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Abstract

Neural Radiance Fields (NeRFs) have emerged as a
standard framework for representing 3D scenes and ob-
Jects, introducing a novel data type for information ex-
change and storage. Concurrently, significant progress has
been made in multimodal representation learning for text
and image data. This paper explores a novel research di-
rection that aims to connect the NeRF modality with other
modalities, similar to established methodologies for images
and text. To this end, we propose a simple framework
that exploits pre-trained models for NeRF representations
alongside multimodal models for text and image process-
ing. Our framework learns a bidirectional mapping be-
tween NeRF embeddings and those obtained from corre-
sponding images and text. This mapping unlocks several
novel and useful applications, including NeRF zero-shot
classification and NeRF retrieval from images or text.

1. Introduction

In the Neural Radiance Fields (NeRF) framework [27], a
neural network is trained to construct a volumetric repre-
sentation of a 3D environment from images. Once a NeRF
is trained, it enables the generation of novel views of that
environment through ray tracing. They have gained con-
siderable popularity over recent years [29], emerging as a
novel approach for 3D data representation. Representing a
scene with a single NeRF decouples the actual memory oc-
cupation from the spatial resolution and the number of ob-
servations. Indeed, we can encode a hypothetically infinite
number of images at arbitrary resolution into a finite num-
ber of network weights. This may potentially lead NeRFs
to become a standard means of storing and exchanging 3D
information, with entire databases of NeRFs residing on our
hard drives in the future. Supporting this idea is the recent
proliferation of various NeRF datasets [5, 15, 36].
Concurrently with the development of NeRFs, there has
been notable progress in the field of Vision-Language Mod-
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Figure 1. Framework applications. Examples of the possi-
ble tasks we can perform thanks to our framework that connects
NeRFs, images, and text.

els (VLMs) [11, 34]. These models capitalize on large
paired databases of images and text to extract rich multi-
modal representations. By combining modalities, these rep-
resentations obtain a better overall comprehension of im-
ages and text, allowing for better performance in existing vi-
sual and textual tasks. Moreover, they unlocked many novel
applications such as zero-shot classification, where unseen
instances are classified based on textual descriptions, image
retrieval by querying with both text and image prompts, vi-
sual question answering, and many others. In the scenario
in which NeRFs are an additional input modality, an intrigu-
ing research direction is to understand whether and how it
is possible to connect NeRFs to other input modalities, as it
was for images and text. By bridging NeRFs with diverse
input modalities, we might unlock new opportunities for in-
novative applications.

Unlike images and text, which are well-studied input for-
mats, NeRFs present unique challenges as they are neural
networks, making them less straightforward to process by
conventional frameworks. One naive approach would in-
volve rendering images of the object represented by a NeRF.
However, this choice presents various challenges, including
lengthy computation times, determining a viewpoint from
which to render the object, or deciding on an appropriate
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rendering resolution. Conversely, we would encounter none
of these issues by processing the weights of the NeRF. The
problem of how to process NeRF weights to enable down-
stream tasks has been the focus of the recently proposed
framework nf2vec [52]. This work learns to encode the
information contained within the network weights into a
compact embedding that retains sufficient knowledge to be
used as input for downstream tasks.

Thanks to the availability of general purpose pre-trained
VLMs such as CLIP [34] and pre-trained NeRFs encoders
such as nf2vec [52], this paper casts the problem of con-
necting NeRFs, images, and text as learning mapping func-
tions between the latent space of the nf2vec encoder and
the latent space of CLIP. In practice, we propose train-
ing two simple Multi-Layer Perceptrons (MLPs) to map a
NeRF embedding into a CLIP embedding or vice versa. In
this way, given an image or text input, we can discover the
corresponding NeRF or vice versa. Notably, acquiring data
for training such networks is straightforward, as we can di-
rectly leverage the renderings or ground-truth images of the
NeRFs. Moreover, by exploiting a pre-trained model with
multimodal text-image embeddings such as CLIP, we natu-
rally learn the connection between NeRF and texts, avoid-
ing the necessity of NeRF-text pairings.

Our framework unlocks many innovative and compelling
applications, such as those depicted in Fig. 1. For instance,
it is possible to classify NeRFs in a zero-shot manner based
solely on their weights, or given one or more images de-
picting an object, we can retrieve the most closely matching
NeRFs. Alternatively, textual queries can be used to search
for NeRFs stored in our databases. We can even generate
entirely new NeRFs from either images or text.

Despite the simplicity of the architecture, we observe
that our framework effectively performs tasks such as NeRF
zero-shot classification on par with baselines operating on
images obtained from NeRFs without requiring to render
even a single pixel. Moreover, leveraging recent text-to-
image conditional generative approaches [53], we propose
an adaptation technique to apply our method effectively to
real images even when trained solely on synthetic data.

Briefly, our contributions are:

* We investigate for the first time the problem of connecting
NeRFs with images and text.

* We propose the first framework to achieve this goal. No-
tably, this method is easy to train as it requires learning
only two simple MLPs.

e Our idea unlocks many intriguing applications, such as
zero-shot classification of NeRFs by solely processing
their network weights and retrieving NeRFs from images
or texts.

* We propose a technique to adapt our model to perform
well on real images when trained solely on synthetic data.

2. Related work

Vision-Language Models. During the last few years,
there has been a rapid advancement in visual-language mod-
eling. The popularity of Vision Transformer (ViT) [8] has
led to numerous studies that utilize ViT to simultaneously
learn from vision-language data and achieve outstanding
performance in downstream tasks [4, 24, 35, 41, 54]. Re-
searchers have proposed efficient pretraining tasks to en-
hance the alignment between visual and language modal-
ities. Contrastive learning is one of the most prominent
methods widely adopted in many studies [3, 12, 19, 34].
Among these methods, CLIP [34] is one of the most pop-
ular. Additionally, there are emerging works that ex-
plore unified frameworks to address vision-language tasks
[25, 39, 44, 45, 47, 48]. Recent works extend multimodal
representation learning to other modalities such as audio
and videos [11, 46, 49]. Our work employs CLIP to extract
rich multimodal embeddings from images and text.

Neural Radiance Fields. NeRF [27] has emerged as a
valuable tool for a variety of tasks, including view synthe-
sis [26], generative media [33], robotics [51], and compu-
tational photography [28]. Initially, the base NeRF model
employed an MLP to translate spatial coordinates into
color and density. Recent advancements substitute or en-
hance MLPs with voxel grid-like data structures [2, 10, 42].
For instance, Instant NGP [30] utilizes a hierarchical ar-
rangement of coarse and fine-grained grids stored using
hashmaps. These structures facilitate the extraction of fea-
tures, which are then processed by a compact MLP, re-
sulting in significantly accelerated training processes. Our
work employs NeRFs that follow the base formulation, i.e.
a single MLP extracting density and color information for
each 3D coordinate.

Deep Learning on Neural Networks. Multiple recent
studies have delved into using neural networks to process
other neural networks. Early works in the field focused on
forecasting network properties such as accuracy and hyper-
parameters directly from their weights [16, 17, 23, 37, 43].
Recent studies handle networks implicitly representing data
(INRs or Neural Fields). These works perform vision tasks
directly using network weights as the input or output data.
Functa [9] learns priors across an entire dataset using a
shared network and subsequently encodes each sample into
a compact embedding employed for downstream discrimi-
native and generative tasks. The following approaches fo-
cus on processing networks representing individual data,
e.g. a specific object or scene. The first framework doing it
was inr2vec [6]. This approach encodes networks repre-
senting 3D shapes into compact embeddings, serving as in-
put for subsequent tasks. nf2vec [36] extends inr2vec
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to NeRFs, performing several tasks directly from NeRFs
weights, such as classification, generation, or retrieval. [1]
learns how to process neural fields represented as a hy-
brid tri-plane representation. Another research direction
[31, 55-57], recognizing that MLPs exhibit weight space
symmetries [13], proposes innovative architectures tailored
for MLPs by leveraging network symmetries as an inductive
bias. Other works [18, 21] exploit Graph Neural Networks
to learn network representations. To improve the general-
ization of approaches processing neural networks, [38] ex-
plores various strategies for data augmentation directly in
weight spaces. Our framework also processes neural net-
works representing individual objects. In particular, we em-
ploy nf2vec to extract rich embeddings from NeRFs.

3. Connecting NeRFs and CLIP

Our work aims to learn the connection between image, text,
and NeRF [27] modalities. To achieve this goal, given rich
multimodal representations extracted by Vision-Language
Models such as CLIP [34] and compact embeddings ex-
tracted from NeRF weights by nf2vec [52], we learn how
to map a nf2vec embedding into a plausible CLIP embed-
ding and vice versa. In this section, we first report the rel-
evant background knowledge: NeRF, nf2vec, and CLIP
frameworks. Then, we describe our proposed framework
depicted in Fig. 1.

3.1. Preliminaries

NeRF. Given images of a scene or an object, NeRF [27]
allows for novel view synthesis from arbitrary vantage
points. This is achieved by training a neural network, i.e.
an MLP, on a set of sparse images collected from differ-
ent viewpoints. We follow the base NeRF formulation [27]
in which a single MLP parameterizes the radiance field of
the scene as a function of continuous 3D coordinates in
space x = (x,y,z). Such a function produces a 4D out-
put RGBo, encoding the RG B color and volume density
o of each 3D point in the scene. o can be interpreted as the
differential probability of a ray terminating at x. Given a
NeRF, we can render an image from an arbitrary viewpoint
with a desired resolution through volume rendering [27]. In
our paper, NeRFs are considered a standard data format and
the input to our framework. We assume that each NeRF en-
codes a specific object or scene. We wish to avoid sampling
any information from the NeRFs, such as rendering views,
as it would require vast computational overhead and pose
many challenges, such as the choice of the rendering view-
point. This work aims to extract all information solely by
processing MLP weights of the NeRF.

nf2vec. nf2vec [52] can extract compact embeddings
from MLPs that parametrize NeRFs by processing only the
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Figure 2. Feature mapping network training. clip2nerf
is a feature mapping network trained to map image embeddings
of NeRF views to NeRF embeddings. Conversely, nerf2clip
computes the mapping in the opposite direction.

network weights. These codes can then be processed us-
ing standard deep-learning pipelines to perform tasks such
as classification or segmentation. nf2vec is a represen-
tation learning framework that comprises an encoder and
a decoder. The encoder consists of a series of linear lay-
ers with batch normalization and ReLU non-linearity fol-
lowed by a final max pooling. It processes each layer of
the input MLP independently, obtaining one vector for each
MLP layer. Then, the final max pooling compresses all the
layer embeddings into one, obtaining the desired global la-
tent vector representing the input MLP, i.e. the input NeRF.
The decoder reproduces the original NeRF values given as
input the embeddings produced by the encoder and a spatial
coordinate x. Our paper utilizes the pre-trained nf2vec
encoder to embed NeRFs, keeping it frozen.

CLIP. CLIP (Contrastive Language-Image Pre-training)
[34] is a pioneering visual language representation model.
The CLIP architecture consists of an image and a text en-
coder such as ViT [8] and BERT [7], respectively. CLIP
is trained using a contrastive learning objective on a large
set of data, which encourages the model to assign similar
embeddings to semantically related image-text pairs while
maximizing the dissimilarity between embeddings of unre-
lated pairs. This procedure enforces a multimodal vision-
language latent space in which images and corresponding
textual prompts share the same embedding. In our frame-
work, we employ pre-trained and frozen CLIP encoders.

3.2. Feature mapping networks

Architecture. To map CLIP embeddings to nf2vec em-
beddings, we use a simple MLP with GELU [14] activa-
tion function and layer dimensions 512 — 768 — 1024,
where 512 and 1024 are the sizes of CLIP embeddings and
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nf2vec embeddings, respectively. We call this feature
mapping network clip2nerf. Similarly, we use another
MLP, dubbed nerf2clip, with GELU activation function
and layer dimensions 1024 — 768 — 512 to compute the
mapping in the opposite direction.

Training. Given a NeRF and n views of an object, we ex-
tract the nf2vec embedding v of the NeRF and n CLIP
embeddings c; of its views. For each view embedding c;,
we train clip2nerf to maximize the cosine similarity be-
tween its output 1024-dimensional vector v; and the em-
bedding v of that NeRF. Formally, the clip2nerf loss
for an object is:

n

1 {71 -V
»CclipZnerf - ﬁ Z (1 - Mlv”>

=1

Instead, we train nerf2clip to map a NeRF embedding
v to the mean embedding of the n views, c = L 3" ¢;,
as learning to map a v to every c¢; would create a one-to-
many correspondence, i.e. not a function. Specifically, we
maximize the cosine similarity between the nerf2clip
512-dimensional output ¢ and c. Formally:
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During training, the n views can be the ground-truth images
used to train the NeRF or those rendered from it.

4. Experimental Settings

NeRF framework and dataset. We use the NeRF [27]
dataset of nf2vec [52]. The NeRF architecture consists of
an MLP with ReLU activation function and 4 hidden lay-
ers with 256 features each. It applies a frequency encoding
[27] enc(x) to each input 3D coordinate x. Each NeRF is
trained on N = 36 views of a shape of the ShapeNetRen-
der dataset [50]. The dataset consists of a NeRF for each
ShapeNetRender shape, for a total of 38653 NeRFs, which
we split into training (30946), validation (3847), and test
(3860) sets. For each NeRF, we have access to the 36 syn-
thetic images used for training and their depth maps.

Metrics. We evaluate our retrieval experiments (Sec. 6)
with the recall@k metric, i.e. the percentage of queries ¢
such that at least one among the first £ neighbors of ¢ share
the same label as gq. The top-k nearest neighbors of ¢ are
those with the highest cosine similarity with g, sorted from
closest to furthest. We call them 1-NN, 2-NN, ..., k-NN.
Our classification experiments use the standard multi-class
accuracy (Sec. 5).

"A 3D MODEL OF A
<CLASS-NAME>"

Figure 3. Zero-shot NeRF classification method overview.

Training details. Our feature mapping networks
clip2nerf and nerf2clip are trained for 150 and 100
epochs, with learning rates 1075 and 1073, respectively.
Both are trained with the AdamW optimizer [22], one-cycle
learning rate scheduler [40], weight decay 1072, and batch
size 64. We perform all our experiments on a single
NVIDIA RTX 3090 GPU.

5. Zero-shot NeRF classification

To perform zero-shot NeRF [27] classification, we build a
gallery of CLIP [34] embeddings of sentences of form “A
3D model of <class—name>", where <class—-name>"
denotes a class label of ShapeNetRender [50]. In other
words, the gallery contains one CLIP embedding for each
ShapeNetRender class. We then take a test-set NeRF, en-
code it with the nf2vec [52] encoder, process the results
with nerf2clip, and use the output embedding to query
the gallery. Finally, the predicted label corresponds to the
text of the 1-NN. This procedure is illustrated in Fig. 3.
As in our retrieval experiments (Sec. 6), the 1-NN maxi-
mizes the cosine similarity with the query. Tab. 1 shows
classification results for two variants of nerf2clip, one
trained with ground-truth views (“nerf2clip GT” row)
and the other with views rendered from the correspond-
ing NeRF (“nerf2clip rendered” row). As an ablation,
Tab. 2 shows the effect of training nerf2clip with an
increasing number of views, i.e. training nerf2clip to
map a NeRF embedding to the mean CLIP embedding of
n NeRF views, where n = 1,2... N. The model with the
highest accuracy in Tab. 2 is the one reported in Tab. 1.

As a baseline to compare nerf2clip with, we query
our gallery of CLIP class-label embeddings with the mean
of the CLIP embeddings of n random rendered views of a
test-set NeRF, wheren = 1,2... N. We do not use ground-
truth views as queries, as we assume they are only available
at training time. The results are shown in Tab. 1 (“CLIP”
rows). nerf2clip, in both its versions, achieves higher
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Method Supervision Rendering ~ Accuracy (%) T Time (ms) |

CLIP 1 view 73.6 13
CLIP 2 views 71.7 25
CLIP 4 views X v 80.5 49
CLIP 8 views 81.7 97
CLIP 16 views 824 193
CLIP N views 82.4 433
nerf2clip rendered (ours) X X 83.0 2

nerf2clip GT (ours) 84.0

nf2vec (oracle) v X 87.3 1

Table 1. Zero-shot NeRF classification results.
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Figure 4. Zero-shot NeRF classification results (plots). Classi-
fication time and accuracy as a function of the number of views
used for the query.

accuracy than the baseline, which plateaus at 16 views. For
comparison, we also report the classification accuracy of
nf2vec. It is important to note, however, that nf2vec
performs classification in a supervised manner, and there-
fore its accuracy should be regarded as an upper bound to
our zero-shot classification results.

Furthermore, Tab. 1 compares the time required to per-
form zero-shot classification with nerf2clip vs. the
CLIP baseline. For the baselines, we report the sum of view
rendering time, CLIP inference time, and NN search time.
The rendering and the CLIP inference times scale linearly
with the number of views. For nerf2clip, we report
the sum of nf2vec encoder inference time, nerf2clip
inference time, and NN search time. Our method is even
faster than the CLIP baseline using only 1 view.

The results of Tab. 1 are also depicted in Fig. 4, where we
highlight the fact that, while time and accuracy are a func-
tion of the number of views used to query the gallery for the
CLIP baseline, they are a constant for nerf2c1ip at infer-
ence time, as the query is the output of the trained model,
thus requiring no rendering nor CLIP inference. Further-
more, as already pointed out, nerf2clip achieves the
highest accuracy and the fastest inference time.

6. NeRF Retrieval

In the NeRF [27] retrieval application, we aim to identify
NeRFs in a database that closely matches a given textual

Method Views  Accuracy (%) T
1 80.6
2 81.4
. 4 82.4
nerf2clip rendered 3 323
16 83.0
N 82.7
1 82.9
2 83.2
. 4 84.0
nerf2clip GT 3 338
16 83.6
N 82.7

Table 2. nerf2clip training ablation. Effect of the number of
views used for the feature mapping network training on the classi-
fication accuracy.

"A 3D MODEL OF A

<CLASS-NAME>" SEARCH

Figure 5. NeRF retrieval method overview. NeRF retrieval from
images (top) and text (bottom).

or image query. To achieve this, we first construct offline
a gallery of NeRF embeddings obtained by nf2vec [52].
Then, we employ the image or text CLIP [34] encoders
to generate the corresponding embedding during retrieval.
This is processed by clip2nerf, yielding the predicted
NeRF embedding. Finally, we employ the NN search to
locate the closest embedding within the gallery. This proce-
dure is illustrated in Fig. 5.

6.1. NeRF retrieval from images

The experiments reported here address the scenario in
which a user takes one or more pictures of an object (e.g.
a product in a store) and uses them to query a database
of NeRF objects (e.g. the online store catalog). Thus, we
always employ real or synthetic images as queries, i.e. no
rendered images from NeRFs. In the experiments of this
section, we build the gallery with the NeRF embeddings ob-
tained by nf2vec on the test set of ShapeNetRender [50].
We exclude the queried NeRF from the gallery during re-
trieval.

Single-view query. In Tab. 3, we report the results using a
single image as query (a random GT view of the test set for
each object). We use the same random images across dif-
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Recall (%) 1

Method @] @5 @10 Time(ms)] Memory (MB)|
CLIP [34] GT mean 81.4 939 96.3 24 3

CLIP [34] rendered mean 81.2 929 96.1

CLIP [34] GT all 83.6 930 95.1 331 271

CLIP [34] rendered all 81.6 91.7 95.1

clip2nerf GT (ours) 86.1 94.0 96.0

clip2nerf rendered (ours) 84.5 933 954 25 15

Table 3. NeRF retrieval from images (single-view query re-
sults).
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Figure 6. Qualitative results of NeRF retrieval from images on
ShapeNetRender [50]. For each NeRF, we visualize one view
rendered from a vantage point.

ferent table rows to compare methods fairly. We report the
results of our c1ip2nerf method, trained using either the
ground-truth images (c1ip2nerf GT) or the rendered im-
ages from the NeRFs (clip2nerf rendered). In this way,
we simulate the two possible scenarios in which the im-
ages used to train the NeRFs are available or not at training
time. Moreover, we report the performance of four plau-
sible baseline strategies that exploit different galleries built
using CLIP embeddings from images. “CLIP GT mean”:
each gallery element is the average of N = 36 CLIP em-
beddings obtained from N object views. “CLIP rendered
mean”: the same as the previous one, yet we employ N
rendered images from NeRF from the same IV viewpoints.
“CLIP GT all”: for each object in the test set, we store N
CLIP embeddings in the gallery, one for each ground-truth
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Figure 7. NeRF retrieval from images (multi-view query re-
sults). Performance of our c1ip2nerf feature mapping network
as a function of the number of views used for the query.
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Figure 8. ControlNet generated views. ShapeNetRender [50]
views vs. their counterparts generated by ControlNet [53].

view. “CLIP rendered all”: the same as the previous one,
yet it employs the rendered views from NeRF instead of
ground-truth images. As shown in Tab. 3, our model ex-
hibits superior performance in terms of recall@ 1 compared
to the baselines while maintaining comparable results in the
other metrics. Finally, we show some retrieval examples
in Fig. 6. We render a single reference view to visualize
NeRFs. As we can see, the retrieved NeRFs belong to the
same object class and resemble the input image in color and
shape.

Multi-view query. We focus here on the case where a
user can acquire multiple pictures of the same object. In
the plots of Fig. 7, we show the retrieval recall@1, re-
call@5, and recall@10 results when varying the number of
query images used for each object. The gallery is the same
as in the single-view scenario, i.e. a NeRF embedding for
each object. The query views are selected randomly among
the ground-truth images in ShapeNetRender. We randomly
choose only the additional views when increasing the num-
ber of queries. For instance, the experiment with 8 views
includes the images used in the 4 views results. To retrieve
the NeRF, we pass the n multi-view queries to the CLIP
image encoder, obtaining n embeddings. Each is processed
by clip2nerf (the model named clip2nerf GT in
Tab. 3), and the resulting NeRF embeddings are averaged
to get a reference embedding for that object. Then, we per-
form the NN search within the gallery. Interestingly, when
the number of query images used for retrieval increases, the
results improve significantly until 8 views, at which point
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Figure 9. Qualitative results of NeRF retrieval from real im-
ages. Queries are real images from DomainNet [32]. For each
NeRF, we visualize one view rendered from a vantage point.

Recall (%) 1
Method @] @5 @10
CLIP [34] GT 75.5 90.4 93.7
CLIP [34] rendered 739 89.8 93.8
clip2nerf GT (ours) 67.9 80.7 85.6

clip2nerf GT syn2real (ours) 79.9 87.4 90.1

Table 4. NeRF retrieval from real images (adaptation results).
Gallery of NeRFs from ShapeNetRender [50]. Queries from Do-
mainNet [32].

performance plateaus. Thus, we can conclude that the in-
formation provided by the additional views can be valuable
for retrieval.

Adaptation to real images. In the previous retrieval ex-
periments, we employed solely synthetic query images.
However, in a practical scenario, we would use real images
acquired in the wild. Thus, we evaluated clip2nerf us-
ing the real split of the DomainNet [32] dataset, reporting
results in Tab. 4. The gallery consists of the NeRF embed-
dings from ShapeNetRender. We note a performance drop
compared to the case of testing on synthetic images, prob-
ably due to the domain-shift problem. Thus, we propose
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Figure 10. Qualitative results of NeRF retrieval from text on
ShapeNetRender [50]. For each NeRF, we visualize one view
rendered from a vantage point.

Recall (%) T
Method @1 @5 @10
CLIP GT 80.0 89.6 928
CLIP rendered 79.6 895 920
clip2nerf GT (ours) 632 752 79.0

clip2nerf GT multimodal (ours) 85.6 91.7 93.3

Table 5. NeRF retrieval from text results.

an adaptation protocol based on the recent diffusion-based
conditional generative approach, ControlNet [53]. In par-
ticular, we generate a new synthetic to real datasets with
ControlNet, using the synthetic object depth map as input
to the generative network (see Fig. 8). These generated im-
ages are added to the synthetic ones to train clip2nerf.
The augmented dataset contains 7 synthetic random views
and 7 images generated by ControlNet for each object. By
training on this dataset, we learned a feature mapping that
can be applied effectively to real images. We report the per-
formance of this network in the last row of Tab. 4, and we
can observe a remarkable performance improvement w.r.t.
the network trained without augmented data. Moreover, our
method performs comparably to the baseline using the CLIP
galleries obtained from images (rows 1 and 2 vs. 4). Finally,
in Sec. 6.1, we show retrieval results using in-the-wild real
queries. Remarkably, the retrieved NeRF resembles the ge-
ometry of the input image with high fidelity.
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Figure 11. NeRF generation method overview. NeRF generation
from images (top) and text (bottom).

6.2. NeRF retrieval from text

We experiment here with the retrieval of NeRFs from text.
In this scenario, given a text prompt, we want to find the
corresponding NeRF in our database.

We employ the same gallery of the single-view scenario
of NeRF retrieval from images. To obtain a reasonable
query text for the input images, we use the BLIP-2 [20] cap-
tioner. We report results on ShapeNetRender in Tab. 5. Our
clip2nerf obtains lower performance than the baselines
using the CLIP galleries. We relate this to the feature map-
ping function, which was never trained on the CLIP text em-
beddings. For this reason, we train a variant of our method
using as input to clip2nerf either the CLIP embeddings
obtained from an image or the CLIP embedding of an au-
tomatically generated caption with BLIP-2. As shown in
Tab. 5, this multimodal training paradigm can even surpass
the baselines by a moderate margin (row 1 and 2 vs. row 4).

Finally, we also visualize some qualitative results in
Fig. 10. We note that we can retrieve NeRFs of the class
described in the text, which contains details presented in
the textual prompt, e.g. we correctly retrieve NeRFs of a jet
fighter in the second row.

7. NeRF generation

Generation from images. Another application of our ap-
proach consists in, given a NeRF [27] view, synthesize new
views of the object by leveraging the nf2vec [52] decoder.
Specifically, this procedure works as follows: we embed the
NeRF view with the CLIP [34] image encoder and give the
resulting embedding as input to the trained clip2nerf
network, which produces a NeRF embedding. The latter
can be processed by the nf2vec decoder to render arbi-
trary views of the object. Thus, the embedding plus the
decoder can be considered a NeRF architecture. This pro-
cedure is illustrated in Fig. 11 (top). Qualitative results are
shown in Fig. 12, both with images from ShapeNetRender
[50] (top) and real images from DomainNet [32] (bottom).

INPUT GENERATED
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Figure 12. Qualitative results of NeRF generation from images.
Synthetic images from ShapeNetRender [50] (top) and real images
from DomainNet [32] (bottom).
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Figure 13. Qualitative results of NeRF generation from text.

GENERATED

Generation from text. Analogously, our framework al-
lows to synthesize new NeRF views from text. Given the
previous generation pipeline, we replace the CLIP image
encoder with the CLIP text encoder (Fig. 11 bottom). Qual-
itative results are shown in Fig. 13.

8. Limitations and Conclusions

Our proposed framework effectively connects NeRF, im-
ages, and text. We have demonstrated its application in
several novel tasks, including NeRF retrieval or generation
from text and images, as well as zero-shot classification of
NeRFs using only network weights.

However, our framework has its limitations. Firstly, the
nf2vec encoder, trained on ShapeNetRender, limits our
experiments to NeRFs of synthetic objects only. Addition-
ally, the NeRF generation is constrained by the processing
capabilities of the nf2vec decoder.

In the future, expanding our work to include NeRFs
of real objects or scenes would be valuable. Learn-
ing a shared latent space for NeRFs, images, and text,
e.g. by jointly training the vision, language, and NeRF
encoders on larger datasets, could also be a promis-
ing direction. We plan to address these limitations by
exploring these ideas in future studies and hope that
our framework inspires further advancements in the field.
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