retrieving
the images from similar locations along with exact match
in its top@1 while other models fail to retrieve the correct
match even in its three best retrievals.

3.3. Feature Visualisation Using PCA and UMAP

Fig. 7 show the feature visualization using PCA on the
LLVIP dataset and UMAP [15] on the VOT dataset for the
best-performing models. The colour coding is chosen to
help identify the corresponding location clusters in RGB
and thermal PCA and UMAP plots. The LLVIP dataset does
not show well-defined PCA clusters for all the models be-
cause of major foreground changes in the images.
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Figure 1. Sample RGB-Thermal pairs from all the RGB-T datasets considered for evaluation.

(a) RGB-A (b) NIR-A (c) RGB-B (d) NIR-B (e) RGB-C (f) NIR-C

Figure 2. Sample visible-near-infrared (VIS-NIR) pair from VIS-NIR dataset.
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Datasets/Models Country Field Forest Indoor Mountain Oldbuilding Street Urban Water
AlexNet [13] 96.15% 92.16% 100% 100% 100% 100% 100% 100% 98.04%
VGG16 [17] 96.15% 90.2% 100% 100% 98.18% 100% 100% 100% 98.04%
SqueezeNet [9] 98.08% 98.04% 100% 100% 98.18% 100% 100% 100% 100%
ResNet-18 [8] 96.15% 84.31% 90.57% 100% 94.55% 100% 100% 100% 98.04%
ResNet-34 [8] 94.23% 84.31% 86.79% 100% 98.18% 100% 100% 100% 100%
ResNet-50 [8] 98.08% 92.16% 98.11% 100% 98.18% 100% 100% 100% 100%
ResNet-101 [8] 100% 92.16% 92.45% 100% 98.18% 100% 100% 100% 100%
ResNet-152 [8] 100% 92.16% 90.57% 100% 100% 100% 100% 100% 98.04%

Table 1. Fairly high recall rates were observed on both visible and near-infrared images for all categories in the VIS-NIR dataset when
evaluated on ImageNet pre-trained models.

(a) AlexNet [13] (b) VGG-16 [17] (c) SqueezeNet [9] (d) PatchNetVLAD [7] (e) SGM ResNet-18 [18]

(f) ResNet-18 [8] (g) ResNet-34 [8] (h) ResNet-50 [8] (i) ResNet-101 [8] (j) ResNet-152 [8]

(k) NetVLAD [3] (l) MixVPR [2] (m) R2former [20] (n) Omnivore [5] (o) Imagebind [6]

Figure 3. Distance plots of all the pre-trained models for a query from the VOT dataset. The green colour represents correct retrieval, while
the red colour represents a wrong retrieval.
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(a) Query (b) AlexNet[13] (c) VGG16 [17] (d) SqueezeNet [9] (e) ResNet-18 [8] (f) ResNet-34 [8]

(g) ResNet-54 [8] (h) ResNet-101 [8] (i) ResNet-152 [8] (j) NetVLAD [3] (k) PatchNetVLAD [7] (l) MixVPR [2]

(m) R2Former [20] (n) Imagebind [6] (o) Omnivore [5]
(p) SGM-ResNet-
18 [18]

Figure 4. Few other visual examples of best-retrieved images by all the models for a given RGB query image.

(a) Query (b) SqueezeNet [9] (c) VGG16 [17] (d) AlexNet[13] (e) PatchNetVLAD [7] (f) SGM ResNet-18 [18]

Figure 5. A few more visual examples of best-retrieved images in continuation to the results in the main paper.
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(a) Qry: Loc12-0000 (b) ret: Loc12-0000 (c) ret: Loc5-0007 (d) ret: Loc16-0018 (e) ret: Loc11-0011 (f) ret: Loc5-0002
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(g) Qry: Loc12-0000 (h) ret: Loc12-0002 (i) ret: Loc5-0001 (j) ret: Loc16-0017 (k) ret: Loc5-0002 (l) ret: Loc1-00031
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(m) Qry: Loc12-0000 (n) ret: Loc12-0003 (o) ret: Loc5-0005 (p) ret: Loc16-0016 (q) ret: Loc11-0013 (r) ret: Loc1-0030

Figure 6. Top three thermal images retrieved by the best-performing pre-trained models listed in the main paper. The retrieved images
correspond to a single RGB query. The first, second, and third best-retrievals are in rows 1, 2, and 3 respectively. The results indicate that
SqueezeNet performs the best in retrieving the exact match with the query image. Additionally, SqueezeNet consistently retrieves the same
location images as its second and third-best-retrievals. On the other hand, other models fail to retrieve the exact match even amongst their
top three retrievals.
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Figure 7. PCA and UMAP visualisations for the RGB and thermal images from the LLVIP and VOT datasets respectively.
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