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Abstract

Digital terrain models (DTMs) are pivotal in remote
sensing, cartography, and landscape management, requir-
ing accurate surface representation and topological infor-
mation restoration. While topology analysis traditionally
relies on smooth manifolds, the absence of an easy-to-
use continuous surface model for a large terrain results
in a preference for discrete meshes. Structural represen-
tation based on topology provides a succinct surface de-
scription, laying the foundation for many terrain analysis
applications. However, on discrete meshes, numerical is-
sues emerge, and complex algorithms are designed to han-
dle them. This paper brings the context of terrain data anal-
ysis back to the continuous world and introduces Implicit-
Terrain1, an implicit neural representation (INR) approach
for modeling high-resolution terrain continuously and dif-
ferentiably. Our comprehensive experiments demonstrate
superior surface fitting accuracy, effective topological fea-
ture retrieval, and various topographical feature extraction
that are implemented over this compact representation in
parallel. To our knowledge, ImplicitTerrain pioneers a fea-
sible continuous terrain surface modeling pipeline that pro-
vides a new research avenue for our community.

1. Introduction
In geographic information systems and remote sensing,
Digital Terrain Models (DTMs) have emerged as founda-
tional elements for a myriad of applications spanning en-
vironmental management, urban planning, disaster control,
and beyond. Morse theory [43] is one of the fundamental
mathematical tools for exploring topological features that
supports various downstream applications shape segmenta-
tion [17, 73] to road network analysis [21]. For a terrain
height field, Morse theory interprets the terrain surface as
a smooth manifold. However, obtaining a continuous sur-
face model through interpolating for large-scale terrain data
confronts formidable challenges: prohibitive computational

1Project homepage available at https://fengyee.github.io/
implicit-terrain/

Figure 1. A 3D view of topological features derived from Implicit-
Terrain’s smooth surface model (left) and discrete mesh model
(right) over a synthetic terrain dataset. Different critical point
types are highlighted in different colors. Separatrix lines from our
ImplicitTerrain are smoothly aligned with the terrain surface and
color-coded by the critical point pair they connected.

cost, sophisticated surface modeling depending on hyper-
parameter tuning, and a lack of topological integrity. Con-
sequently, continuous surface models find limited utility in
topological analysis but are used for topography and visu-
alization purposes [44]. In contrast, discrete mesh repre-
sentations of the terrain surface are more commonly used
not only for topological analysis but for terrain processing,
visualization, and analysis [18, 59]. However, the discrete
mesh resolution is limited by the computational resources.
Discrete methods usually suffer from rough surface approx-
imation and numerical instability. [18]. There is a need for
a continuous surface model that can be used for topological
analysis and is scalable to large-scale terrain data. Such
accuracy of terrain surface and its high-order derivatives
is pivotal for topological feature extraction and enhances
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many other analyses of terrain data, such as topography,
hydrology, and geomorphology. In this paper, we propose
a novel continuous surface modeling pipeline, ImplicitTer-
rain, that leverages the recent advances in the implicit neural
representation (INR) to achieve a continuous surface model
for terrain data analysis. For example, in Fig. 1, topologi-
cal features extracted from ImplicitTerrain are well-aligned
with the synthetic terrain surface. Benefiting from the in-
terpolation capability, INR is a revolutionary representation
that may achieve better memory efficiency than a discrete
representation by decoupling the network size with the in-
put data size.

However, there is still a gap between practical appli-
cations and the theoretical potential of INR. INR’s “over-
smoothness” fitting result makes reconstructing the detailed
surface geometry difficult, especially for high-resolution in-
put [54]. Despite advancements (e.g., [62, 66]), for visual
signals consisting of complex frequency components, ob-
taining accurate high-order derivatives is still challenging.
The lengthy training process and the high computational
cost of INR also limit its application in large-scale terrain
data fitting and analysis. Besides, there is a domain differ-
ence between fitting the terrain height field and the photo-
metric data, that the former requires both a plausible visual
appearance and accurate surface restoration. Merging the
gap between the theoretical potential and the practical ap-
plications of INR, ImplicitTerrain pioneers a feasible con-
tinuous terrain surface modeling pipeline that opens a new
research avenue. Our main contributions are as follows:
• We introduce a novel Surface-plus-Geometry (SPG) cas-

caded INR model for high-resolution terrain surface mod-
eling that keeps high reconstruction fidelity, reduces over-
all training time, and allows the topological analysis to be
directly performed on the continuous manifold.

• We propose a progressive training strategy to train the
SPG model from coarse to fine, significantly improving
convergence speed while fulfilling the pre-processing re-
quirement of topological and topographical analysis.

• Beyond surface fitting, we demonstrate the good align-
ment of the extracted topological features with the results
based on the discrete Morse theory. Moreover, it shows
superior perceptional and visual quality, reflecting terrain
surfaces as perceived by human beings.

• Demonstrating ImplicitTerrain’s utility in calculations of
various topographical features, i.e., slope, aspect, and cur-
vature, directly from surface derivatives, underscoring its
potential for comprehensive terrain data analysis.

2. Background and Related Work

2.1. Implicit neural representation

Different from the widely-known deep neural networks
aiming to learn the hidden high-dimensional features such

as semantic information of visual signal, INR is designed
for reconstructing the input through neural network weights
and it can be regarded as a revolutionary representation of
the visual signals [71]. Most INRs are rooted in the Uni-
versal approximation theorem [35] - for a multi-layer per-
ceptron (MLP) with a sufficient number of hidden units,
any field function can be approximated within any preci-
sion [11]. For an MLP Ψ: Rd → Rn to reconstruct a vi-
sual signal, a common design of the network is to model a
regression problem, in which the network takes individual
coordinates x⃗ ∈ Rd as input and predicts the field func-
tion values F|x⃗ ∈ Rn corresponding to the coordinates, i.e.,
Ψ(x⃗) ≈ F|x⃗. Take a RGB image as an example, a neural
work takes pixel coordinates (u, v) ∈ R2 and outputs pixel
color (r, g, b) ∈ R3. This design of the network is also
named as coordinate-based neural network. INR converts
the signal to a continuous function representation defined
on the input domain. Consequently, INR can be inferred in
arbitrary resolutions and achieve better memory efficiency
than a discrete representation by decoupling the network
model size with the input data size [62]. The network can be
stochastically optimized to be efficient and scalable to large
input data [1]. Apart from the inherent continuity, INR is
differentiable by an automatic differentiation technique that
allows function gradient and higher-order derivatives to be
easily accessible at any query location [62].

INR has gained much attention in various research fields
where 2D images [10, 40, 52], 3D shapes [1, 12, 30,
32, 38, 48, 51, 68, 72], textures[11, 34, 49, 56], light
fields [5, 20], dynamic fields [22, 36], and indoor and
outdoor scenes [37, 39, 47, 61, 64, 70] are proposed to
be converted into neural representations. For 3D objects,
signed/unsigned distance functions [7, 13, 51, 75] and occu-
pancy prediction networks [42, 53] are mostly used, while
for 2D images, single MLP [24, 62] and decoder for fea-
ture grids [10, 46] are more common. Recently, researchers
have shown the representation power of INR in biomedi-
cal data [45, 74], satellite images [20, 64, 70], and physics-
informed simulations [14, 16]. Others take advantage of
INR’s compression capabilities in image [6, 23, 63, 74] and
video compression [8, 9].

Through Fourier analysis, many neural networks, such as
ReLU MLP, suffer from capturing high-frequency compo-
nents of the input signals, because their fitting power biases
toward the low-frequency components, known as spectral
bias [4, 54, 77]. It leads to the “over-smoothness” issue.
FFN [66] makes use of Neural Tangent Kernel (NTK) tech-
niques to analyze this phenomenon and proposes to use po-
sitional encoding techniques to counter the spectral biases
and capture more high-frequency details. Another well-
known approach is SIREN [62], which makes use of the
sinusoidal non-linear activation function with carefully de-
signed network initialization. A SIREN model can be ex-
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pressed as

Ψ(x⃗) = Ωn(ψn−1 ◦ ψn−2 ◦ · · · ◦ ψ0)(x⃗) + b⃗n (1)

ψi(x⃗) = sin(Ωix⃗+ b⃗i) (2)

where ψi is the i-th layer of the MLP and (Ωi, b⃗i) is the
corresponding network weights and biases. This design
choice allows the model to be written in a composition
of sinusoidal functions and the derivatives of the network
have similar expressions such that the training process is
not only targeting the field function F but also its deriva-
tives {∇x⃗F ,∇2

x⃗F , . . .} [62]. This design is important for
topological analysis and topographical feature calculation
since the reconstructed surface function is smooth and an
accurate gradient field is necessary. ImplicitTerrain takes
advantage of the compactness and the representation power
of INR which may achieve better accuracy with less compu-
tational resources. As shown in this paper, ImplicitTerrain
demonstrates the effectiveness and implementation simplic-
ity in the field of terrain data analysis.

2.2. Topology-based terrain analysis

Morse theory. Morse theory captures the relationships be-
tween the topology of a manifold and the critical points of
a function defined on it [43]. For a smooth scalar function
f on domain D ⊆ R2, critical points of f are those gradi-
ent of f vanishes. The index kp of a critical point p is the
number of negative eigenvalues of the Hessian matrix H|p
of the second-order partial derivatives of f at p. If kp = 0, p
is a minimum, kp = 1 a saddle, and kp = 2 a maximum. A
smooth function f is a Morse function if every critical point
p is non-degenerate, i.e., H|p(f) ̸= 0.

An integral line of f is a path tangent to gradient ∇f ,
tracing the steepest ascent or descent from one critical point
to another. An integral line connecting two critical points of
consecutive index is called a separatrix line. Given a criti-
cal point p of index k, the integral lines converging at p of
index kp form a k-cell, called the descending k-manifold of
p. Dually, integral lines originating at p form a (d-k)-cell,
called the ascending k-manifold of p. The ascending man-
ifolds partition D into cells forming the ascending Morse
complex and descending Morse complex, respectively.

A Morse function f is a Morse-Smale function when the
ascending and descending manifolds intersect transversally.
Cells obtained as the intersection of descending and ascend-
ing 2-manifolds of a Morse-Smale function f decomposeD
into a Morse-Smale complex. A critical net is the 1-skeleton
of the Morse-Smale complex, which consists of the critical
points and the separatrix lines connecting them.

The combinatorial structure of the critical net is de-
scribed by the Morse Incidence Graph (MIG) [15]. The
nodes of the MIG correspond to the critical points of f ,
while its arcs correspond to the separatrix lines, i.e., the con-

nections between pairs of critical points. A value is associ-
ated with each arc of the graph, which is the absolute value
of the difference between the function value at the critical
points corresponding to its extreme nodes, called persis-
tence. Insignificant critical points that do not contribute to
the main topological structure of a surface are usually re-
moved by the MIG based on the persistence values. The
two fundamental operators for simplifying a MIG, while
maintaining its topological integrity are: Minimum-Saddle-
Minimum, which collapses two minima adjacent to the same
saddle into one of them, eliminating also the common sad-
dle, and its dual Maximum-Saddle-Maximum, which is de-
fined symmetrically [18].

Discrete approaches. A variety of methods have been
proposed in the literature to identify critical points and trace
separatrix lines in the discrete case when a terrain is de-
fined by a set of points either at the vertices of a regular
square grid (gridded data), or scattered in the plane. In the
case of gridded data, earlier approaches interpolate the data
through smooth functions, including a C1-differentiable
Bernstein-Bezier bi-cubic function [2], as well as bilinear
C0-interpolant and bi-quadratic interpolant [57, 58], with
derivatives computed numerically in [2] and analytically
in [57, 58]. The efficacy of these methods depends on pre-
cise tuning of the approximation functions to avoid false
critical points and maintain domain-wide continuity.

Smooth interpolation methods also struggle with scal-
ability, especially with large terrain datasets. Thus, dis-
crete methods based on triangulating the data points have
been most widely used, for instance, in Topology ToolKit
(TTK) [67], a popular topological data analysis toolkit.

Two discrete approaches have been applied to triangu-
lated terrains, namely piecewise-linear Morse theory by
Banchoff [3] and discrete Morse theory by Forman [28].
The former identifies and classifies critical points per [3] for
polyhedral surfaces, tracing separatrix lines from saddles to
minima and maxima along triangle edges.

Discrete Morse theory on a triangle mesh is based on ex-
tending the elevation function from the vertices to the edges
and triangles of the mesh and on defining a discrete gradient
field, usually called a Forman gradient. Several algorithms
have been developed to compute a Forman gradient, its crit-
ical features [33, 55, 60] and simplicial complexes [25, 69].
The Forman gradient is the basis for an efficient compu-
tation of discrete separatrix lines through mesh traversals.
See the supplementary materials for discrete Morse theory
details and [18] for a comprehensive review.

The Forman method is favored in terrain analysis for its
derivative-free nature, offering efficiency and scalability for
large datasets [26, 27]. Yet, its topological accuracy can de-
pend on mesh construction choices, like diagonal selection
in grid triangulation [18].
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3. Methodology
ImplicitTerrain represents the terrain surface function Fs

via coordinate-based neural networks that are trained pro-
gressively from the ground elevation data I ∈ RH×W in
GeoTIFF [41] format. The pipeline of ImplicitTerrain, as
shown in Fig. 2, consists of three main stages: (I) Sec. 3.1
Input raster data preprocessing, (II) Sec. 3.2 Surface-plus-
Geometry (SPG) model fitting, which consists of two cas-
caded networks: surface model Ψs and geometric compen-
sation model Ψg , and (III) Sec. 3.3 Topological feature ex-
traction and Sec. 4.6 topographical feature computation.

3.1. Input raster data preprocessing

As a common practice in terrain data analysis, a smooth-
ing process is applied to remove the noise and artifacts dur-
ing the data acquisition process. This process may dimin-
ish the visual quality of the terrain surface since the high-
frequency details are absent. To keep the high fidelity of
the input signal, we make use of a low-pass Gaussian filter
iteratively to construct a multi-resolution Gaussian pyramid
of the input raster data as shown in Fig. 2, where the bot-
tom layer is the original input I and the layer on top is the
smoothed version of the previous layer with half the size.
This multi-resolution pyramid allows the progressive train-
ing of Ψs from top to bottom (except the bottom layer) as
detailed in Sec. 3.2. As shown in Fig. 3, surface details are
preserved only in the bottom layer that is used by Ψg .

3.2. Surface-plus-Geometry (SPG) model fitting

An MLP with sinusoidal non-linear activation function as
in SIREN [62] is used for both Ψs and Ψg for simplicity
and efficiency. This architecture allows accurate fitting of
both Fs and its derivatives {∇x⃗Fs,∇2

x⃗Fs, . . .}. Ψs and Ψg

can be evaluated at arbitrary query coordinates and deriva-
tives are calculated by the automatic differentiation. The
network configuration can be determined heuristically to
trade-off between model size and fitting accuracy. How-
ever, with the increment of the model size, the training
time also increases, especially when I is of high-resolution.
Inspired by the spectral bias, we separate the hard-to-fit
high-frequency components from I by the Gaussian pyra-
mid in Sec. 3.1 and fit Ψs progressively from top to bottom
to reduce the convergence time and smooth the training pro-
cess. With less computational cost, Ψs converges faster to
the smoothed terrain surface. Then, Ψg fits the absent de-
tails from Ψs via the residual learning, as shown in Fig. 2.
The residual is the pixel-wise difference between the high-
resolution inference of Ψs and the original input I . Fitting
the residual shares similar intuition as the displacement map
in computer graphics rendering and in the work by Wang et
al. [76]. Therefore, Ψs represents a smooth surface function
with a stable gradient field, benefitting the following topo-
logical analysis in Sec. 3.3. Compensating Ψs with surface

details in Ψg via the addition of both models’ output, the re-
constructed surface function F̂s is more accurate and visu-
ally plausible than a single model design. As we will show
in the ablation study Sec. 4.4, the SPG model achieves bet-
ter overall fitting accuracy (PSNR 67.08 dBs vs. 57.66 dBs)
and faster convergence speed (≈ 4 times) than a single MLP
model with approximately the same number of parameters.

3.3. Topological feature extraction

Surface model Ψs can be used as a smooth surface function
allowing the direct inference of height values and deriva-
tives at any query locations within the domain. This char-
acteristic greatly simplifies the algorithm design to iden-
tify critical points and build the connection between them.
Without hindrance, Morse theory can be directly applied to
the smooth function Ψs, avoiding the difficulties of approx-
imating the gradient field on discrete meshes.

Identify critical points. Critical points are the points
where the gradient vanishes (i.e., ||∇Fs|| = 0). For ter-
rain surface, critical points can be classified into three types:
Maximum, Minimum, and Saddle. According to Sylvester’s
criterion [31], this classification can be achieved by the
second-order derivatives, i.e., Hessian matrix H|p⃗ ∈ R2×2

at the critical point coordinate p⃗. To locate the critical
points, we trace the zero-cross points of the gradient field by
a simple gradient descent algorithm to minimize the gradi-
ent norm ||∇Ψs||. Candidate critical point locations are de-
termined by considering the value differences of the neigh-
boring vertices to the center vertex on smoothed meshes.
Clone and random jitter of the coordinates are applied to
these candidate coordinates. For each step, the gradient
norm ||∇Ψs|| minimization direction d⃗ takes the form:

d⃗ =− ⟨∂||∇Ψs||/∂x, ∂||∇Ψs||/∂y⟩
=− ⟨fxfxx + fyfyx, fxfxy + fyfyy⟩

(3)

where fx, fy are the first-order derivatives of Ψs and
fxx, fxy, fyx, fyy are the second-order derivatives.

Separatrix lines and MIG. As detailed in Sec. 2.2, sep-
aratrix lines are a subset of integral lines that connect the
critical points, depicting the topological skeleton of the ter-
rain surface. For each Saddle, the separatrix lines connect
it to two neighboring Minimum and two Maximum points.
The eigenvector of the Hessian matrix H at the Saddle point
is used to determine the starting directions of the four sep-
aratrix lines. Heading to the Maxima/Minima, the gradient
field is traced to maximize/minimize the height values. De-
termining the relationship between the critical points helps
to build the MIG of full resolution, from which, through
persistence-based simplification, the prominent topological
structure of the terrain surface is extracted as in Fig. 2. The
design and implementation details of the tracing algorithms
are provided in the supplementary material.
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Figure 2. The pipeline of the ImplicitTerrain. Firstly, terrain data is preprocessed as a Gaussian pyramid for progressive fitting. Then, the
cascaded Surface-plus-Geometry (SPG) model is trained to fit the smoothed terrain surface and the residual/displacement map in order.
Finally, various terrain data analyses are supported by the smooth surface model. Model weights can be serialized for storage and inference
to reconstruct the terrain surface with flexible structures (grids or TINs) and resolutions. Better viewed in the digital version.

Figure 3. Gaussian pyramid and frequency view of Swiss1 dataset.

4. Experiments

We evaluate the performance of ImplicitTerrain on terrain
dataset from two aspects: model accuracy and topologi-
cal analysis results. We employ an open-source library2 to
compute the separatrix lines and simplified MIGs by com-
puting Forman gradients. In the rest of this paper, we refer
to this library as the Forman method. Due to the lack of
ground truth topology of the real-world terrain, in Sec. 4.2,
a synthetic terrain model is generated to demonstrate the ef-
fective alignment between results from ImplicitTerrain and
Forman method. In Sec. 4.3, high-resolution terrain data
is fed to the pipeline. In Sec. 4.4, we design an ablation
experiment to show the effectiveness and efficiency of our
SPG model in terms of training time and fitting results.

2Publicly accessible at https://github.com/UMDGeoVis/
FormanGradient2D

In Sec. 4.5, we conduct experiments for the noise robustness
of the surface topology obtained from our surface model.

4.1. Experiment setup and evaluation metrics

Both Ψs and Ψg use an MLP with 3 hidden layers and 256
hidden units per layer to fit an input 1000×1000 raster data
I for the height field of 1km2 terrain surface. Height values
and the coordinates are normalized into the [−1, 1] range.
Sinusoidal activation function and the same weight initial-
ization are applied as in SIREN [62]. As in Fig. 2, Ψs is
progressively fitted on the top 3 layers of a 4-layer Gaussian
pyramid constructed with a Gaussian kernel size σ = 4.0.
The final optimization target Is of Ψs is of size 500×500.
Then, Ψg fits the residual between I and the surface model’s
inference output IΨ. Both models are trained for 3000 steps
with the Adam optimizer with a learning rate of 1e-4. All
the experiments are conducted on a computation node with
24-core CPU (AMD EPYC 7352) and an NVIDIA A5000
GPU. From the aspects of model accuracy and topological
analysis results, various evaluation metrics are used to mea-
sure the performance of the ImplicitTerrain.

Model accuracy. To measure the reconstruction ac-
curacy of the ImplicitTerrain, peak signal-to-noise ratio
(PSNR) and structural similarity index measure (SSIM) are
calculated. For PSNR calculation, since there is no bound-
ary for the height field, the maximum possible value of the
signal is set to 1.0. SSIM metric evaluates the visual simi-
larity between the model output and the original input data.
For evaluating the surface model Ψs, the frequency band
reconstruction capability is calculated by the difference be-
tween the log-scaled magnitude of the Fourier transform of
Is and Ψs’s inference result in IΨ, i.e. log(|Is|)− log(|IΨ|).
Since the gradient field is important for topological and to-
pographical analysis, we measure the gradient field recon-
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struction accuracy in terms of the pixel-wise difference of
gradient norm and direction between our model’s estima-
tions ∇Ψs and the results derived from Is by pixel shifting.

Topological analysis. To evaluate the topological analy-
sis result of Ψs, we measure the degree of alignment be-
tween the topology of our surface model and the topol-
ogy from Forman method. The MIGs from both methods
are simplified by a persistence value of 1 meter which is
heuristically set to keep prominent critical points from For-
man method. The MIG alignment is measured from two as-
pects: (1) critical points matching as a binary classification
method, and (2) MIG-based persistence diagram. Critical
points are matched based on spatial closeness and the result
is reported in Precision, Recall, and F0.5 score, which re-
gards the precision as twice as important as the recall rate.
To highlight the topological features in the MIG, we make
use of its persistence diagram, which is a visualization of
connected critical point pairs [29]. It depicts the evolu-
tion of the terrain surface topology and highlights the criti-
cal points representing prominent topological features, e.g.,
mountain peaks. We use the Wasserstein distance (WS) to
measure the similarity between two persistence diagrams,
which is defined as the minimal distance achieved by a per-
fect matching of two diagrams. A smaller WS value indi-
cates a higher similarity between two persistence diagrams.

For the Forman method applied to the regular gridded
mesh, it is known that the mesh configuration (connectivity
between neighboring vertices in a diagonal direction) may
influence the MIG result [18]. Satisfying the Delaunay tri-
angluation [19] of the gridded data, we consider two dif-
ferent mesh configurations for the Forman method: each
vertice is connected to its (N, S, E, W, NW, SE) or (N,
S, E, W, NE, SW) neighbors, named as Mesh1 and Mesh2
respectively. Considering the missing ground-truth persis-
tence diagram and the influence of mesh configuration on
the MIG, we further propose to evaluate the MIGs by the
ratio of Wasserstein distance as

WSratio =
min(WS(Ψs,Mesh1),WS(Ψs,Mesh2))

WS(Mesh1,Mesh2)
(4)

If this ratio value is between 0 and 1, it means that the MIG
from Ψs is closer to the Forman method result than the dis-
tance between the MIGs of Mesh1 and Mesh2. Thus, we
consider the topology obtained from our method to be accu-
rate. Limited by the paper length, details about the Wasser-
stein distance calculation and the influence of mesh config-
uration are provided in the supplementary materials.

4.2. Synthetic terrain data

Before evaluating the ImplicitTerrain on real-world terrain
data, synthetic terrain data with simple topology is gener-
ated to show the effective alignment of our surface model
analysis results to the Forman method results. The syn-

Name precision recall F0.5 score WSratio

Synthours 1.00 1.00 1.00 0.68

Swiss1 0.90 0.96 0.91 0.17
Swiss2 0.91 0.831 0.89 0.31
Swiss3 0.89 0.78 0.87 0.69
Swiss4 0.91 0.83 0.89 0.35

Table 1. Topological analysis results of the synthetic and real-
world terrain. WSratio between [0, 1] indicates the MIGs from
both methods are well aligned.

thetic terrain is of side length 256 with height values be-
tween [0, 200] and is generated as a combination of 2D ran-
dom Gaussian signals with various covariances as shown
in Fig. 1. Particularly, knowing the surface gradient of the
synthetic terrain allows a better data triangulation than the
Mesh1 and Mesh2. The triangulation of each grid cell is de-
termined by the surface gradient, leading to visually better
separatrix lines by Forman method. Due to the simplicity
of this dataset, our models are also shrunk to have 3 hidden
layers and 128 hidden units. As shown in Fig. 4, the crit-
ical points, separatrix lines, and MIGs from both methods
form a good visual alignment. Quantitative evaluations of
the topological analysis results are shown in Tab. 1. F0.5-
score value is 1.0 and the small WSratio proof the high
similarity between our results and Forman method. Be-
sides the correctness of the topological analysis results, it
is obvious that the smooth (zigzag free) separatrix lines ob-
tained from the ImplicitTerrain are visually plausible and
faithfully align with the terrain surface. These smooth and
accurate separatrix lines might lead to better segmentation
results based on the Morse-Smale Complexes.

4.3. Real-world terrain data

Swisstopo dataset swissALTI3D [65] provides high-
resolution digital elevation information of the Switzerland
terrain surface without vegetation. Four different tiles
Swissk (k ∈ {1, 2, 3, 4}) of size 1km×1km are selected
with various terrain characteristics as input data and each
tile is of resolution 1 meter per pixel. Limited by the paper
length, we only put the results for Swiss1 tile and the rest
results with extra analysis can be found in the supplemen-
tary materials. As shown in Tab. 2, ImplicitTerrain model
size is 80% less than the input raster file and the surface
fitting criteria all show our method provides a very good
reconstruction of the terrain surface function. The gradi-
ent field, especially the gradient direction, is accurately re-
constructed, benefitting the following topological analysis
and topographical calculation. Besides, in Fig. 5, the de-
tailed textures over the terrain surface are preserved. With
the accurate fitting of the terrain gradient field, in Tab. 1,
the results of critical point matching and Wasserstein dis-
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(a) Separatrix lines - ImplicitTer-
rain.

(b) Separatrix lines - Forman
method.

(c) MIG - ImplicitTerrain. (d) MIG - Forman method.

Figure 4. Comparison of topological analysis results of the syn-
thetic terrain. Node colors and shapes represent the critical point
types and the edge colors represent the separatrix lines as in the
legend of (c) and (d). Better viewed in the digital version.

tance ratio show that our surface model is able to correctly
capture the topological features from the input terrain. The
value of the Wasserstein distance ratio is small enough to
confirm that our persistence diagram is closely aligned with
the Forman method result. As shown in Fig. 5, separatrix
lines and critical points together delineate the terrain topol-
ogy. Ridges/valleys between the mountain saddles and the
peaks/basins are accurately depicted in the plot.

4.4. Ablation study: SPG model vs. single model

To counter the harm of spectral bias, we propose this
simple-but-effective SPG pipeline which takes advantage
of the downstream task requirement - it is a common prac-
tice to smooth the terrain surface before topological and to-
pographical analysis, especially for high-resolution inputs.
Our SPG model preserves a detailed visual quality of the
terrain surface texture while effectively capturing topologi-
cal features as in Fig. 5. To further show this design’s ben-
efit to fitting accuracy and training time, we compare it to
a single model with about the same number of trainable pa-
rameters - 3 hidden layers with 512 hidden units. In Fig. 6,
we plot the smoothed (via Exponential Moving Average)
PSNR values averaged for 5 rounds, with reference to the
training time. Same as in the pipeline, both models are fit-
ted for 6000 steps in total. Our progressively fitting model
converges much faster and more accurately than the single

(a) Hillshade of SPG output. (b) Absolute error of the fitting.

(c) Separatrix lines. (d) MIG.

Figure 5. ImplicitTerrain fitting results and topological features
extracted from Swiss1. (b) shows the fitting error with red color
mapping to 0.25% error. Better viewed in the digital version.

Figure 6. Ablation comparison of the fitting accuracy between
SPG and single model w.r.t. training time. Colored regions denote
different training stages of the SPG model.

model which takes 4 times more time to achieve a worse fit-
ting accuracy (PSNR 67 dBs vs. 58 dBs). Additionally, by
analyzing the frequency domain difference, Figure 7 shows
that the design of SPG helps increase the fitting capacity of
the network, explaining the better PSNR value it achieves.

4.5. Noise robustness

To evaluate the model’s robustness to the presence of noise,
pixel-wise Gaussian random noise is added to the normal-
ized input with the variance of noise growing from 1e-3 to
6.4e-2 exponentially. Averaging the results from 5 rounds,
Figure 8 shows the changes of Swiss1’s F0.5-scores and
Wasserstein distance to the reference (original input) with
the increment of noise level. ImplicitTerrain achieves on par
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Name Sizes
(MBs)

Size
ratio

Ψs

PSNR
Ψs

SSIM
Freq diff
×10

Grad
norm diff
×10

Grad di-
rection diff
(rad) ×10

SPG
PSNR

SPG
SSIM

Swiss1 1.51/7.6 0.20 64.85 0.9999 1.49±2.31 0.54±0.52 0.62±1.10 67.08 0.9999
Swiss2 1.51/7.6 0.20 60.53 0.9998 0.95±2.08 0.77±1.00 0.61±0.77 52.34 0.9992
Swiss3 1.51/7.6 0.20 59.75 0.9998 0.13±0.29 0.86±1.05 0.72±1.02 58.93 0.9997
Swiss3 1.51/7.6 0.20 62.54 0.9999 0.17±0.32 0.56±0.61 0.46±0.57 66.59 0.9999

Table 2. Numerical evaluation of the fitting results of the real-world terrain. Sizes are the total model sizes and the input raster size, and
Size ratio is their ratio. Ψs PSNR and Ψs SSIM are the fitting accuracy of the surface model to the smoothed data. SPG PSNR and SPG
SSIM are the fitting accuracy of the SPG model to the original input. For the surface model, Freq diff is the mean and standard deviation
of the frequency domain difference. Grad norm/direction diffs are the mean and standard deviation of the difference of gradient norm
and direction between ∇Ψs and the estimated image gradient from Is. ×10 denotes the scaling factor for better numerical representation.

(a) Fourier transform of the Swiss1. (b) Frequency domain loss.

Figure 7. Freqency domain comparison of the fitting results. (a)
shows the ground truth. (b) Since the Fourier transform result is
central symmetric, SPG and single model frequency domain loss
are plotted together as labeled in the figure.

Figure 8. Comparison of noise robustness. Forman method and
ImplicitTerrain comparison via F0.5 score and Wasserstein dis-
tance of the Swiss1 w.r.t. noise level.

result with the Forman method at the beginning and shows
superior robustness when the noise level further increases.

4.6. Terrain topographical analysis

Our ImplicitTerrain, as a smooth model of the terrain sur-
face, can easily support the topographical analysis that re-
quires the computation of surface derivatives [44]. Since the

surface function F (x, y) = z is a scalar function defined
over the 2D domain, the normal direction can be derived as
⟨−fx,−fy, 1⟩, where fx, fy are the first-order derivatives
of the function. According to [50], the mean curvature of
the manifold can be derived from the second-order deriva-
tive of the function as

H =
(1 + f2y )fxx − 2fxfyfxy + (1 + f2x)fyy

2(1 + f2x + f2y )
3/2

(5)

where fxx, fxy, fyy are the second-order derivatives of the
function. In the last stage of Fig. 2, we show the basic topo-
graphical terrain attributes of Swiss1 derived from the gra-
dient of Ψs, i.e. normal map, slope, aspect, and mean cur-
vature. Limited by the paper length, detailed definition, and
high-resolution results in the supplementary materials.

5. Conclusion
In this paper, we propose an ImplicitTerrain pipeline to
accurately model high-resolution terrain data and support
various downstream analyses over a smooth surface repre-
sentation. Digital surface model and geometric details are
sequentially learned by our Surface-plus-Geometry (SPG)
model, in which the surface model fitting is accelerated by a
multi-stage learning strategy. Furthermore, the smooth and
accurate terrain model enables Morse theory-based topo-
logical analysis results reliable and interpretable. In the
future, we plan to process high-resolution point clouds di-
rectly and extend the pipeline to support large-scale terrain
regions with better model design. The training time and in-
ferencing computation burden can be further optimized by
the meta-learning and model quantization correspondingly.
We believe that ImplicitTerrain will benefit many research
fields that require accurate surface modeling and topologi-
cal data analysis.
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[63] Yannick Strümpler, Janis Postels, Ren Yang, Luc Van Gool,
and Federico Tombari. Implicit neural representations for
image compression. In European Conference on Computer
Vision, 2021. 2

[64] Corinne Stucker, Bingxin Ke, Yuanwen Yue, Shengyu
Huang, Iro Armeni, and Konrad Schindler. Implicity: City
modeling from satellite images with deep implicit occupancy
fields. arXiv preprint arXiv:2201.09968, 2022. 2

[65] Swisstopo. Swissalti3d datasets. https://www.
swisstopo . admin . ch / en / height - model -
swissalti3d, 2023. 6

[66] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara
Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-
mamoorthi, Jonathan Barron, and Ren Ng. Fourier features
let networks learn high frequency functions in low dimen-
sional domains. Advances in Neural Information Processing
Systems, 33:7537–7547, 2020. 2

[67] Julien Tierny, Guillaume Favelier, Joshua A Levine, Charles
Gueunet, and Michael Michaux. The topology toolkit. IEEE
transactions on visualization and computer graphics, 24(1):
832–842, 2017. 3

[68] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku
Komura, and Wenping Wang. Neus: Learning neural implicit
surfaces by volume rendering for multi-view reconstruction.
arXiv preprint arXiv:2106.10689, 2021. 2

[69] Kenneth Weiss, Federico Iuricich, Riccardo Fellegara, and
Leila De Floriani. A primal/dual representation for dis-
crete morse complexes on tetrahedral meshes. In Com-
puter Graphics Forum, pages 361–370. Wiley Online Li-
brary, 2013. 3

[70] Yuanbo Xiangli, Linning Xu, Xingang Pan, Nanxuan Zhao,
Anyi Rao, Christian Theobalt, Bo Dai, and Dahua Lin.
Bungeenerf: Progressive neural radiance field for extreme
multi-scale scene rendering. In European conference on
computer vision, pages 106–122. Springer, 2022. 2

[71] Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany,
Shiqin Yan, Numair Khan, Federico Tombari, James Tomp-
kin, Vincent Sitzmann, and Srinath Sridhar. Neural fields in
visual computing and beyond. In Computer Graphics Forum,
pages 641–676. Wiley Online Library, 2022. 2

[72] Qiangeng Xu, Weiyue Wang, Duygu Ceylan, Radomir
Mech, and Ulrich Neumann. Disn: Deep implicit surface
network for high-quality single-view 3d reconstruction. Ad-
vances in neural information processing systems, 32, 2019.
2

[73] Xin Xu, Federico Iuricich, Kim Calders, John Armston, and
Leila De Floriani. Topology-based individual tree segmen-
tation for automated processing of terrestrial laser scanning
point clouds. International Journal of Applied Earth Obser-
vation and Geoinformation, 116:103145, 2023. 1

[74] Runzhao Yang, Tingxiong Xiao, Yuxiao Cheng, Qianni Cao,
Jinyuan Qu, Jinli Suo, and Qionghai Dai. Sci: A spec-
trum concentrated implicit neural compression for biomedi-
cal data. In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 4774–4782, 2023. 2

[75] Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. Vol-
ume rendering of neural implicit surfaces. Advances in Neu-
ral Information Processing Systems, 34:4805–4815, 2021. 2

[76] Wang Yifan, Lukas Rahmann, and Olga Sorkine-Hornung.
Geometry-consistent neural shape representation with im-
plicit displacement fields. arXiv preprint arXiv:2106.05187,
2021. 4
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