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Abstract

Generalized few-shot semantic segmentation (GFSS)
unifies semantic segmentation with few-shot learning,
showing great potential for Earth observation tasks un-
der data scarcity conditions, such as disaster response, ur-
ban planning, and natural resource management. GFSS
requires simultaneous prediction for both base and novel
classes, with the challenge lying in balancing the segmen-
tation performance of both. Therefore, this paper intro-
duces a novel framework named FoMA, Foundation Model
Assisted GFSS framework for remote sensing images. We
aim to leverage the generic semantic knowledge inherited
in foundation models. Specifically, we employ three strate-
gies named Support Label Enrichment (SLE), Distillation
of General Knowledge (DGK) and Voting Fusion of Ex-
perts (VFE). For the support images, SLE explores credible
unlabeled novel categories, ensuring that each support la-
bel contains multiple novel classes. For the query images,
DGK technique allows an effective transfer of generaliz-
able knowledge of foundation models on certain categories
to the GFSS learner. Additionally, VFE strategy integrates
the zero-shot prediction of foundation models with the few-
shot prediction of GFSS learners, achieving improved seg-
mentation performance. Extensive experiments and ab-
lation studies conducted on the OpenEarthMap few-shot
challenge dataset demonstrate that our proposed method
achieves state-of-the-art performance.

1. Introduction

High-resolution remote sensing images (RSIs) are widely
used in many fields of national economic development, such
as urban infrastructure assessment [1], land use analysis [2]
and environmental monitoring [3]. Semantic segmentation
of RSIs is an important way to effectively utilize the im-
age information aimed at parsing the semantic categories of

Figure 1. Comparisons between (a) traditional GFSS framework
and (b) our foundation model assisted GFSS framework. Since
foundation model is pre-trained on web-scale datasets, it can be
regarded as a rich knowledge base of general concept, such as
river (marked in red circle). It is beneficial to transfer the general
knowledge from foundation model to train better GFSS learners.

ground features [4]. Although deep neural networks have
made significant progress in RSI semantic segmentation,
the reliance on annotated data as well as complexity and
unknowns from ground targets significantly restricts their
applicability [5, 6].

Few-shot semantic segmentation (FSS) has been pro-
posed to learn a model capable of segmenting novel classes
with only a few annotated images [7]. Some researches
have been conducted to improve segmentation by generat-
ing innovative supporting prototypes [8, 9] and generalized
visual segmentation models (e.g., SAM [10]) have recently
shown excellence in few-shot learning [11]. Nevertheless,
few-shot segmentation usually requires support samples to
contain classes that exist in query samples and assess only
the novel classes, thus not effectively addressing the chal-
lenges of evaluation across both base and novel classes.
Therefore, generalized FSS (GFSS) [12] was proposed for
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the recognition of both base and novel categories. It has
made significant strides in processing natural imagery effi-
ciently, allowing for the inclusion of new categories with-
out sacrificing the accuracy of existing ones [13]. However,
the objects of RSIs often exhibit more complex scales and
confusing semantics. For example, when observed from
satellite images, ships and the sea display significant spatial
differences, whereas bridges and roads are easily confused
since bridges often signify a segment of a road crossing a
river. As mentioned in the literature [4, 14], current FSS
models do not perform well on these categories in scenarios
with limited samples, highlighting the demand of advanced
knowledge to deal with various remote sensing scenes.

Recently, the surge of vision-language models such as
CLIP [15] and ALIGN [16] has greatly boosted zero-shot
learning. After training on large-scale image-text pairs
datasets, these models exhibit astonishing recognition ca-
pabilities on unseen categories. Benefiting from their zero-
shot recognition ability, the performance of few-shot seg-
mentation models can make great progress [17–19]. Nev-
ertheless, these models primarily learn from natural image-
level supervision, raising the research question of effective
transfer of this kind of knowledge to pixel-level RSI seg-
mentation tasks.

This paper introduces a novel GFSS framework for
RSIs, FoMA, Foundation Model Assisted GFSS frame-
work, which is shown in Figure 1. It jointly combines
the foundation model and the few-shot learner, leveraging
the complementary knowledge of both to enhance the seg-
mentation performance of both the base and novel classes.
We observe that a small number of samples is insufficient
to train a good classifier, especially for small objects such
as boats. Moreover, we also find that to simulate a more
realistic GFSS setting, each image in the support set is
labeled with only one novel class, while other potential
novel classes are labeled as the background. This causes
semantic ambiguity regarding the novel classes in the sup-
port labels, affecting the model’s training performance un-
der such ambiguous supervisory information. Since founda-
tion models are pre-trained on web-scale datasets, they gain
certain general knowledge from natural images regard-
ing some common objects such as river and boats. Based
on these findings, we attempt to leverage foundation mod-
els for providing more complementary information about
support images and query images, transferring the prior
knowledge of foundation models to the novel classifier in
the few-shot learners by label enrichment and knowledge
distillation. Finally, to enhance the segmentation perfor-
mance of both base and novel classes, we combine the gen-
eral knowledge of the foundation model with the domain
expert knowledge of the few-shot learner, integrating the
results of both through a fusion strategy. Additionally, the
few-shot learner is implemented with a more robust back-

bone architecture, which can capture multi-scale semantic
information of both base and novel categories and extract
potential neighboring semantic clues.

In a nutshell, our key contributions are threefold:
1) We propose a novel foundation model assisted GFSS

framework for RSIs termed FoMA, that integrates the gen-
eral knowledge stored in foundational models with remote
sensing domain knowledge, aiming to alleviate the lack of
prior due to scarce labeled data. To our best knowledge,
FoMA is the first work that adapts a foundation model pre-
trained on general purpose datasets to the task of GFSS into
the remote sensing field.

2) We design three strategies specially tailored for the
GFSS task, in a intuition to promote the knowledge transfer
from foundation models to the GFSS learner. Specifically, a
Support Label Enrichment (SLE) strategy is first proposed
to augment the limited support set with richer information
of novel concept via the zero-shot inference of foundation
model. In addition, a Distillation of General Knowledge
(DGK) is designed for propagating similar semantic con-
cept to the GFSS learner, enhancing the robustness of seg-
mentation. Further, we propose a voting fusion module
to ensemble the predictions of foundation model and our
GFSS learner adaptively.

3) The proposed FoMA framework demonstrates an out-
standing performance on the OpenEarthMap few-shot chal-
lenge dataset, surpassing the baseline by an improvement
of 28.94%. Specifically, the performance enhancement of
novel class is 31.79%, whereas the base class exhibits a
24.64% improvement in performance.

2. Related works
In this section, we list some of the studies that are most
relevant to our work.

Few-shot Segmentation for Earth Observation. Few-
shot segmentation [7] refers to the task of image segmen-
tation with only a small amount of annotated data. In re-
cent years, with the rise of the few-shot learning (FSL) [20],
FSS has been widely studied in natural and medical images.
Nevertheless, the extensive coverage and abundant surface
information found in remote sensing imagery contribute to
the complexity of applying FSS in remote sensing image
segmentation, which making it a challenging research do-
main [21]. Inspired by the success of FSL, most current FSS
research utilizes meta-learning-based models to learn how
to quickly adapt to new few-shot segmentation tasks [9, 22].
Building upon the success and development of these pio-
neering methods, a series of FSS approaches tailored for re-
mote sensing images have emerged. For instance, by intro-
ducing new metrics and optimization techniques to reduce
intra-class variances and maximize inter-class differences,
these methods aim to address the impact of complex back-
grounds and the diversity of land cover on segmentation re-
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sults in remote sensing imagery [14, 23, 24]. Other solu-
tions to mitigate the impact of land cover diversity include:
exploring multi-scale features of images [25] and altering
image scales to reduce the resolution effects [26].

Generalized Few-shot Semantic Segmentation. De-
spite their considerable potential, conventional FSS meth-
ods typically struggle to simultaneously segment both base
and novel classes within a query image. In response to the
limitations of FSS, [12] proposed the concept of general-
ized few-shot semantic segmentation. In contrast to FSS,
GFSS requires the model to segment all potential base and
novel classes in each query image. This implies that the
model needs to rapidly adapt to different categories and sce-
narios with a small amount of labeled data, while also re-
taining knowledge of the base classes. To achieve this goal,
CAPL [12] utilizes two modules to learn base classes and
novel classes. However, due to the richer label information
available for base classes, the model is biased toward base
classes in segmentation results. Recently, BAM [27] has
demonstrated outstanding performance in GFSS tasks. The
dual-branch structure of BAM enables the segregation of
novel and base classes and their effective integration. How-
ever, the meta-learning approach poses challenges when ap-
plied to GFSS tasks with multiple novel classes. DIaM [13]
enhances the consistency between novel and base classes by
introducing a Kullback-Leibler term, significantly improv-
ing the segmentation results for novel classes. Nonetheless,
semantic confusion of ground objects remains a current re-
search challenge for remote sensing GFSS task .

Foundation Model for Zero-shot Semantic Segmen-
tation. Zero-shot semantic segmentation (ZSS) aims to
achieve semantic segmentation for classes without prior an-
notations [28]. Common cues for inferring unknown classes
include shared textual attributes and visual-semantic map-
pings, which emphasizing the significance of aligning vi-
sual embedding with class-specific textual embedding for
ZSS. Early research efforts were focused on enhancing
the model’s generalization capability from known to un-
known classes [29–31]. Recently, as the popular of foun-
dation models, pre-trained visual-language models such as
CLIP [32] have shown astonishing performance in zero-shot
classification. These models establish connections between
visual features and textual features, enabling visual tasks to
no longer be limited to the annotated categories in the train-
ing set. For example, MaskCLIP+ [33] introduced pseudo-
labeling and self-training to apply CLIP in open vocabu-
lary semantic segmentation. OVSeg [34] proposed a two-
stage semantic segmentation framework, where the first
stage generates proposal masks and the second stage per-
forms image segmentation based on CLIP. ZegCLIP [35] di-
rectly extends CLIP’s zero-shot prediction capability from
images to pixel-level, aiming to maintain segmentation per-
formance while pursuing simplicity and efficiency. CAT-

Seg [36] proposes a cost aggregation-based method to op-
timize the paired image and text embedding of CLIP, alle-
viating the problem of transferring the zero-shot capabili-
ties learned from image-level supervision to the pixel-level
task. However, since these models are trained on large-scale
natural image datasets, there is still significant room for im-
provement in their application to remote sensing images.

3. Methodology
3.1. Task definition

GFSS extends the traditional FSS task, requiring models
to simultaneously segment novel classes while also con-
sidering the segmentation accuracy of base classes. In the
context of GFSS, the set of classes consists of two non-
overlapping parts: the base classes Cb and the novel classes
Cn. For the base classes, abundant annotated samples are
provided to train a base learner to obtain the ability to recog-
nize base classes which is consistent with typical semantic
segmentation pipeline. For each novel class, only K anno-
tated support images are available to adjust the meta learner.
During inference, the model needs to segment all the pixels
in the query images across 1+

∣∣Cb
∣∣+|Cn| potential classes.

3.2. Framework of FoMA

In the GFSS task setting, the problem of segmenting novel
classes has always been a challenging issue. We believe this
challenge stems mainly from two reasons: First, in the few-
shot setting, the number of labeled samples for novel classes
is significantly insufficient compared to base classes, mak-
ing it difficult to obtain a good segmentation model under
the same training framework; Second, there exists an issue
of semantic ambiguity in the GFSS task. Specifically, each
image in the support set is labeled with only one novel class,
however, the background of the image may contain pixels of
other novel classes, leading to confusion between the back-
ground class and the novel classes. Under the paradigm
of supervised training, this label ambiguity makes it more
difficult for the model to achieve good segmentation per-
formance on novel classes. Therefore, under this limited
and incomplete supervisory information, we consider intro-
ducing other methods to enrich the label information and
enhance the knowledge extraction for novel classes.

The foundation models have been pre-trained on ex-
tensive datasets, containing a wealth of general semantic
knowledge and concepts, including some categories that
frequently appears in remote sensing images, such as wa-
ter, buildings, etc. Therefore, this general knowledge en-
dows the foundation models with the potential for zero-
shot semantic segmentation in GFSS remote sensing tasks.
By leveraging the general semantic knowledge of the foun-
dation models to guide the learning of the GFSS learner,
it is possible to address the issue of insufficient supervi-
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Figure 2. The overall architecture of the proposed Method. This approach introduces the general knowledge of the vision-language foun-
dation model learned from natural images into the remote sensing image GFSS task through two modules: SLE integrates the foundation
model’s results on support images as pseudo-labels into the GFSS learner’s training process. Concurrently, DGK distills the exceptional
performance achieved by the foundation model on novel classes from query images into the GFSS learner. Furthermore, a voting fusion
strategy is used to effectively merge the results of the foundation model and the GFSS learner across all classes, ensuring more accurate
prediction results for the model.

sion information for novel classes. Specifically, we uti-
lize the foundation models to annotate images in the sup-
port set with novel class labels, constructing pseudo-labels
to obtain more comprehensive supervision information for
the novel classes. Subsequently, we employ knowledge
distillation techniques to transfer the foundation model’s
generic knowledge regarding novel classes in a query im-
age to the classifier of the GFSS learner. This approach en-
sures that the GFSS learner’s predictions for novel classes
align as closely as possible with those of the foundation
model, thereby enhancing its performance for these pre-
viously unseen categories. Finally, we combine the gen-
eral knowledge of the foundation models with the expert
knowledge of the GFSS learner, using the information of

novel classes to further assist the segmentation tasks of base
classes, thereby achieving improved segmentation results.
The overall framework is shown in Figure 2.

3.2.1 Support Label Enrichment

Given a support image I , in our challenge setting, only one
novel class is labeled. It indicates that even though some
other novel classes appear in the image I , the pixels are
also labeled as background, making it semantic ambiguous
during the training of the novel classifier. Therefore, we
aim to leverage off-the-shelf foundation models to enrich
the information of current limited support labels. We name
it Support Label Enrichment (SLE).

To obtain accurate pseudo labels, we utilize off-the-shelf
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open-vocabulary semantic segmentation models based on
CLIP [37] such as CAT-Seg [36], as an automatic labeler,
denoted as Fzero, to produce the pseudo-labels of support
images. Moreover, we utilize the segmentation network
Fbase, which is trained on abundant base class data to sup-
press the false prediction. This process can be formulated
as:

Ms
zero = argmax(Fzero (I, T )) (1)

Ms
base = argmax(Fbase (I)) (2)

Ms
SLE = Ms

gt ∪ (Ms
zero ∩ ¬Ms

base) (3)

where I and T denote the image and the text prompt de-
scribing potential classes, respectively. Ms

zero and Ms
base

denote labels predicted via zero-shot segmentation models
and base classifiers of GFSS learners, respectively. Ms

SLE

denotes enriched support labels. It should be noted that
Fzero predicts existing categories of both base classes and
novel classes, but also capable of predicting more unlabeled
categories, such as car and sports field, to get more accurate
semantic segmentation results. Furthermore, since Fzero

only contains general semantic knowledge and Fbase per-
forms well on base classes, we utilize the Ms

base to sup-
press the potential incorrect segmentation results in Ms

zero.
Based on Ms

SLE , we optimize the proposed model via a
cross-entropy loss:

LSLE = CE(Ffew (I) ,Ms
SLE) (4)

where Ffew denotes the GFSS learner and CE denotes
cross-entropy loss.

3.2.2 Distillation of General Knowledge

We notice that even with enriched supervision information
through our SLE strategy, the performance of the novel clas-
sifier remains limited due to the constrained number of im-
ages in the support set. Therefore, we attempt to make
use of the rich general priors stored in foundation models.
Inspired by recent studies about incremental learning that
distill knowledge from other models [38–40], we enable
the foundation model to serve as a knowledgeable teacher,
guiding our GFSS learner in segmenting query images. The
process of Distillation of General Knowledge (DGK) can be
expressed as:

LDGK = KL
(
t · πprior(P

q
zero) ∥ πprior(P

q
few)

)
(5)

where KL denotes Kullback-Leibler divergence and pa-
rameter t indicates the temperature which is used to con-
trol the learning efficiency of the novel classifier. P q

few

and P q
zero is the output probability of our GFSS learner and

foundation model according to query images, respectively.

πprior is an adjustment function based on expert prior, in
order to control the range of knowledge distillation. Since
some general concepts are more transferable than some re-
mote sensing domain-specific concepts, such as agric land
type 2. Based on the prior of remote sensing experts, πprior

moves the probabilities of less transferable categories into
background class, allowing a focused distillation on more
transferable categories. After iterations of distillation, the
segmentation performance of our GFSS learner on the novel
classes can gradually approach or even exceed the founda-
tion model.

3.2.3 Voting Fusion of Experts

As mentioned before, the foundation model possesses
generic semantic knowledge, thereby exhibiting stronger
segmentation capabilities for novel classes; conversely,
GFSS learners are trained on remote sensing datasets,
demonstrating enhanced segmentation capabilities for base
classes. Thus, organically integrating the results of differ-
ent models at the decision-making level can yield superior
outcomes. We find that it is beneficial to adjust the rela-
tive weights of the predictions. We refer to this operation as
Voting Fusion of Experts (VFE). It is defined as:

P q = argmax(w · P q
zero + P q

few) (6)

where P q
few denotes the probability output of base and

novel classes by the few-shot learner. The parameter w is
the relative weight value. Most importantly, due to foun-
dation models’ varied recognition efficacy across different
categories, we allocate higher weight values to the cate-
gories in which it excels at extraction, while assigning lower
weight values to those where extraction performance is less
proficient.

3.2.4 Self-supervised Optimization

Self-supervised optimization methods leverage unlabeled
data to pre-train models, enabling more efficient utiliza-
tion of limited labeled data in few-shot scenarios. The self-
supervised learning paradigm we employ is grounded in the
principle of consistency, leveraging inherent invariant prop-
erties of remote sensing images. Specifically, we mandate
that alterations such as rotations and flips applied to the
images do not alter the predicted outcome for each pixel.
LSSL denotes self-supervised learning based loss:

LSSL = MSE(Ffew(I),Φinv(Ffew(Φ(I)))) (7)

where Φ and Φinv denote the transformations and inver-
sions applied to images, respectively, and MSE denotes
mean squared error loss.
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Attribute Train Set Val Set

Label

7 base classes
(tree, rangeland, bareland,

agric land type 1, road type 1
sea, lake & pond, building type 1)

4 novel classes
(road type 2, river,
agric land type 2,

boat & ship)

Volume 258 RSIs
50 RSIs

(20 for support set)

Table 1. Details of the dataset used in this work.

3.2.5 Overall Optimization

Following the general paradigm of the GFSS task [13, 41],
the training of our FoMA framework also consists of two
parts: base class training and novel class learning.

Base class training. In the first training phrase, the en-
tire network of the few-shot learner is trained on the given
datasets to optimize the feature representation ability and
the segmentation performance. The optimization objective
consists of typical segmentation loss.

Novel class learning. In the second novel class updat-
ing phrase, we keep the backbone encoder and the decoder
frozen, and only fine-tune the classifier head (both base and
novel). The loss function is formulated as:

Ltotal = l1 · LSLE + l2 · LDGK + l3 · LSSL

+ l4 · LKD + l5 · Lmarg−ent + l6 · Lq
cond−ent (8)

LKD, Lcond−ent is the same as that of [13] and Lq
cond−ent

denotes the conditional entropy in [13] but is only calcu-
lated on query set. l1 to l6 denote weighting coefficients.

4. Experiments
4.1. Datasets and implementation details

Datasets and evaluation metric. The experiments utilized
308 samples of size around 1024×1024 from 11 classes in
the OpenEarthMap benchmark dataset [42]. It is worth
noting that these 11 classes were included in the training
and validation sets in a ratio of 7:4, respectively. The de-
tailed sample amount and class splits are shown in Table
1. For evaluation, we calculate the mean Intersection-over-
Union (mIoU) on base class and novel class, as well as their
weighted-sum, i.e., 0.4*base mIoU + 0.6*novel mIoU are
adopted.

Implementation details. In order to obtain more ac-
curate base classification results, we integrate the outputs
of multiple segmentation models such as UNetFormer [43]
and HRNet [44]. For the choice of vision-language foun-
dation models, we employ CAT-Seg [36] built upon ViT-
G/14 [45]. Except for background class and the existing cat-
egories in the training and validation sets, we utilize foun-

dation models to extract additional unlabeled categories, in-
cluding car, sports field, workshop building, pathway and
parking lot, in an intuition to better delineate the outline
of target classes. The implementation of our framework
is carried out in an NVIDIA A100 environment using Py-
Torch. Since our approach incorporates the framework of
DaIM [13], we select it as a baseline for comparison.

4.2. Spectral-spatial observations in datasets

Due to the complexity of datasets in many scenarios, the
phenomena of similar spectra with different objects and
different spectra with similar objects are prevalent. In
this paper, we conducted an analysis of color confusion
among different land cover types using Euclidean simi-
larity evaluation, encompassing both train base class and
val novel class. In specific, computing the Euclidean sim-
ilarity on the red, green, and blue channels of pixels for
different classes, and taking the average value as the final
results. As shown in Figure 3, the analysis reveals signif-
icant color confusion among the following categories: (1)
“Tree”, “Rangeland”, “Agric land type 1” and “Road type
2”. (2) “Bareland”, “Road type 1”, “Agric land type 2”, and
“Road type 2”. (3) “Building type 1”, “Road type 1” and
“Agric land type 2”. (4)“Sea, lake & pond”, “River” and
“Boat & ship”.

Despite potential confusion in coloration, many classes
exhibit distinct spatial structural features. For instance,
“Tree” typically manifest in clustered distributions, while
“Rangeland” often display uniform land textures. Agri-
cultural lands commonly adopt regular geometric shapes.
Roads, on the other hand, present a relatively homogeneous
ground texture, often appearing linear and elongated. Build-
ings exhibit marked height disparities compared to sur-
rounding terrain, often showcasing distinct geometric forms
such as rectangles or squares. The “River” class, in contrast
to “Sea, lake & pond”, display linear and flowing character-
istics. To better classify different land covers, the proposed
algorithm effectively utilize the spectral and spatial struc-
tural features of images, contextual semantic features, and
higher-level features to enhance the discriminative ability
among different land cover categories.

4.3. Segmentation results analysis

Quantitative analysis. Table 2 presents a comparison of
the mIoU results of our method and the baseline across
various categories. It is evident that the proposed algo-
rithm significantly enhances the baseline’s segmentation ac-
curacy, improving the final scores by 28.94%. Specifi-
cally, the base mIoU increased by 24.64%, while the novel
mIoU increased by 31.79%. This improvement stems from
the incorporation of foundation model’s generic knowledge,
which greatly enhances the recognition of novel classes.

Regarding class-based performance, the baseline algo-
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Figure 3. Color confusion analysis among different classes.

rithm fails to identify the land cover types “Road type 2”
and “Boat & ship”, since these classes only have a small
annotated area in the support images, making it difficult to
train a good novel classifier using the common GFSS frame-
work, whereas our algorithm successfully distinguishes
these two categories leveraging the generic knowledge from
the vision-language model. Particularly noteworthy is the
high classification accuracy achieved for “Boat& ship”,
reaching 58.64%. Furthermore, our proposed algorithm en-
hances the classification accuracy of the classes “River”,
“Sea, lake & pond”, and “Agric land type 1” by 61.22%,
60.83% and 31.33%, respectively. This validates our frame-
work’s ability to effectively utilize spatial structural infor-
mation between scene objects and contextual semantic in-
formation to improve classification accuracy, especially for
categories with significant confusion.

Qualitative analysis. In this part, we conduct a com-
parative analysis of the segmentation results generated by
the proposed framework and the baseline approach. Figure
4 presents a visual comparison between the original image
(Figure 4 (a)) and the segmentation results obtained from
both methods.

It shows that in the results of the baseline, the delin-
eation of roadways appears fragmented, failing to ensure
their continuity and integrity. Moreover, a considerable por-
tion of water is erroneously categorized as “Rangeland” or
“Agric land type 1”, despite substantial dissimilarities in
their features from aquatic bodies. Furthermore, the novel
class, “Boat & ship”, is almost dismissed by the baseline
model. In stark contrast, the algorithm proposed in this
study yields segmentation results that are notably smoother
and more precise. Notably, the proposed method achieves

Class Baseline Ours
Tree 52.47 55.41

Rangeland 35.17 54.41
Bareland 6.33 23.12

Agric land type 1 37.57 68.90
Road type 1 33.78 48.04

Sea, lake, & pond 4.75 65.58
Building type 1 31.80 58.93
Base (Average) 28.84 53.48

Road type 2 0.00 17.01
River 1.45 62.67

Boat & ship 0.00 58.64
Agric land type 2 11.15 1.44
Novel (Average) 3.15 34.94

Base and Novel (Weighted) 13.42 42.36

Table 2. Performance comparison of the segmentation results be-
tween the baseline and the proposed method in terms of IoU (%).
“Base and Novel (Weighted)” represents the weighted sum of base
and novel mIoU, adopted as the challenge evaluation metric.

a good segmentation performance of “Boat & ship”, and
an enhanced delineation of features, preserving their spatial
coherence and semantic consistency. The segmentation of
road networks demonstrates improved continuity, ensuring
an accurate representation of their connectivity across the
landscape. Furthermore, the proposed algorithm exhibits
superior discriminative capacity, accurately distinguishing
between land and water bodies, even in cases of subtle fea-
ture variations.

4.4. Ablation study

In order to systematically evaluate the contribution of pro-
posed modules, we conduct a series of ablation studies, as
shown in Table 3. Our experiments demonstrate that our
base model notably outperformed the baseline in terms of
score, primarily due to the utilization of a combination of
strong backbones and the optimization strategy. Following
the integration of the SLE strategy, the score improved by
1.55% compared to the base model. Furthermore, upon the
implementation of the DGK strategy, the performance of
model witnesses a substantial enhancement, with an im-
provement of 16.78% over the base model. This under-
scores the benefits of leveraging the foundation model’s
broad semantic knowledge to enrich supervision informa-
tion for novel classes or guide the classifier in learning novel
concepts, ultimately resulting in improved model perfor-
mance on GFSS tasks. Most importantly, although the seg-
mentation performance of foundation models on the base
classes is not as good as specialist semantic segmentation
methods trained on the domain-specific dataset, through our
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Sea, lake 
& pond

Building
type 1

Road 
type 2

Bareland Agric land 
type1 Road type 1 River Boat & ship Agric land

type2Tree RangelandUnknown

(a) Original image (b) Baseline (c) Our method

Figure 4. Qualitative comparison between the baseline and the proposed method. Our FoMA prevails in achieving more accurate and
complete segmentation of rivers and boats, benefiting from a larger semantic similarity (more generalizable knowledge) between the
domains of RSIs and natural images.

Method Base Novel Weighted
Baseline 28.84 3.15 13.42

Our base model 50.16 3.78 22.33
+SLE 50.11 6.40 23.88

+DGK+SLE 50.49 31.53 39.11
+VFE+DGK+SLE 53.48 34.94 42.36

Table 3. Ablation studies on each component of the proposed
method. “Base” and “Novel” denote the mIoU of base classes and
novel classes, respectively. “Weighted” denotes the weighted sum
of IoUs of base and novel classes, adopted as the server scores.

fusion mechanism, the segmentation accuracy on both base
and novel classes can be further improved, resulting in a
final weighted mIoU of 42.36%. This crucial finding il-
lustrates that there are still semantic relationships in general
knowledge that existing GFSS methods struggle to uncover.

5. Conclusions
In this paper, we introduced a novel GFSS framework for
high-resolution RSIs, which leverages the generic knowl-
edge from a vision-language foundation model to provide
additional supervisory information. Firstly, the annotation
of the support set are expanded by generating pseudo labels
using the foundation model. Secondly, the promising per-

formance of the foundation model on the query images is
transferred into our novel learner through knowledge dis-
tillation. Finally, more precise segmentation results can
be obtained by integrating the predictions of the founda-
tion model with those of our GFSS learner. The exper-
imental results on the OpenEarthMap few-shot challenge
dataset demonstrated that our proposed framework achieved
impressive mIoU scores for both base and novel classes.
Our method can effectively address the issues of insuffi-
cient support images or poor annotation quality, and we be-
lieve that with the improvement of the foundation model’s
capabilities, our proposed method will exhibit more robust
recognition abilities for challenging categories.
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