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Abstract

Numerous studies have recently advanced the state-of-
the art for representing videos through an implicit neu-
ral network (INR). As these models become increasingly
ubiquitous, there is a growing demand for concealing data
within INR reconstructed videos such as for storing con-
tent metadata and sensitive licensing information. In this
paper, we explore a new space in video steganography, hid-
ing a distinct image within each RGB frame output by an
INR. We propose a joint training strategy of a U-Net based
steganographic decoder with an INR model for video. Ex-
perimental results show that hidden images can be embed-
ded and subsequently reconstructed with high fidelity while
preserving the quality of the cover frames. Furthermore we
demonstrate that by introducing an attention module which
emphasizes hiding within the edges and rich texture patches
in the cover frame, secret images can be reconstructed with
superior quality and can also be concealed at greater reso-
lutions.

1. Introduction

Implicit neural representations (INRs) have been an emerg-
ing topic of research in recent years, owing to their poten-
tial to learn continuous signal mapping from a regular grid
of coordinates to their corresponding values. For instance,
each spatial pixel coordinate (x, y) in an image is associated
with an RGB pixel value. Similarly for a video, each spatio-
temporal coordinate (x, y, t) has its corresponding color
pixel, where t indexes each frame across time. Therefore
an image or a video can be formulated as a mapping from a
set of coordinates to its corresponding attribute. Given the
generality in its formulation, INRs have been successfully
applied in a variety of applications including reconstruction
of 3D scenes [39, 47], shapes [45, 58] and an abundance of
3D tasks [30, 40, 67]. Furthermore, the authors in [52] illus-

trated that by leveraging periodic activation functions, INRs
can faithfully reconstruct signals with high-frequency infor-
mation such as those in audio [21, 52], images [9, 51, 53]
and videos [7, 26, 29].

In contrast to most INR-based pixel-wise image repre-
sentations [52, 53] where each RGB pixel is predicted as a
function of spatial pixel coordinates, the authors in [7] pro-
posed a model performing one-shot prediction, called Neu-
ral Representation for Videos (NeRV), by implicitly learn-
ing a function fθ : R → RHxW x3 which maps a given
normalized frame index, t ∈ R directly to the entire RGB
video frame. Given the large number of pixels in high-
resolution videos, this structural change paved the way for
a new paradigm, introducing considerable savings - both
in terms of encoding and decoding speed. Several recent
works have focused on a variety of aspects for improving
INR video representation including adoption of a patch-
based approach [2], enhanced motion modeling [71, 72] as
well as disentangling spatial and temporal pixel correlation
with fewer model parameters [29]. As an outcome of these
collective endeavors, the rate-distortion performance gap
between such INR-based models and traditional state-of-
the-art video codecs namely Versatile Video Coding (VVC)
[4] and High Efficiency Video Coding (HEVC) [54] or pop-
ular learning-based methods such as DVC [32] and DCVC
[28] has been steeply reducing, although far from being
competitive in its current state.

Steganography is a well known procedure for hiding
data unnoticeably within a cover medium. This is largely
different from cryptography where the encoded informa-
tion still resides in plain sight. With videos being a pop-
ular choice for sharing media content - accounting for over
50% of the overall internet traffic, video steganography has
been extensively investigated - hiding images, audio and
text [18, 24, 49, 60] within a cover video. Classical ap-
proaches for video steganography can be broadly classified
into two categories based on their domain of application.
In the spatial domain, Least Significant Bits (LSBs) of the
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cover video are either replaced [56] (LSB replacement) or
altered [38] (LSB matching) depending on the bits of the
hidden data. On the other hand, in the frequency domain,
cover frames are first decomposed into a set of transform
coefficients through a decorrelating transform such as Dis-
crete Cosine Transform (DCT) or Discrete Wavelet Trans-
form (DWT). The bits from the hidden information are then
embedded into these coefficients, leading to an unobstrusive
and subtle hiding mechanism [23, 48, 55].

During the initial explorations of utilizing deep learning
for image steganography, neural networks were mostly de-
signed to optimize hiding messages within the LSBs of the
cover image [19, 20]. One of the first end-to-end framework
for deep image steganography using convolutional neural
network (CNN) was proposed in [3]. In this work, while
the hiding network concealed the secret image within the
cover image (generating a so-called container image), the
reveal network recovered the secret image using the con-
tainer image. For video steganography, although it is natural
to formulate it as a collection of image steganography tasks,
this approach is largely suboptimal since it completely ig-
nores temporal correlation among the frames. Following
this, a 2-dimensional CNN based model was proposed for
video-in-video steganography [63], where based on the type
of hidden frame (reference or sparse inter-frame residual)
separate networks were trained for hiding data within the
frames of the cover video. Moreover, the authors in [41]
proposed a 3-dimensional CNN for video steganography,
purposefully designed to account for spatial and temporal
features [62].

In this paper, we begin by exploring what happens if
we apply traditional steganography techniques on the cover
frames followed by learning the entire container video em-
ploying NeRV [7], with an expectation to be able to re-
cover the hidden information through the INR reconstructed
video. Here, the container video is a regular video with an
hidden image per frame. Formally, given a sequence of K
cover frames {Ici}Ki=1 and an equal number of images to
be hidden {Mgi}Ki=1, per-frame LSB steganography is per-
formed resulting in a sequence of stego-frames {Isi}Ki=1.
This group of frames {Isi}Ki=1 forms the training set for the
NeRV model. After training the model, we process each
frame for recovering the hidden image, the results of which
are shown in Fig. 1. We implement spatial domain Univer-
sal Wavelet Relative Distortion (S-UNIWARD) [17], a well
known digital image steganography technique which mea-
sures embedding distortion in a fixed domain independent
of the target domain. Although NeRV is able to capture and
reconstruct contents of the frame precisely, tiny perturba-
tions such as those introduced by LSB steganography are
not replicated accurately enough, causing hidden recovery
to fail. Therefore the recovered hidden images {Mri}Ki=1

have no resemblance to their ground truth counterparts.

Figure 1. Failure of LSB steganography when container frames
are reconstructed by NeRV.

Recently, there have been numerous efforts to combine
steganography with implicit neural representations, partic-
ularly those specific to Neural Radiance Fields (NeRF)
[8, 12, 27, 34]. This paper introduces an attention-based
methodology to integrate video steganography within the
learning framework of NeRV [7], dubbed StegaNeRV. To
the best of our knowledge, this is the first work to consider
the objective of video steganography where hidden infor-
mation is concealed within container video frames recon-
structed by an implicit neural network. The primary contri-
butions of this paper can be summarized as follows:
• We explore the new domain of NeRV video steganogra-

phy, where we hide a distinct image in each frame of the
cover video.

• We propose stage-wise gradient scaling across different
stages of NeRV, gradually perturbing the weights aligned
with a steganographic objective.

• We utilize an attention-guided approach to emphasize
concealing information within regions of rich texture in
the cover frame, thereby enabling us to hide larger im-
ages.

2. Related Work
2.1. Implicit Neural Representations for Videos
Implicit neural representations have been known to be a
versatile and flexible mode of representing a wide variety
of signals such as images [14, 53], video [35, 71], audio
[25, 57] including 3D shapes and scenes [37, 46, 58]. For
videos, the authors in [7] proposed NeRV, which performs
a one-shot RGB frame prediction instead of pixel-wise im-
plicit reconstruction. Although the architecture was desir-
able in terms of encoding and decoding speed, a separate
model was required to be trained for each video. Addition-
ally, due to coupling of spatial and temporal contexts, a sig-
nificant number of model parameters were redundant, re-
sulting in an inflated model size. Several subsequent works
addressed these critical limitations as well as established
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new benchmarks. One of the changes proposed in [29]
demonstrated that by providing temporal context informa-
tion to each NeRV block, better content reproduction can be
achieved with a lower training time. Furthermore, D-NeRV
[16] was proposed to learn an implicit representation for a
diverse set of videos by modelling content dependent fea-
tures and motion information separately. Apart from video
representation, INRs have also been used for other tasks
such as video denoising [13], frame interpolation [10], ac-
tion recognition [16] and video generation [50, 68].

2.2. Video Steganography
The widespread use of videos combined with its inherent re-
dundancy in both space (intra frame) and time (inter frame)
create ideal conditions for large capacity data hiding. In
the spatial domain, video steganography is performed by
strategically altering LSBs of the cover frame pixels. For
instance, [56] proposed utilizing polynomial equations for
determining the locations of the pixels to be modified. Fur-
thermore, a preprocessing stage for encrypting data prior
to its embedding in the cover frame was explored in [66]
which exhibited greater robustness and security. In the fre-
quency domain, [43] proposed embedding encrypted mes-
sages within DCT coefficients of Y, U, V components of the
cover frame. The original message was first encoded using
hamming codes prior to data hiding which was shown to
improve data security over direct approaches. [44] further
demonstrated that by concealing the hamming codes selec-
tively within DCT and DWT coefficients of the blocks cor-
responding to moving objects in the cover video, greater ro-
bustness, imperceptibility, and embedding capacity can be
achieved. There are several works that investigated video
steganography in the compressed domain. Such methods
are often designed to work with a certain video codec.
While [59] explored information hiding by manipulating
block decisions of HEVC [54], the authors in [31] proposed
embedding secret message by adding an error matrix to 4x4
quantized discrete sine transform (DST) coefficients. Drifts
in intra frame prediction were prevented by restricting such
modifications to a certain class of blocks only.

With the rise of deep learning, several methods were pro-
posed that achieved data hiding and their subsequent re-
covery by means of deep neural networks. Weng et al.
proposed the first framework for hiding a video within an-
other video [63] via separate hiding and recovery networks
for reference and residual frames of the secret video. Ad-
ditionally, Generative Adversarial Networks (GANs) have
also been employed for video steganography where the dis-
criminator assumes the role of a steganalysis classifier, en-
abling the generator to hide data with greater imperceptibil-
ity [65, 70]. [69] introduced an attention mechanism along-
side GANs which was shown to be robust against noise lay-
ers such as compression, cropping and scaling. Along these

lines, [5] proposed using a GAN assisted by a Coding Unit
(CU) mask generated by a video encoder to hide random
bits within certain key frames. Invertible neural networks
(INNs) have also been utilized to achieve image [33] and
video [42] steganography, particularly attractive due to its
bijective nature enabling the hiding and recovery networks
to share a single model with shared parameters. Experi-
ments performed in [33] indicated that INNs have the ca-
pacity to hide multiple images within a single cover image.
On the other hand, authors in [42] demonstrated concealing
up to 7 secret videos within a single cover video with an
added mechanism to recover them through specific keys.

3. Method
In this section, we describe two approaches for achieving
steganography within the framework of NeRV-based video
representation. For simplicity, we define some notations in
Tab. 1.

Table 1. Collection of symbols and their description.

Symbol Description

ti Normalized frame index for ith frame
{Igi} Set of ground truth cover frames
{Isi} Set of steganographic frames
{Mgi} Set of ground truth hidden images
{Mri} Set of reconstructed hidden images

Fθ NeRV model [7]
θ0 Weights of pretrained NeRV
Hψ Steganographic decoder

3.1. U-Net Style Decoder with Gradient Scaling
Inspired by [27], we consider an U-Net architecture for the
steganographic decoder as shown in Fig. 2. The overall
training pipeline is shown in Fig. 3. Given a cover video
and its corresponding NeRV model Fθ0 , we initialize Fθ
with the pretrained model weights θ0. We next describe the
loss functions and the operation of gradient scaling.

Figure 2. Model architecture for U-Net based steganographic de-
coder Hψ .
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Figure 3. Overall framework for jointly training steganographic decoder with NeRV. For each normalized frame index ti at the input, the
framework produces a steganographic frame (Isi ) and reveals the corresponding hidden image (Mri ). For our approach without attention,
Isi is directly input to the steganographic decoder (Hψ). With attention, instead of Isi , the output of the pretrained attention module
Iat = Gϕ(Isi) is input to Hψ (highlighted in blue), which emphasizes hiding within rich texture regions and edges.

Loss Objective. Given a pair of cover and steganographic
frame (Ig , Is) with their associated ground-truth and recov-
ered hidden images (Mg , Mr) , we compute two types of
losses namely:
1. Cover frame reconstruction loss (Lc): indicates the dis-

similarity between the cover frame and steganographic
frame.

Lc = λ1

[ 1

Nc

∑
∥Ig − Is∥1

]
+ Lssim,λ1

(Ig, Is) (1)

2. Hidden image recovery loss (Lh): indicates the dissimi-
larity between the ground truth hidden image and recov-
ered hidden image.

Lh = λ2

[ 1

Nh

∑
∥Mg −Mr∥1

]
+Lssim,λ2(Mg,Mr)

(2)
where Lssim,λi(x, y) = (1 − λi)[1 − SSIM(x, y)], with
SSIM denoting the Structural Similarity Index (SSIM) eval-
uated between x and y. The L1 loss is obtained by averag-
ing the absolute errors over all pixel locations: Nc & Nh

being total number of pixels in the cover frame and hidden
image respectively. In order to ensure the steganographic
frames maintain a high degree of visual resemblance to their
cover frames along with accurate recovery for hidden im-
ages, we define the overall loss (Lt) as given in Eq. (3).

Lt = λcLc + λhLh (3)

The hyperparameters λc and λh balance the relative
importance of cover frame reconstruction loss and hidden
image recovery loss respectively. While the weights for

the decoder Hψ are updated directly using the accumulated
gradients, in the case of NeRV, the gradients are adjusted as
we describe next.

Gradient Scaling. It was observed that direct backprop-
agation of the overall loss gradient ∂Lt

∂θ was not working
for fine-tuning NeRV for steganography. This can be ex-
plained intuitively as larger weights already contain a large
amount of information for video representations and have
potentially greater effect on the output quality. Therefore,
the gradients for such weights should be masked out, i.e.,
when embedding information of the hidden image through
gradients, the smaller weights should be the priority to be
updated as they may have additional capacity to contain
more information. Furthermore, while the later stages of
NeRV are based on CNNs, the initial stages consist of fully-
connected layers. By virtue of their structure, each neu-
ron in a fully-connected layer has its own weight vector
whereas for a given convolutional layer, neurons share the
same weights via kernels. Given these differences, we pro-
pose to perform gradient scaling for each stage separately.

For a given stage i, consider the set of weights com-
prising of n learnable weight parameters denoted by w =
[w1, w2, ..., wn]. As an example, for a fully-connected layer
of NeRV, n represents the number of neuron parameters.
Using Eq. (4), we compute each element of the per-stage
gradient mask vector ci as:

cij =
|wj |−α
n∑
k=1

|wk|−α
, 1 ≤ j ≤ n (4)
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(a) (b)

Figure 4. (a) Filter kernels for horizontal (SH) and vertical (SV ) edge detection. (b) Training procedure for the attention module Gϕ.

The hyper-parameter α determines the extent of dispar-
ity among the masking coefficients in a given stage. Hence
the gradient mask reduces the effective gradient by scaling
each component by a factor that decreases exponentially
with the absolute magnitude of the weight. c is the gra-
dient mask, where cij is the mask value for jth parameter
in ith stage. In each training iteration, the gradients ∂Lt

∂θ are
scaled as ∂Lt

∂θ ⊙ c where ⊙ denotes element-wise multipli-
cation. Scaled gradients ensure that we slowly perturb the
weights of Fθ in accordance with our dual objective of both
cover content preservation and high quality message recon-
struction. It is worth mentioning that we maintain a consis-
tent gradient mask across training iterations, considering we
aim to have the final steganographic video indistinguishable
from the cover video.

In summary, for each cover frame Igi , we conceal a dis-
tinct image Mgi resulting in a set of steganographic frames
{Isi}. The decoder Hψ operates on each Isi reconstructing
the corresponding hidden image Mri as given in Eq. (5).
We outline the overall training steps in Algorithm 1.

Hψ(Ia) = Ib ; Ia ∈ {Isi}, Ib ∈ {Mri} (5)

3.2. Enhanced Steganography with Attention

Past works [11, 15] have shown that due to one of the weak-
nesses of the human visual system (HVS), it is easier to
introduce unnoticeable changes within texture-rich regions
and edges in an image as compared to flat and homoge-
nous patches. In this method, we exploit this behaviour and
utilize Sobel-like filter kernels for detecting edges to learn
an attention module [64] to find such regions in the cover
frames which are beneficial for data hiding. The structures
of the filter kernels are shown in Fig. 4a. As given in Eq. (6),
using these kernels, we compute the mean of the vertical
and horizontal edge-maps for each input channel, thereby
preserving the input channel dimensionality at the output.

Algorithm 1 U-Net style decoder with gradient scaling

Data: θ0, {ti}, {Igi}, {Mgi}, learning rates = [ηF , ηH ]
Initialize Fθ : θ ← θ0
Compute gradient mask c
for each training iteration do

for each cover frame index i do
Obtain Isi = Fθ(ti)
Reconstruct hidden image Mri = Hψ(Isi)
Accumulate losses Lc and Lh

end for
Compute overall loss Lt
Update Fθ with ηF · (∂Lt

∂θ ⊙ c) and Hψ with ηH · ∂Lt

∂ψ
end for
Output: Trained models Fθ, Hψ

Here ∗ denotes the 2D convolution operator.

S(Igi) =
1

2

[
(Igi ∗ SH) + (Igi ∗ SV )

]
= Ie (6)

The architecture of the attention module [64] consists of
4 layers of convolutional neural networks with a maximum
channel depth of 64. All layers utilize exponential linear
unit for activation except for the last which uses sigmoid.
The output attention map (Iat) has the same dimensions as
the cover frames. As given in Eq. (7), the loss function
for training the attention module, Lat has two components.
While the first term guides the attention map to adjust its
values in the regions of high texture i.e. greater pixel vari-
ance, the second term encourages a sparse representation by
assigning a penalty for every non-zero element in the output
attention map. We adapted the functions from [64] with a
few modifications to best fit our problem.

Lat = E[VarPool2D7 x 7(Iw)] + E[Iat]3−2E[Iat] (7)

Here E denotes the expectation operator and Iw is com-
puted as a weighted combination of Ie and Igi , where Iat
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Figure 5. Subjective results for two cover videos without using attention. The two columns on the left represent the cover (Ig) and
steganographic (Is) frames with dimensions 1920 x 1080. Mg and Mr denote the ground truth and recovered hidden images respectively
of size 128 x 128.

determines the relative importance of each. The variance is
computed over a sliding 2D window of size 7 x 7, thereby
accounting for local intensity variations only. In Fig. 4b &
Algorithm 2, we describe the training steps for the attention
module. Post training, we freeze its weights and deploy it at
the input of the steganographic decoder Hψ . Following this,
we jointly train Fθ & Hψ as per Algorithm 1. Therefore, as
highlighted in Fig. 3, in this approach, the output attention
map of the pretrained attention module is fed to the decoder
Hψ . This operation is summarized in Eq. (8).

Hψ[Gϕ(Ia)] = Ib ; Ia ∈ {Isi}, Ib ∈ {Mri} (8)

4. Experiments
4.1. Dataset

For training, we obtain 5 different 8-bit 1080p videos from
the UVG dataset [36] namely Beauty, Bosphorus, Honey-
bee, Jockey and ShakeNDry comprising of both static and
dynamic content. For each cover video, we jointly train the
steganographic decoder and fine-tune the pretrained NeRV
for 250 frames. Since we hide a distinct image in each

Algorithm 2 Training attention module Gϕ

Data: Ground-truth cover frames {Igi}, learning rate η
for each training iteration do

for each cover frame index i do
Compute Iat = Gϕ(Igi) & Ie = S(Igi)
Compute Iw = Iat · Ie + (1− Iat) · Igi
Accumulate loss Lat

end for
Update Gϕ using η · ∂Lat

∂ϕ
end for
Output: Trained Gϕ

cover frame, an equal number of hidden images are sampled
from DIV2K dataset [1, 61] after which we randomly crop
a square patch of size S where S ∈ [128, 320, 512, 1088].

4.2. Implementation Details

We use the publicly available implementation of NeRV-
L [6] for our experiments retaining all model parameters
for 1080p videos: 5 NeRV blocks with up-scale factors of
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Table 2. Average quantitative metrics for proposed StegaNeRV without (middle row for each cover) and with attention. Hidden images
have a fixed size of 128 x 128. For each cover, the first row enlists the performance of the pretrained NeRV (Fθ0). Video PSNR and
SSIM compare the reconstruction quality between ground truth cover frames {Igi} with steganographic frames {Isi} and hidden PSNR
and SSIM between ground truth hidden images {Mgi} and recovered hidden images {Mri}.

Cover Method Video PSNR Video SSIM Hidden PSNR Hidden SSIM

Beauty
NeRV [7] 34.164 0.915 – –

StegaNeRV 34.166 0.915 34.240 0.968
StegaNeRV (with attention) 34.166 0.915 35.571 0.975

Bosphorus
NeRV [7] 35.516 0.961 – –

StegaNeRV 35.671 0.963 34.561 0.963
StegaNeRV (with attention) 35.586 0.962 34.710 0.971

Honeybee
NeRV [7] 39.718 0.986 – –

StegaNeRV 39.392 0.985 35.286 0.967
StegaNeRV (with attention) 39.718 0.986 36.380 0.972

Jockey
NeRV [7] 35.655 0.965 – –

StegaNeRV 35.620 0.965 33.102 0.956
StegaNeRV (with attention) 35.696 0.965 34.963 0.973

ShakeNDry
NeRV [7] 35.835 0.968 – –

StegaNeRV 35.734 0.968 31.447 0.954
StegaNeRV (with attention) 35.875 0.968 33.792 0.964

5,3,2,2,2 with b = 1.25, l = 80 for input embedding [7].
We set ηF = 1e−2, ηH = 1e−4 (varies slightly for different
cover videos) and use Adam optimizer [22] with β1 = 0.9
and β2 = 0.99 for both NeRV and the U-Net. For comput-
ing the gradient mask, we set α = 3. The loss functions
Lc and Lh are computed with λ1 = λ2 = 0.7. For the
hyperparameters in Eq. (3), we used λc = λh = 0.5 for all
experiments. In order to prevent detection of hidden infor-
mation from a similar looking non-steganographic frame,
we use a training batch size of 2 where each batch consists
of the steganographic frame Isi stacked with its correspond-
ing ground truth frame Igi .

For training Gϕ, we use Adam optimizer with β1 = 0.9
and β2 = 0.99 and set the learning rate η = 1e−3 with
equal weights for variance and sparsity loss. In order to bet-
ter generalize the attention module to a variety of content,
we train a single attention model for all cover videos, with
the training set containing 10 frames from each video sam-
pled at regular intervals. The attention module was trained
for 50 epochs. All experiments were performed on a single
NVIDIA A100 GPU.

4.3. Main Results

Table 2 summarizes the average quantitative metrics of Peak
Signal to Noise Ratio (PSNR) and SSIM for 5 cover videos
with a given set of 128 x 128 hidden images. For each
cover video, we report the PSNR and SSIM for the pre-
trained NeRV model in the top row, followed by the results
obtained without and with attention. In the absence of at-
tention, it was observed that for cover videos with high dy-
namic content, such as Jockey and ShakeNDry, the hidden
image recovery quality was inferior as compared to those
from relatively slow moving scenes. A sample of subjective

results for this method are shown in Fig. 5. On the other
hand, with attention, we notice for videos such as Honeybee
and ShakeNDry, a greater quality is observed over almost all
4 measures as compared to our previous approach. Other
than Bosphorus, introducing attention further enhances the
fidelity of recovered hidden image at the same or better
quality for the cover frames. This is generally hard to
achieve with traditional steganography where we trade in
steganographic frame quality in exchange for superior hid-
den recovery.

With the aid of the attention module, we further explore
hiding images of larger dimensions, with sizes up to 1088
x 1088 (comparable to those of the cover frame). In Tab. 3
we report the results with Beauty cover video. Evidently,
the reconstruction quality for hidden images drops signifi-
cantly as we attempt to hide larger images. In Fig. 6, we
highlight an example where the decoder could not recover
high texture details precisely such as those along the terrace
railings.

(a) Ground truth hidden image (b) Recovered hidden image

Figure 6. An example showing reconstruction artifacts (high-
lighted in yellow) when a 1088 x 1088 image is hidden using
attention (cover video : beauty).
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Table 3. Average quantitative metrics for StegaNeRV with atten-
tion evaluated with Beauty cover and varying resolutions of the
hidden image.

Hidden Size A. NeRV Output B. Hidden Recovery
PSNR SSIM PSNR SSIM

128 x 128 34.166 0.915 35.571 0.975
320 x 320 34.166 0.915 32.625 0.941
512 x 512 34.168 0.915 31.302 0.927

1088 x 1088 34.168 0.915 25.741 0.818

4.4. Case Study
We illustrate a common use case of video steganography
where a creator wishes to embed ownership data (in this
case, a logo) imperceptibly within the cover video without
hindering the overall video quality. Hiding such informa-
tion is desirable and in most instances, necessary to main-
tain authenticity and integrity of the content. In Fig. 7a, we
show how the decoder Hψ correctly reveals the hidden im-
age when provided with a steganographic frame. In the sec-
ond example, we attempt to recover the hidden image from
the output of a pretrained NeRV i.e. one that has not been
jointly trained with the particular steganographic decoder.
As shown in Fig. 7b, such an attempt fails indicating that
the secret image can only be reconstructed when a NeRV
model is used in conjunction with its paired steganographic
decoder.

(a)

(b)

Figure 7. An illustration of a particular use case of ownership iden-
tification. (a) successful recovery by the decoder when a stegano-
graphic frame is given as input, while (b) no hidden image is re-
covered from an output frame of a pretrained NeRV.

5. Discussion and Future Work
Variable Gradient Scaling. As an extension of our work,
we further explored if the hyper-parameter α, which decides
the distribution of scaled gradients, can be made adaptive as
per the influence of a given stage on the NeRV output. By
virtue of the NeRV architecture, weight perturbations in-
troduced near the output convolutional layers have greater
potential for data hiding whereas such modifications are not

desirable near the input, which operate on the embedded
timestamp and thereby establish the video structure. To this
end, we propose variable gradient scaling as per Eq. (9),
where αi increases progressively across 7 stages of NeRV
(2 MLP layers + 5 NeRV blocks). Each stage has an asso-
ciated state weight si = i, which is not a trainable param-
eter. We substitute αi for the constant α while computing
the gradient mask vector for the ith stage, ci, as previously
given in Eq. (4). We show a comparison of steganographic
frame quality across training epochs in Fig. 8, where 320 x
320 images were hidden with Beauty cover video without
attention. An improvement in steganographic frame quality
is observed as compared to gradient scaling with constant
α with all other parameters held constant. This shows by
adapting α for different stages of NeRV, we can hide im-
ages with greater quality of the steganographic video.

αi = sin

π

2


i∑

k=1

sk

7∑
k=1

sk


 ∗ scale (9)

Figure 8. Improved PSNR (left) and SSIM (right) for stegano-
graphic frames with variable α ∈ (0, 3] (i.e. scale = 3), si = i as
compared to constant α = 3. The hidden images are of size 320 x
320 with Beauty cover video.

Large-capacity Hiding. With our proposed architecture,
hiding images with dimensions as large as the cover frame
has not been realized with high precision. There are two key
parts to this issue as the performance depends both on the
hiding capacity of NeRV as well as on the ability of the de-
coder to recognize the subtle modifications in the stegano-
graphic frame for an accurate recovery. This would be our
next step investigating large scale data hiding within NeRV.

6. Conclusion
This paper addresses the open problem of hiding data im-
perceptibly with its robust recovery within video frames
represented by an implicit neural representation. We de-
scribe how jointly training the INR with the steganographic
decoder is essential for accurately recovering hidden images
without distorting the steganographic frames. Moreover, an
attention-based approach further enhances hiding capacity
by guiding the framework to emphasize hiding within rich
texture regions. Our extensive experiments show promising
results, prompting future research efforts in this area.
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