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Abstract

In this work, we identify continual learning (CL) meth-
ods’ inherent differences in sequential decision attribution.
In the sequential learning process, inconsistent decision at-
tribution may undermine the interpretability of a contin-
ual learner. However, existing CL evaluation metrics, as
well as current interpretability methods, cannot measure
the decision attribution stability of a continual learner. To
bridge the gap, we introduce Shapley value, a well-known
decision attribution theory, and define SHAP value consis-
tency (SHAPC) to measure the consistency of a continual
learner’s decision attribution. Furthermore, we define the
mean and the variance of SHAPC values, namely SHAPC-
Mean and SHAPC-Var, to jointly evaluate the decision attri-
bution stability of continual learners over sequential tasks.
On Split CIFAR-10, Split CIFAR-100, and Split TinyIma-
geNet, we compare the decision attribution stability of dif-
ferent CL methods using the proposed metrics, providing a
new perspective for evaluating their reliability.

1. Introduction
Continual learning (CL) [3, 7, 20, 23, 25, 32] involves learn-
ing a sequence of tasks incrementally without significantly
forgetting previously acquired knowledge [23]. Over recent
years, various algorithms [1, 3, 4, 7, 20, 25, 31, 32] and net-
work architectures [8, 18, 24] have been proposed to miti-
gate catastrophic forgetting in CL with varying degrees of
success. Concurrently, numerous evaluation metrics have
been proposed to assess the performance of CL methods,
focusing on aspects like forgetting [31], accuracy [5], and
transfer [21]. However, the interpretability of continual
learning has received very little attention.

The interpretability of a machine learning model refers
to how well humans can understand the reasons behind its
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decisions [19]. To effectively engage with humans, a ma-
chine learning model should align with human comprehen-
sion, acceptability, and intuition [30], necessitating good in-
terpretability to establish trust among humans.

For a continual learner, existing interpretability methods
can explain decisions for samples in the current task but
cannot interpret the same sample’s decisions after learning
subsequent tasks, as the sample will not be available. Sub-
sequent learning can alter decision attribution for samples
in previous tasks as the model continually adapts to the data
distribution of new tasks. As shown in Fig. 1, the decision
attribution (highlighted area) for the same sample varies
across different CL methods during the continual learning
process. This indicates that the interpretability of learners
changes during continual learning processes.

However, current CL evaluation metrics and inter-
pretability methods cannot evaluate the decision attribution
stability of continual learners, resulting in a decision attribu-
tion stability assessment gap (See the lower part of Fig. 1).

To bridge this gap, we introduce SHAP value consis-
tency, building upon SHAP values [22], to measure the de-
cision attribution stability of CL methods. Further, we pro-
pose SHAPC-Mean and SHAPC-Var to respectively assess
the average SHAP value consistency throughout the entire
CL process and the variation of SHAP value consistency
across different samples. The main contributions of this
work are summarized as follows:
• We, for the first time, disclose the truth that most CL

methods have decision attribution changes across tasks.
Furthermore, we show that various methods may result in
varying degrees of decision behavior deviation.

• We introduce SHAP value and define SHAP value consis-
tency (SHAPC), along with SHAPC-Mean and SHAPC-
Var, as metrics to measure the decision attribution stabil-
ity of continual learning methods.

• We conduct comprehensive experiments on three promi-
nent CL datasets, demonstrating that SHAPC-Mean and
SHAPC-Var address the deficiencies of traditional met-
rics in assessing decision attribution stability for CL
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Figure 1. The decision attribution deviation. The upper part visualizes the decision attribution of three CL methods: iCaRL, X-DER,
and LwF for Split TinyImageNet. The test sample is sampled from the test set of Task 1. The bright areas correspond to the larger SHAP
value area. Three methods result in varying degrees of decision attribution deviation. The lower left part depicts the trends of the models’
accuracy, forgetting, and SHAPC for samples from task 1 throughout the continual learning process. The lower right part displays the
disparities among traditional continual learning evaluation metrics, including average accuracy (A) and average forgetting (F), alongside
the proposed metric SHAPC-Mean outlined in Section 4.2.

methods. For instance, while iCaRL and BFP exhibit
relatively similar average accuracy and forgetting rates
on Split CIFAR-100, they have substantial disparities in
SHAPC-Mean and SHAPC-Var.

2. Related Work

Evaluation Metrics. Most commonly used CL evaluation
metrics evaluate a model’s overall performance based on av-
erage accuracy [5] and average forgetting [5]. The average
accuracy is calculated by considering the model’s classifi-
cation accuracy for both the previous and current tasks, as-
sessed after the model has completed training on the latter.
Besides, task forgetting is assessed by calculating the vari-
ance between its maximum past performance and its cur-
rent performance, and the average forgetting is computed
as the mean of these differences [5]. Backward transfer
(BWT) [21] evaluates the performance changes of all previ-
ous tasks after learning the current task. Both average for-
getting and BWT are utilized to assess the memory stability
of a model. In addition to assessing stability, researchers
also introduced the intransigence measure(IM) [5] and for-

ward transfer (FWT) [21] to evaluate learning plasticity. IM
quantifies a model’s inability to learn new tasks, determined
by the difference in task performance between joint train-
ing and continual learning phases. In contrast, FWT as-
sesses the collective impact of all previous tasks on the cur-
rent task. It is noteworthy that the aforementioned eval-
uation metrics are typically applied to continual learners
upon completion of the training phase and do not inher-
ently assess the training process itself. De Lange et al. [17]
observed a phenomenon termed the “stability gap” during
the continual training process, occurring specifically during
task switching. Building upon this discovery, they formu-
lated four evaluation metrics for CL: average minimum ac-
curacy, worst-case accuracy, windowed forgetting, and win-
dowed plasticity. These metrics serve to assess the stability
of continual learners amidst task switching.

Interpretability. While current evaluation metrics enhance
the assessment of continual learning (CL), they predomi-
nantly emphasize model accuracy performance and over-
look interpretability measurements. Interpretability meth-
ods currently exist in two main categories: intrinsic and post
hoc methods [10]. Intrinsic interpretability involves models
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that are inherently interpretable, achieved through the impo-
sition of constraints on the model. The commonly used in-
trinsic interpretability methods include the following: Clas-
sification and Regression Trees(CART) [2], Support Vec-
tor Machine(SVM) [29], K-Nearest Neighbors(KNN). On
the other hand, post hoc interpretability involves meth-
ods applied after model training, providing explanations
beyond the model’s inherent interpretability. Established
post-hoc interpretability methods, including Local Inter-
pretable Model-Agnostic Explanations (LIME) [26], SHap-
ley Additive exPlanations (SHAP) [22], and class activation
mapping (CAM) [34], offer comprehensive explanations of
model behavior. Following the selection of suitable evalua-
tion criteria, post-hoc interpretable methods can effectively
facilitate the evaluation of model interpretability. For in-
stance, Zhang et al. [33] assesses model interpretability by
utilizing human annotations as ground truth and compar-
ing the consistency between the model’s decision attribution
and the ground truth. Therefore, this paper focuses on ex-
amining the attribution of model decisions through post-hoc
interpretability methods.

Despite numerous interpretability assessment methods
can evaluate the interpretability of model decision behav-
ior, there is currently no method available to quantify the
degrees of change in decision attribution in continual learn-
ing scenarios. This study aims to address this deficiency
by introducing assessment metrics designed to measure the
decision attribution stability in continual learning scenarios.

3. Preliminaries
3.1. Continual Learning

In CL, a continual learner is trained on an ordered set of
tasks {1, ..., T}, each task contains a different dataset Dt =
{Xt,Yt}, which contains the samples Xt, as well labels Yt.
For the task t, the dataset Dt is presented to the model f ,
while the previous data does not. The objective function for
learning the current parameter Θt is

Lt = E(x,y)∼Dt
[ℓ(f(x;Θt), y)], (1)

where ℓ typically denotes the cross-entropy loss. In Class-
Incremental Learning (Class-IL), unknowing task-specific
classes in the test phase makes the learning process more
challenging.

3.2. Shapley Values
Shapley value [27] is a widely recognized and equitable al-
location method commonly used in cooperative game the-
ory,

sk(ν) =
∑

S⊆N\{k}

(|N | − |S| − 1)!|S|!
|N |! (ν(S ∪ {k})− ν(S)).

(2)

This formula represents the extent of the contribution of
player k in team collaboration. Letting N represent the con-
tributing players, ν represent the value function, and S rep-
resent the possible combination of remaining players after
removing player k, ie. N \ {k}, the allocation of contribu-
tions to player k can be calculated, which is also known as
the Shapley value sk(ν). The higher this value, the greater
the contribution of player k.

In interpretable machine learning, when using Shapley
values, the model f is treated as a value function, and each
feature xk,∀k ∈ N in its input x is considered as a player,
where N = {1, 2, · · · ,K} represents the index set of K
input features. Consequently, Shapley values can be used to
interpret the model’s prediction by assigning a value denot-
ing importance to each input feature to indicate its impact
on the model’s final prediction. In this scenario, Shapley
values can be expressed as:

sk(f,x) =
∑

S⊆N\{k}

(|N| − |S| − 1)!|S|!
|N|!

[
f
S∪{k}

(
x
S∪{k}

)
− f

S
(
x
S
)]

,

(3)

where xS represents the sub-vector of x with the feature
subset S as its index [14], and fS is the model trained using
the sub-vector xS ; the definitions of the sub-vector xS∪{k}

and the model fS∪{k} are consistent. In order to compute
Shapley values, it is necessary to figure out how to calculate
fS(xS).

3.3. SHAP Values

Recalling Sec. 3.2, in order to calculate the Shapley values,
we need to figure out how to compute fS(xS). The vector
xS is a sub-vector of x, which means that some elements
in xS are excluded, and most models cannot handle inputs
with arbitrary missing values. SHAP values [22] address
the issue of missing inputs by treating an input element as
”absent” by assigning a specific value to the element during
the calculation.

Additionally, as indicated by Eq. (3), calculating Shapley
values involve iterating over all possible subsets S, requir-
ing extensive computation. Expected Gradients (EG) [11],
an extension of the Integrated Gradients(IG) [28] method,
can approximate SHAP values and enhance the efficiency of
SHAP by averaging attribution results estimated by the IG
method over multiple baseline points. Consequently, to mit-
igate computational complexity, we employ EG for SHAP
value approximation, adhering to the guidelines provided
by the SHAP package 1.

4. Decision Attribution Stability Evaluation
In this section, we present the mathematical definitions for
SHAP Value Consistency, the mean of SHAPC, and the
variance of SHAPC.

1https://github.com/slundberg/shap
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Figure 2. Distribution of SHAPC value on Task t and the final Task T for Split CIFAR-10. Πτ,T for Co2L and BFP are depicted by dashed
lines. The values of Πτ,T for Co2L and BFP are highly comparable, indicating that these two methods are likely to exhibit closely aligned
results in terms of the SHAPC-Mean metric, while a noticeable disparity exists in the SHAPC distribution (i.e. variance) between the two
methods.

4.1. SHAP Value Consistency (SHAPC)

To quantify the decision attribution stability of a contin-
ual learner, we first define a novel metric termed SHAP
Value Consistency (SHAPC) for each sample, which mea-
sures the consistency of the learner’s decision attributions
when the task switches. This metric relies on calculating
the SHAP value for each feature element of the sample as
an indication of the importance of that feature element to
the prediction, thereby obtaining the learner’s decision at-
tribution for that sample.

The calculation of SHAPC is defined by Eq. (4). Specif-
ically, given a sample x, the term si,j (ft, x) represents the
SHAP value of each image pixel positioned at location (i, j)
on the input image after the model has been trained on the
t-th task, denoted as ft. Here, differing from Eq. (3), we
use (i, j) to index feature. We perform Min-Max Normal-
ization on si,j (ft, x), aiming to mitigate the order of mag-
nitude discrepancies arising from diverse CL methods when
computing SHAP values for the same sample. For the sam-
ple x ∈ Xτ , where Xτ represents the set of samples on
task τ , we use SHAPCτ,t (x) to denote the single channel
SHAPC in decision-making across the τ -th task and t-th
task (t > τ ). For multi-channel input image, the result is
averaged across the channel dimension.

SHAPCτ,t (x) =

∑
i,j∈pt(x)∩pτ (x)

e−|si,j(ft, x)−si,j(fτ , x)|∑
i,j∈pt(x)∪pτ (x)

e−|si,j(ft, x)−si,j(fτ , x)|
,

(4)
pt (x) denotes the important feature area of x on the t-th
task, that is, based on features from which region the model
predicts. In this context, the important feature region is
the mask whose SHAP value exceeds a certain threshold.
specifically, pt (x) can be expressed as:

pi,jt (x) =

{
1 if si,j(ft,x) ≥ sTh(ft,x),

0 if si,j(ft,x) < sTh(ft,x).
(5)

where sTh (ft, x) is the threshold of SHAP value.
In essence, for each feature element within the important

feature area, SHAPCτ,t (x) calculates the consistency of its
SHAP value between task τ and t. Specifically, we cal-
culate SHAP value absolute difference and use the natural
exponential function, denoted as e−|·|, to restrict SHAPC
range to [0, 1]. SHAPCτ,t (x) quantifies the consistency in
the model’s decision-making across the τ -th and t-th task.
Greater value of SHAPCτ,t (x) correspond to higher deci-
sion consistency while smaller SHAPCτ,t (x) value relate
to lower decision consistency.

4.2. The Mean of SHAPC

In Section 4.1, we introduce SHAPCτ,t (x) to denote
the SHAP value consistency of the model concerning the
decision-making for a sample x between the previous task
τ and the current task t. Upon the completion of the entire
continual learning training process, it becomes imperative
to assess holistically the performance of decision consis-
tency throughout the entire continual learning process. We
define the evaluation metric for this purpose as SHAPC-
Mean, outlined as follows:

Πτ,t =
1

|Xτ |
∑
x∈Xτ

SHAPCτ,t (x), (6)

SHAPC-Mean =
1

T − 1

T−1∑
τ=1

(
1

T − τ

T∑
t=τ+1

Πτ,t

)
, (7)

Πτ,t in Eq. (6) is the average SHAPC over all samples
x ∈ Xτ , where |Xτ | is the number of samples. The term
SHAPC-Mean in Eq. (7) is the mean of Πτ,t across sequen-
tial tasks, capturing the average SHAP value consistency
throughout the entire continual learning process. This met-
ric evaluates the stability of decision-making in continual
learning. A higher SHAPC-Mean indicates more stable de-
cision attributions.
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4.3. The Variance of SHAPC

SHAPC-Mean cannot capture the variation of SHAPC
across samples but only calculates the average. Intuitively,
a model with high decision attribution stability ought to ex-
hibit not only high SHAPC across tasks but also small vari-
ations of SHAPC across samples. Therefore, to characterize
SHAPC variation across all samples, we propose the evalu-
ation metric SHAPC-Var.

SHAPC-Var is computed by initially defining Λτ,t as
the variance of SHAPC across all samples x ∈ Xτ , post-
training on task t,

Λτ,t =

[
1

|Xτ |
∑

x∈Xτ
(SHAPCτ,t(x)−Πτ,t)

2
] 1

2

Πτ,t
, (8)

SHAPC-Var =
1

T − 1

T−1∑
τ=1

(
1

T − τ

T∑
t=τ+1

Λτ,t

)
, (9)

SHAPC-Var is the average of Λτ,t across sequential tasks.
A lower value of SHAPC-Var suggests smaller variations of
SHAPC across different samples in the given task.

In Fig. 2, we show Πτ,T of different methods, for exam-
ple, Co2L and BFP. It is evident that even Πτ,T are closely
aligned for Co2L and BFP, the distributions of SHAPC dif-
fer significantly (in variance). As previously discussed, a
lower variance of SHAPC indicates a similar level of deci-
sion consistency across different samples, thereby implying
a higher decision attribution stability.

5. Experiments
We conduct extensive experiments to validate the proposed
SHAPC metric. The quantitative as well as qualitative re-
sults are presented in the subsequent sections.

5.1. Experimental Setup

Datasets. In our experiment, we choose class-incremental
learning and test our proposed decision attribution stability
evaluation metric on three typical datasets: (i) Split CIFAR-
10. The Split CIFAR-10 is constructed by splitting the
CIFAR-10 dataset [15] into 5 tasks. Each task contains 2
classes, and each of which has 5, 000 and 1, 000 images of
size 32× 32 for training and testing, respectively. (ii) Split
CIFAR-100. The Split CIFAR-100 is constructed by split-
ting the CIFAR-100 dataset [16] into 10 tasks. Each task
contains 10 classes, and each of which has 500 and 100 im-
ages of size 32 × 32 for training and testing, respectively.
(iii) Split TinyImageNet. The Split TinyImageNet is con-
structed by splitting the TinyImageNet dataset [9] into 10
tasks. Each task contains 20 classes, and each of which has
500 and 100 images of size 64× 64 for training and testing,
respectively.

CL Methods for Evaluation. We conduct an empirical
study on nine well-known continual learning methods, in-
cluding regularization-based methods such as LwF [20] and
SI [32], and rehearsal-based methods like iCaRL [25], A-
GEM [7], DER [3], DER++ [3], Co2L [4], X-DER [1] and
BFP [12]. The hyperparameters for each method follow its
original settings.
Traditional CL metrics. In addition to the metric intro-
duced in this paper for measuring model decision attribu-
tion stability, we also employ traditional CL evaluation met-
rics to assess the performance of various CL methods. We
choose two commonly used metrics: (1) Average Accu-
racy (A) [5] and (2) Average Forgetting (F ) [6]. Aver-
age accuracy represents the final accuracy averaged over
all tasks with respect to all past classes. Let at,τ denote
the model’s accuracy on task τ after learning task t. Then,
the average accuracy is defined by: A = 1

T

∑T
τ=1 aT,τ ;

which quantifies the average drop in task performance over
all tasks. Besides, average forgetting is defined by: F =

1
T−1

∑T−1
τ=1 maxi∈{1,...,T−1} (ai,τ − aT,τ ).

Implementation Details. On all three mentioned datasets,
we employ Resnet-18[13] with a linear layer for classifica-
tion. Our investigation of rehearsal-based methods involves
using a fixed buffer capacity of 500 samples. We empiri-
cally select feature points within the top 30% of SHAP val-
ues to identify the important feature regions, as setting a
higher threshold may lead to tiny important feature regions,
while a lower threshold may inevitably introduce less sig-
nificant features to important regions.

5.2. Test on SHAP Value Consistency

We validate SHAP value consistency over various CL meth-
ods, and combine this metric with average accuracy and
average forgetting to comprehensively assess different CL
methods.

In Table 1, we report SHAPC-mean, SHAPC-var, aver-
aging accuracy, and average forgetting of various contin-
ual learning methods. From Table 1, it is observed that
iCaRL demonstrates a higher SHAPC-Mean and a reduced
SHAPC-Var across all the three datasets. The underlying
cause of this phenomenon can be attributed to iCaRL’s strat-
egy of selecting and retaining samples whose features are
closest to the class prototype, combined with the use of
distillation loss for replay, thereby maintaining the model’s
representational stability for the samples. Therefore, iCaRL
exhibits better decision attribution stability on samples from
previous tasks. Despite this, iCaRL does not achieve the
highest average accuracy among all methods. This could be
due to the fact that iCaRL exhibits relatively low accuracy in
the current task, and its decision-making stability results in
consistently low accuracy throughout the continual learning
process in this specific task (as shown in the lower left part
of Fig. 1), ultimately leading to a lower average accuracy
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Method Pub.Venue
Split CIFAR-10 Split CIFAR-100 Split TinyImageNet

A(↑) F (↓) SHAPC
A(↑) F (↓) SHAPC

A(↑) F (↓) SHAPC

Mean(↑) Var(↓) Mean(↑) Var(↓) Mean(↑) Var(↓)
LwF[20] TPAMI 2017 19.61 96.16 25.08 11.99 9.96 89.04 28.46 10.85 7.89 76.22 26.41 9.12
SI‡[32] ICML 2017 19.45 93.03 23.03 13.52 9.28 89.14 28.81 10.58 6.68 62.80 33.50 7.47
iCaRL[25] CVPR 2017 63.24 26.71 45.29 11.18 46.55 29.58 43.26 9.52 23.94 24.79 43.99 7.90
A-GEM‡[7] ICLR 2019 20.64 94.16 26.92 10.58 9.36 89.11 28.31 10.29 7.91 76.56 25.23 7.72
DER[3] NeurIPS 2020 71.54 27.93 31.26 12.37 36.64 54.19 34.06 10.57 16.41 66.17 31.72 8.03
DER++[3] NeurIPS 2020 73.36 23.42 31.18 12.68 39.63 52.18 33.23 10.28 18.73 59.63 32.72 8.29
Co2L[4] ICCV 2021 73.93 25.13 33.63 13.17 33.43 47.07 39.33 11.63 18.86 51.43 34.65 9.23
X-DER[1] TPAMI 2022 67.02 15.93 34.37 10.62 46.19 25.35 38.08 10.19 23.60 51.38 35.18 8.16
BFP‡[12] CVPR 2023 77.14 12.66 31.88 19.03 47.45 30.28 39.80 9.80 25.78 32.44 38.82 8.55

Table 1. Quantitative results on Split CIFAR-10, Split CIFAR-100 and Split TinyImageNet, respectively. ”‡” indicates that certain experi-
mental results of the method are not included in the original publication, and are subsequently derived by us through the replication of the
paper’s open-source code. All the results are presented in the form of percentages (%).

for iCaRL.

Figure 3. Evaluation of X-DER, BFP, and iCaRL on Split CIFAR-
100 using four evaluation metrics: average accuracy (A), average
forgetting (F), SHAPC-Mean, and SHAPC-Var.

Additionally, we discover that BFP sustains the highest
accuracy across all three datasets (77.14% on Split CIFAR-
10, 47.45% on Split CIFAR-100, and 25.78% on Split
TinyImageNet). This is because BFP introduces a linear
transformation matrix, relaxing the constraints on features,
thereby increasing its plasticity on current tasks at the ex-
pense of representational stability, which affects its decision
attribution stability on previous tasks, resulting in lower
SHAPC-Mean.

Furthermore, it can be observed that while some meth-
ods exhibit similar results in SHAPC-Mean, they demon-
strate significant differences in SHAPC-Var. For instance,
on Split CIFAR-10, both DER++ and BFP exhibit SHAPC-
Mean values of approximately 31%, whereas in SHAPC-
Var, DER++ is about 6% lower than BFP. This suggests that
SHAPC-Var can be utilized to further characterize the dif-
ferences in decision consistency across different samples,
thereby addressing the limitation of SHAPC-Mean in eval-
uating consistency at the sample level. Therefore, the eval-
uation metrics introduced in this study are both necessary
and complementary.
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Figure 4. Evaluating the normalized distribution of SHAPC1,τ (x)
during the training of Split CIFAR-100 for three different CL
methods. The box represents the interquartile range (IQR), with
the median marked by the central line, where whiskers extend to
1.5 times the IQR.

5.3. Discussion on SHAP Value Consistency

To further analyze the differences in SHAPC across vari-
ous CL methods and to validate the metrics proposed in this
paper, we formulate the below discussion in terms of two
questions:
Do the traditional and proposed metrics exhibit identi-
cal trend? As depicted in Fig. 3, four evaluation metrics are
illustrated through a bar graph, and it is worth noting that
BFP’s accuracy A is comparable to that of iCaRL. However,
the difference in SHAPC-Mean between the two methods is
quite pronounced, with iCaRL significantly outperforming
BFP, as indicated by the red box. This demonstrates that
the evaluation metrics introduced in this paper contribute a
novel aspect to the assessment of continual learning meth-
ods, implying that when traditional metrics, such as accu-
racy, are comparable between two methods, the one with
superior decision attribution stability ought to be favored.
Does the distribution width of SHAPC values vary
across tasks? As illustrated in Fig. 4, we employ a box
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Threshold 10% 30% 50%
Method SHAPC-Mean(↑) SHAPC-Var(↓) SHAPC-Mean(↑) SHAPC-Var(↓) SHAPC-Mean(↑) SHAPC-Var(↓)
LwF[20] 18.69 23.08 28.46 10.85 41.55 6.03
iCaRL[25] 34.94 16.76 43.26 9.52 54.47 5.80
BFP[12] 31.01 18.21 39.80 9.80 51.57 5.89

Table 2. SHAPC-Mean and SHAPC-Var for three CL methods on Split CIFAR-100 with different threshold settings

plot to depict the changes in the distribution of SHAPC dur-
ing the continual learning process. It can be observed that
iCaRL consistently maintains a relatively small interquartile
range (IQR), indicating that its SHAPC on task 1 exhibits
a narrower distribution throughout the continual learning
process. In contrast, SI consistently exhibits a relatively
wider distribution. This suggests that, for different CL
methods, the relative width of SHAPC value distribution
is consistently close throughout the entire continual learn-
ing process. Furthermore, the trend of this relative width
aligns with the SHAPC-Var results. This demonstrates that
SHAPC-Var, by averaging Λτ,t across sequential tasks, is a
reasonable and effective metric for measuring the variations
of SHAPC across different samples for the given tasks.
Does SHAPC exhibit sensitivity to the setting of the hy-
perparameter (specifically, the threshold of the SHAP
value)? Table 2 showcase the results of evaluating three
continual learning methods using the metrics proposed in
this study across various SHAP value thresholds (top 10%,
top 30%, top 50%). The results indicate that SHAPC-Mean
and SHAPC-Var of the three methods vary with changes
in the threshold. Neverthelss, we observe that the relative
magnitude of the three methods on the proposed metrics
remain consistent, with iCaRL consistently outperforming
BFP and LwF. This demonstrates that our metrics can cap-
ture differences between methods across different threshold
settings, indicating that they are not sensitive to the thresh-
old setting. Furthermore, it is noted that the discrepancy be-
tween the three methods in terms of SHAPC-Mean is most
pronounced when the threshold is set to 30%. Therefore,
we adopt a threshold of 30% for computing the metrics pre-
sented in this paper.

6. Conclusions

To evaluate the decision attribution stability of CL methods,
this work proposes a new metric—SHAP value consistency
(SHAPC) in sequential decision-making. The new metric
is based on decision attribution theory, i.e. Shapley value
theory. Specifically, we calculate the SHAP value for each
feature element to quantify decision behavior for model pre-
diction and use SHAP value consistency in sequential deci-
sions to measure the decision attribution stability of con-
tinual learners. The higher SHAP value consistency and
lower variation across samples indicate better decision attri-

bution stability. Extensive experimental results demonstrate
the necessity and validity of the proposed metrics.
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