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Abstract

Generalized Few-Shot Object Detection (G-FSOD) seeks
to jointly detect base classes with abundant data and novel
classes with limited data. Due to data scarcity, predic-
tive uncertainties are more pronounced in G-FSOD than
in conventional object detection. Unaccounting for these
uncertainties leads to degraded overall detection perfor-
mance and forgetting the base classes. However, previ-
ous G-FSOD works have not exploited these uncertainties.
Upon examining the basic two-stage G-FSOD framework,
which includes a Region Proposal Network (RPN) and a
subsequent R-CNN, we observe that a straightforward inte-
gration of uncertainty estimation leads to detrimental per-
formance. To this end, we first increase the model capacity
by increasing the depth of the RPN and cascading multiple
R-CNNs in an end-to-end manner. Next, we interleave the
stages with uncertainty estimation and attention blocks. The
aim is to progressively refine the proposals by exploiting
the estimated uncertainties while attending to the discrim-
inative features through the attention mechanism. Exten-
sive experiments on the well-established G-FSOD bench-
marks, MS-COCO and PASCAL-VOC, show that our pro-
posed method sets a new G-FSOD standard.

1. Introduction

Acquiring diverse and extensive labeled datasets to train
data-hungry Object Detection (OD) models [1, 2, 7, 8, 18,
22–24, 26] can be time-consuming, labor-intensive, and
costly in numerous applications, such as autonomous driv-
ing and industrial production. Few-Shot Object Detection
(FSOD) [4, 13, 25, 28, 32] strives to emulate the cogni-
tive capabilities of humans by rapidly acquiring meaning-
ful representations, provided by a limited number of train-
ing examples. Specifically, FSOD utilizes prior knowl-
edge by pre-training on a base dataset containing abundant
training samples. This acquired knowledge is then lever-
aged in the subsequent novel training phase, allowing the

Figure 1. An abstract comparison of the current G-FSOD works
tackling the base forgetting, Retentive R-CNN [5] and CFA [9],
compared to the proposed approach.

model to learn novel classes using limited data rapidly. Al-
though meta-learning and transfer learning paradigms have
achieved notable success in FSOD, most methods priori-
tize the detection performance of novel classes, often ne-
glecting the performance of base classes. This may lead to
catastrophic forgetting, where the model loses knowledge
of the base classes, compromising the safety of the opera-
tional system. Another essential yet entirely neglected as-
pect of FSOD, is the reliability of the model predictions in
the presence of model and data uncertainties.

While the primary objective of Generalized Few-Shot
Object Detection (G-FSOD) [5, 9, 10, 20, 28] is to detect
both base and novel classes jointly, recent works focus ex-
plicitly on mitigating the previously mentioned problem of
forgetting base classes. These approaches can be catego-
rized into base data-dependent [5, 9] and base data-free [10]
approaches. Retentive R-CNN [5] is a base data-dependent
approach that adopts a student-teacher framework to retain
base knowledge while learning new classes at the expense
of added computational and memory requirements. CFA [9]
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introduces a plug-and-play gradient update rule to restrain
the update gradients during novel training. By constraining
the gradients, CFA aims to find optima with better over-
all detection performance and less forgetting. On the other
hand, NIFF [10] is a base data-free approach that trains a
lightweight base feature generator using statistics from the
base model, eliminating the need for base data during the
novel training phase. These approaches provide different
strategies for addressing the challenges of forgetting and
retaining base knowledge in G-FSOD whether or not base
data is available. However, none of these methods address
the inherent data and model uncertainties affecting the reli-
ability of the network predictions.

Predictive uncertainties [14] can be decomposed into
aleatoric uncertainties and epistemic uncertainties. The for-
mer represents the inherent variability in the data itself,
such as sensor noise. Aleatoric uncertainty is commonly
addressed by explicitly incorporating it into the neural net-
work as learnable parameters associated with the predicted
outputs. For instance, in the context of OD, these additional
parameters can represent the aleatoric uncertainty related
to class probabilities or bounding box coordinates [11, 15].
Epistemic uncertainty, on the other hand, captures the un-
certainty arising from the lack of knowledge or limited
training data. In particular for OD, epistemic uncertainty is
typically addressed by incorporating dropouts [19] during
the training phase of the model [11, 15], where a portion
of the neurons is randomly dropped during training, effec-
tively creating an ensemble of models. By examining the
variance among the predictions generated by these diverse
models, we can approximate the level of epistemic uncer-
tainty in the model. However, predictive uncertainties have
been mainly exploited in standard OD [6, 11, 15, 30] and
have not yet been addressed in FSOD or G-FSOD scenarios.
Given that the majority of G-FSOD approaches are based
on the two-stage Faster R-CNN architecture [24], we argue
that the introduction of novel classes results in higher epis-
temic uncertainties, significantly degrading the quality of
object proposals generated by the Region Proposal Network
(RPN) and consequently the subsequent R-CNN stage.

Contribution: In this paper, we introduce Uncertainty-
based Progressive Proposal Refinement (UPPR), a method
that leverages uncertainty estimation to enhance object pro-
posals, improving overall detection performance and re-
ducing forgetting. UPPR specifically focuses on modeling
predictive uncertainties within a two-stage G-FSOD frame-
work, allowing for the refinement of object proposals. This
approach aims to enhance detection performance while mit-
igating the issue of forgetting by explicitly incorporating
uncertainty modeling. An illustration of the proposed ap-
proach in comparison to other G-FSOD works is shown in
Figure 1.

Our two key findings in this work are as follows. First,

we show that careful architectural considerations can signif-
icantly impact the G-FSOD performance. Providing more
model capacity and better feature representations help to
improve detection performance and enhances generaliza-
tion to novel classes. Secondly, we demonstrate that model-
ing predictive uncertainties in G-FSOD does not only con-
tribute to improved detection performance, but also effec-
tively mitigates the issue of forgetting when it comes to base
classes.

2. Related Works
2.1. Object Detection

Two primary types of object detectors exist: two-stage and
one-stage. Two-stage detectors [1, 7, 8, 24] involve a pro-
posal generation stage. In the case of Faster R-CNN, this
stage includes a Region Proposal Network (RPN), which
utilizes a three-layer CNN to classify and refine the pro-
posed regions. The proposals are then passed through an
R-CNN output the predicted boxes. Cascade R-CNN [1]
improves upon Faster R-CNN by employing a multi-stage
architecture to learn more intricate object representations.
Additionally, Cascade R-CNN introduces a weighted loss
function that assigns greater importance to incorrectly clas-
sified proposals. On the other hand, one-stage detec-
tors [18, 22, 23, 26] directly classify and locate the ob-
jects. Rather than relying on anchors, CenterNet [2], is a
one-stage detector representing the object using three key-
points: two for the corners and one for the center. CenterNet
detects keypoints in an image and groups those belonging to
the same object, assigning them a preliminary bounding box
based on their positions. Subsequently, CenterNet generates
heatmaps, indicating the probability of a keypoint existing
at various locations within the image.

2.2. Generalized Few-Shot Object Detection

G-FSOD focuses on detecting both base and novel classes.
TFA [28] was the initial work in the realm of G-FSOD
based on Faster R-CNN, intending to mitigate forgetting
by optimizing training samples that maintain a balance
between base and novel classes. On the other hand,
ONCE [20] tackles the issue of incremental class learning in
G-FSOD by employing a meta-learning approach with the
YOLOv2 [22] detection model. Decouple Faster R-CNN
(DeFRCN) [21], a pioneering transfer-learning-based strat-
egy, highlights the conflicting objectives of the RPN and
class-aware ROI head. To address this, they eliminate the
RPN gradients and downscale the ROI head gradients that
flow to the backbone, which has been shown to mitigate
forgetting of base classes. Retentive R-CNN [5] utilizes the
base-trained model in a distillation-like manner to alleviate
forgetting.

To account for the forgetting without significant compu-
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Figure 2. An illustration of the overall proposed UPPR method applied using the proposed DeCRCN as the base framework.

tational and memory overhead, CFA [9] introduces a novel
gradient update mechanism based on the angle between gra-
dients for base and novel samples, which helps mitigate for-
getting. While the previous methods depend on stored base
samples, NIFF [10] instead learns a base sample generator
based on class-wise statistics. This enables generating base
samples in a student-teacher fashion, allowing the model
to retain the knowledge of the base classes without explic-
itly storing their samples. However, none of the abovemen-
tioned methods tackle the predictive uncertainties in a G-
FSOD task.

2.3. Uncertainty-based Object Detection

Considering the importance of reliability and robustness
in object detection models for various applications, it be-
comes necessary to consider both model and data uncer-
tainties. Typically, aleatoric and epistemic uncertainties are
jointly estimated by using direct modeling in combination
with MC-dropout. Although, most existing works utilize
the output layers to model aleatoric uncertainties directly,
they differ in how they model epistemic uncertainties. Feng
et al. [6] specifically employ dropout inferences only in the
RoI-head of a Faster R-CNN model. Bayesian-YOLO [15]
extends a YOLOv2 network and perform the dropout infer-
ence in both the backbone network and the detection head.
Wirges et al. [30] adopt a similar architecture to [6] but in-
troduce dropout layers in either the CNN backbone or the
head networks. Finally, BayesOD [11] modifies a Reti-
naNet by incorporating MC-dropout in its detection head.
Nonetheless, none of the above mentioned works address
the problem in a FSOD or G-FSOD setting.

3. Methodology
Our goal is to design a two-stage G-FSOD framework that
enhances the object proposals to improve the overall detec-
tion performance without forgetting the base classes. The
main contributions of our proposed approach can be sum-
marized as follows:
• As a straightforward application of predictive uncertain-

ties in the adopted base framework, Decoupled Faster R-
CNN (DeFRCN) [21], initially leads to a deterioration in

the detection quality, thus, we implement two architec-
tural modifications: (1) We opt for a deeper RPN with
five layers, departing from the conventional two-layer de-
sign. Drawing inspiration from the generalization capa-
bilities of CenterNet [2], we employ a key-point based
detection approach. Meaning that the detector directly
predicts object center points in the image, eliminating the
need for predefined anchor boxes. The center point com-
putation is based on the provided bounding boxes, requir-
ing no extra data or labels. This modified RPN is named
CenterNet-RPN. (2) We deepen the R-CNN by cascad-
ing three R-CNNs, each with gradually increasing IoU
thresholds, allowing the network to learn how to refine
the proposals gradually. This design choice ensures that
the network has sufficient learning capacity to refine the
proposals and improve detection performance effectively.
We call this modified architecture as Decoupled Cascaded
R-CNN (DeCRCN).

• We estimate the aleatoric and epistemic uncertainties in
each R-CNN stage. Thereby, each stage is considered as
an ensemble model that refines the proposals based on
IoU thresholds and the estimated uncertainties. During
training, we impose increasing IoU thresholds so that the
latter stages are more confident than earlier ones.

• To selectively focus on discriminative features, we inter-
leave the R-CNN stages with CBAM [31] attention blocks
only during the novel training phase, where they can learn
on a balanced set of base and novel classes. This prevents
the attention blocks from overfitting the base features.
In this section, we describe these contributions, but, first,

we begin with defining the G-FSOD

3.1. Problem Formulation

G-FSOD splits the training dataset Dtrain into two subsets:
a base dataset Db containing a large number of instances of
base classes Cb, and a novel dataset Dn containing a lim-
ited number of instances of novel classes Cn. Note that
there is no overlap between both classes, Cb ∩ Cn = ∅.
Each input image x ∈ X is paired with an annotation
y ∈ Y that includes the class label ci and the corre-
sponding bounding box coordinates bi for each instance i.
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Figure 3. An illustration of the single stage R-CNN at test-time of the cascaded R-CNNs. The dotted neurons represent the dropouts. The
epistemic uncertainties are computed by R forward runs and the predictions are averaged.

More specifically, Db = (x, y) | y = (ci, bi), ci ∈ Cb, and
Dn = (x, y) | y = (ci, bi), ci ∈ Cn.

The G-FSOD training process involves two stages. In
the first stage, the model is trained on the base dataset Db to
establish transferable prior knowledge. In the second stage,
the model leverages the acquired knowledge to rapidly learn
novel classes from Dn along with a handful examples of
base samples from Db. In contrast to FSOD, the primary
goal of the G-FSOD is maximizing the overall Average Pre-
cision (AP), which is a weighted average of the AP of the
base classes (bAP) and the AP of the novel classes (nAP).
Formally, AP = |Cb| · bAP + |Cn| · nAP/(|Cb|+ |Cn|).

G-FSOD frameworks are mostly based on a two-stage
Faster R-CNN model. One of the main bottlenecks encoun-
tered during standard object detection is the poor quality of
object proposals [27]. The proposals quality further dete-
riorates in G-FSOD due to the introduction of new classes.
There are three main reasons for this: (1) the training data
for these new classes is limited and does not represent the
true class distribution, (2) the novel classes might be con-
sidered as background by the network due to a low IoU
with the ground truth boxes, and (3) the scale distribution
of the novel objects differs from that in the base training
data. Moreover, the limited novel samples result in higher
epistemic uncertainty because the true data distribution is
not fully captured, causing the model to overfit or underfit
the data. None of the previous G-FSOD works have explic-
itly tackled the aforementioned limitations.

3.2. Model Architecture

An overview of the proposed model architecture is shown
in Figure 2 and is described in the following:

3.2.1 Multiscale Keypoint-based RPN

Although the RPN is designed to be a simple three-layer
architecture class-agnostic module [24], it usually gener-
ates subpar proposals for the subsequent R-CNN detector.
The issue arises from the reliance on anchors of fixed sizes,
which can result in numerous background and low-quality
foreground proposals. Additionally, the misalignment of
the anchors and the convolutional features adds to the diffi-
culty of the bounding box classification task. On the other
hand, keypoint-based approaches promise to alleviate the
aforementioned limitations by representing each object key-
points, thus providing more accurate spatial information.
We replace the anchor-based RPN with a keypoint-based
CenterNet, and denote it by CenterNet-RPN. Additionally,
to explicitly address the variability in object scale, we en-
hance the feature extractor by integrating a Feature Pyra-
mid Network (FPN) [17]. This facilitates the refinement of
object proposals at different scales.

3.2.2 Cascade R-CNN

To refine the RPN proposals, we replace the conventional
R-CNN with a Cascade R-CNN [1] and set increasing IoU
thresholds. Each stage improves the quality of object pro-
posals from the previous stage, thereby increasing the num-
ber of true positives passed to the next stage. Inside each
R-CNN stage, we opt to decouple the classification and
localization features by introducing dual classification and
bounding box regressor heads.
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3.2.3 Multi-Stage Instance-level Attention

While feeding the instance-level features to cascaded R-
CNN stages helps refine the proposals, we note that not all
instance-level features are of equal importance. In order
to assign more importance to features that correlate with
correct classification, we interleave the R-CNN stages with
attention modules. We employ a convolutional block atten-
tion module (CBAM) [31] to selectively focus on the most
relevant features for the G-FSOD task. Specifically, the
channel and spatial attention components of CBAM cap-
ture both channel-wise and spatial-wise relations between
the instance-level features, which enables the model to com-
prehend better semantically-rich information for both the
novel and base classes. Another advantage of using CBAM
for our task is its lightweight design [31], which is particu-
larly important as we are incorporating it after each R-CNN
stage in the network. To prevent the CBAM from favoring
the base classes over the novel classes, multi-stage atten-
tion blocks are only added during the novel training phase
to ensure a balanced representation of both base and novel
features.

3.3. Uncertainty-based Proposals Refinement

As previously mentioned, inherent data and model uncer-
tainties exist and should be taken into account to alleviate
forgetting and enhance the detection of novel classes. As
we show later in the experiments (see Section 4), adding
uncertainty on DeFRCN in a straightforward manner results
in a deterioration of base and novel AP, thereby motivating
the presented architectural design choices. We propose to
estimate aleatoric and epistemic uncertainties in each stage
of the Cascade R-CNN.

3.3.1 Stage-wise Epistemic Uncertainty-based Refine-
ment

During training, we model the epistemic uncertainty by
adding dropout layers in each R-CNN stage. The process
starts by taking the pyramid feature maps Fpyr generated by
the backbone network and the object proposals generated
by the previous stage (with CenterNet-RPN being the ini-
tial stage). Then, the proposal features are extracted using
RoI-pooling, passed through the CBAM attention block to
focus, and fed into the classification and bounding box re-
gressor heads to obtain the class scores and bounding box
offsets. This constitutes a single forward run in an R-CNN
stage. During testing, we activate the dropout layers, per-
form R forward runs per stage, aggregate the predictions,
and pass them to the next stage along with Fpyr. Figure 3
illustrates the operation of one R-CNN stage at test-time.
Formally, for M stages, the classification features for the

mth stage are denoted by:

Fm
cls = hm

cls(a
m(Fm−1

pool )), (1)

where for stage m, am(·) is the CBAM attention module.
hm

cls is the classification head in the RoI-head. Fm−1
pool is the

pooled instance-level features from the previous stage. Sim-
ilarly, the bounding-box features are computed as:

Fm
box = hm

box(a
m(Fm−1

pool )), (2)

where for stage m, hm
box is the bounding-box head in the

RoI-head. The Fm
cls and Fm

box undergo the RoI-predictor to
compute the classification and regression offsets along with
their corresponding uncertainties. The RoI-predictor con-
sists of a classifier head gm

cls(·) and a box head gm
box(·). Dur-

ing inference, we perform R forward runs with dropouts
and aggregate the classification logits sm along with the
class aleatoric variances Σm

cls and similarly the box offsets
bm along with the box aleatoric variances Σm

box. The fi-
nal classification logits and associated aleatoric variances is
computed via an average over the R forward runs as fol-
lows:

s̄mcls, Σ̄
m
cls =

1

R

R∑
r=1

gmcls(F
m,r
cls ), (3)

where Fm,r
cls represent different RoI-head classification

features each forward run r due to the stochastic dropouts
in the classification head. For the box offsets and predicted
variances,

b̄m
box, Σ̄

m
box =

1

R

R∑
r=1

gmbox(F
m,r
box ), (4)

where Fm,r
box are the RoI-head box features for the forward

run r.

3.3.2 Stage-wise Aleatoric Uncertainty-based Refine-
ment

The aleatoric uncertainties are considered for both the clas-
sification and bounding boxes regression. First, the classifi-
cation logits are modelled as a multivariate Gaussian distri-
bution parametrized by the mean scls of the predicted classi-
fication logits and the diagonal covariance matrix Σcls com-
puted by the predicted class variances σ2

cls. Next, we draw
Ncls classification logits s[n]cls from the created Gaussian dis-
tribution. The resulting matrix containing all samples is de-
noted by Scls and is expressed as:

Scls = {s[n]cls }
Ncls
n=1 ∈ RNcls×|C|, s

[n]
cls ∼ N (scls,Σcls). (5)

The classification loss is then the softmax cross-entropy be-
tween the stochastic classification logits Scls and the associ-
ated ground-truth labels.
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Methods / Shots w/E 5 shot 10 shot 30 shot
AP bAP nAP AP bAP nAP AP bAP nAP

FRCN-ft-full[28] ✗ 18.0 22.0 6.0 18.1 21.0 9.2 18.6 20.6 12.5
TFA w/ fc[28] ✗ 27.5 33.9 8.4 27.9 33.9 10.0 29.7 35.1 13.4

TFA w/ cos[28] ✗ 28.1 34.7 8.3 28.7 35.0 10.0 30.3 35.8 13.7
MPSR[32] ✗ - - - 15.3 17.1 9.7 17.1 18.1 14.1

DeFRCN [21] ✗ 28.7 33.1 15.3 30.6 34.6 18.6 31.6 34.7 22.5
ONCE [20] ✗ 13.7 17.9 1.0 13.7 17.9 1.2 - - -

Meta R-CNN [34] ✗ 3.6 3.5 3.8 5.4 5.2 6.1 7.8 7.1 9.9
FSRW[13] ✗ - - - - - 5.6 - - 9.1

FsDetView [33] ✗ 5.9 5.7 6.6 6.7 6.4 7.6 10.0 9.3 12.0
CFA w/ fc [9] ✗ 30.1 37.1 9.0 30.8 37.6 10.5 31.9 37.7 14.7

CFA w/ cos [9] ✗ 29.7 36.3 9.8 30.3 36.6 11.3 31.7 37.0 15.6
CFA-DeFRCN [9] ✗ 30.1 35.0 15.6 31.4 35.5 19.1 32.0 35.0 23.0
DeCRCN-UPPR ✗ 33.7 38.9 17.9 35.0 40.2 19.2 36.0 40.1 24.0

Retentive R-CNN[5] ✓ 31.5 39.2 8.3 32.1 39.2 10.5 32.9 39.3 13.8
CFA w/ fc [9] ✓ 31.8 39.5 8.8 32.2 39.5 10.4 33.2 39.5 14.3

CFA w/ cos [9] ✓ 32.0 39.5 9.6 32.4 39.4 11.3 33.4 39.5 15.1
CFA-DeFRCN [9] ✓ 33.0 38.9 15.6 34.0 39.0 18.9 34.9 39.0 22.6
DeCRCN-UPPR ✓ 35.9 41.9 17.8 36.2 41.9 19.1 37.8 42.0 23.8

Table 1. G-FSOD results on MS-COCO for 5, 10, 30-shot settings. w/E denotes the ensemble-based evaluation protocol. The best and
second-best results are color coded.

Second, the bounding box regression are similarly mod-
elled as a Gaussian distribution with the mean being the pre-
dicted box offsets bbox and the diagonal covariance matrix
based on the predicted box variances (σ2

x, σ
2
y, σ

2
w, σ

2
h). As a

result, the bounding box regression loss is computed using
the negative log-likelihood from [15].

3.4. Overall DeCRCN-UPPR Pipeline

The entire pipeline, namely DeCRCN-UPPR, can be sum-
marized as follows:

1. The initial proposals from CenterNet-RPN are sent to the
first R-CNN stage along with the pyramid feature maps
from the backbone.

2. The RoI-head attends to the pooled features, extracting
classification and bounding box features that undergo the
RoI-predictor, resulting in classification logits and vari-
ances and bounding box offsets and variances.

3. To capture epistemic uncertainties, stochasticity is intro-
duced through dropout layers during training. During
inference, R forward passes are conducted, and the net-
work predictions are aggregated and averaged to obtain
the final predictions.

4. The predicted box offsets are then applied to the input
proposals, resulting in refined boxes that serve as input
for the next R-CNN stage.

This progressive refinement generates more reliable boxes
by leveraging the averaged epistemic predictions, which are
more robust than single-run predictions.

4. Experiments
Our proposed approach is evaluated on widely recog-
nized G-FSOD benchmarks, namely MS-COCO [16] and
PASCAL-VOC [3] datasets. To ensure a fair comparison
with previous works, we use the same data splits as em-
ployed in earlier works [9, 21, 28].

4.1. Experimental Setup

Datasets. In our experiments, we utilize the MS-COCO
dataset, which consists of 80 classes. Among these, 60
classes are considered base categories and do not overlap
with the classes in the PASCAL-VOC dataset. The remain-
ing 20 classes in MS-COCO are unique and treated as novel
classes. During testing, we use a validation set of 5000 im-
ages while the rest of the dataset is used for training. The
results are reported for different shot settings, including 5-
shot, 10-shot, and 30-shot. For the PASCAL-VOC dataset,
it is divided into three distinct splits, with each split con-
taining 20 classes. Among these, 15 classes are designated
base classes, and the remaining 5 classes are considered
novel classes. The training data for base and novel classes
is drawn from the VOC 2007 and VOC 2012 train/val sets.
The VOC 2007 test set is used for evaluation. We report the
results for various shot settings, including 1-shot, 2-shot,
3-shot, 5-shot, and 10-shot.

Evaluation Metrics. Consistent with previous G-FSOD
frameworks [5, 9, 21, 28], we use the same performance
metrics: the overall average precision (AP), base class av-
erage precision (bAP), and novel class average precision
(nAP). Additionally, we report the average recall (AR) for
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Methods / Shots w/E All Set 1 All Set 2 All Set 3
1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

FRCN-ft-full[28] ✗ 55.4 57.1 56.8 60.1 60.9 50.1 53.7 53.6 55.9 55.5 58.5 59.1 58.7 61.8 60.8
TFA w/ fc[28] ✗ 69.3 66.9 70.3 73.4 73.2 64.7 66.3 67.7 68.3 68.7 67.8 68.9 70.8 72.3 72.2

TFA w/ cos[28] ✗ 69.7 68.2 70.5 73.4 72.8 65.5 65.0 67.7 68.0 68.6 67.9 68.6 71.0 72.5 72.4
MPSR[32] ✗ 56.8 60.4 62.8 66.1 69.0 53.1 57.6 62.8 64.2 66.3 55.2 59.8 62.7 66.9 67.7

DeFRCN[21] ✗ 73.1 73.2 73.7 75.1 74.4 68.6 69.8 71.0 72.5 71.5 72.5 73.5 72.7 74.1 73.9
Meta R-CNN[34] ✗ 17.5 30.5 36.2 49.3 55.6 19.4 33.2 34.8 44.4 53.9 20.3 31.0 41.2 48.0 55.1

FSRW[13] ✗ 53.5 50.2 55.3 56.0 59.5 55.1 54.2 55.2 57.5 58.9 54.2 53.5 54.7 58.6 57.6
FsDetView[33] ✗ 36.4 40.3 40.1 50.0 55.3 36.3 43.7 41.6 45.8 54.1 37.0 39.5 40.7 50.7 54.8
CFA w/ fc [9] ✗ 69.5 68.2 69.8 73.5 74.3 66.0 66.9 69.2 70.1 71.1 67.7 69.0 70.9 72.6 73.5

CFA w/ cos [9] ✗ 69.1 69.8 71.9 73.6 73.9 64.8 66.5 68.3 69.5 70.5 67.7 69.7 71.9 73.0 73.5
CFA-DeFRCN [9] ✗ 73.8 74.6 74.5 76.0 74.4 69.3 71.4 72.0 73.3 72.0 72.9 73.9 73.0 74.1 74.6
DeCRCN-UPPR ✗ 74.3 75.1 75.4 76.3 75.1 71.4 72.6 73.2 74.9 73.2 73.2 74.3 74.2 75.3 75.8

Retentive R-CNN[5] ✓ 71.3 72.3 72.1 74.0 74.6 66.8 68.4 70.2 70.7 71.5 69.0 70.9 72.3 73.9 74.1
CFA w/ fc [9] ✓ 70.3 69.5 71.0 74.4 74.9 67.0 68.0 70.2 70.8 71.5 69.1 70.1 71.6 73.3 74.7

CFA w/ cos [9] ✓ 71.4 71.8 73.3 74.9 75.0 66.8 68.4 70.4 71.1 71.9 69.7 71.2 72.6 74.0 74.7
CFA-DeFRCN [9] ✓ 75.0 76.0 76.8 77.3 77.3 70.4 72.7 73.7 74.7 74.2 74.7 75.5 75.0 76.2 76.6
DeCRCN-UPPR ✓ 76.1 77.0 77.9 78.2 78.4 71.3 73.5 74.4 75.1 75.2 75.1 76.9 76.2 77.3 77.5

Table 2. The overall G-FSOD (AP50) results on PASCAL-VOC for 1, 2, 3, 5, 10-shot settings for all three splits. The best and second-best
results are color coded.

both base class (bAR) and novel class (nAR). Finally, for
a fair comparison with Retentive R-CNN [5], we present
ensemble-inference results (w/E), where we utilize the pa-
rameters of the base model during the inference process.

Implementation Details. We employ a Cascade R-
CNN [1] as the base detector, with a ResNet-101 [12] back-
bone that has been pre-trained on ImageNet. The model
consists of four stages: the RPN based on the CenterNet
architecture [2] and three subsequent R-CNN stages, each
with a gradually increasing Intersection over Union (IoU)
threshold [0.5, 0.6, 0.7]. To optimize the network end-to-
end, we employ Stochastic Gradient Descent (SGD) with
a mini-batch size of 16. The SGD algorithm incorporates
a momentum of 0.9 and a weight decay of 5e−5. During
base training, the total number of iterations is 110000, the
learning rate is set to 0.02, with two learning step decays
at 85000 and 100000 iterations. Moreover, the gradients
backpropagating from the RPN are killed, and the Gradient
Descent Layer (GDL) [21] scale of R-CNN is λ = 0.75.
During novel finetuning, the total number of iterations is
4000, the learning rate is set to 0.01 with a decay step at
2000 iterations. The R-CNN GDL scale is λ = 0.04 and
the gradients of the R-CNN layers are down-scaled by a
factor of 0.1. For epistemic uncertainty, we perform 40 for-
ward runs and set all dropout layers with a probability of
0.5. For aleatoric uncertainty, we set the number of clas-
sification samples to 10. We denote the overall proposed
architecture as Decoupled Cascade R-CNN (DeCRCN).

4.2. Comparison Results

We compare our method (UPPR) with the proposed De-
CRCN architecture against state-of-the-art G-FSOD [5,
9] and FSOD models on MS-COCO and PASCAL-VOC
benchmarks. We opt to apply our approach on top of the

recent state-of-the-art transfer learning-based approach De-
FRCN [21]. We denote our model by DeCRCN-UPPR.

4.2.1 MS-COCO Results

In Table 1, we show the results on MS-COCO. UPPR out-
performs all previous state-of-the-art results by a significant
margin on the AP and bAP in all settings while achieving
slightly better nAP. Moreover, we evaluate our model using
the ensemble evaluation protocol in Retentive R-CNN [5]
and outperform the other approaches. The multiple run re-
sults over different seeds are presented in the supplementary
material.

4.2.2 PASCAL-VOC Results

We report the overall performance on PASCAL-VOC
(AP50) in Table 2 and the novel performance (nAP50) in
Table 3. We show that adopting UPPR achieves state-of-
the-art results with and without the ensemble evaluation
protocol on all shot settings. The multiple run results us-
ing various seeds are shown in the supplementary material.

The findings from our experiments provide empirical ev-
idence to support the integration of predictive uncertainties
into the detection process, empowering the progressive re-
finement of object proposals. This approach leads to en-
hanced prediction confidence, improving overall detection
performance. Furthermore, using predictive uncertainties
demonstrates its potential to mitigate the issue of forgetting,
thereby preserving knowledge effectively during the object
detection task.

4.3. Ablation Study

In Table 4, we perform an ablation study to analyze our
contribution. In config A, we start with our baseline De-

2592



Methods / Shots w/E Novel Set 1 Novel Set 2 Novel Set 3
1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

FRCN-ft-full[28] ✗ 15.2 20.3 29.0 25.5 28.7 13.4 20.6 28.6 32.4 38.8 19.6 20.8 28.7 42.2 42.1
TFA w/ fc[28] ✗ 36.8 29.1 43.6 55.7 57.0 18.2 29.0 33.4 35.5 39.0 27.7 33.6 42.5 48.7 50.2

TFA w/ cos[28] ✗ 39.8 36.1 44.7 55.7 56.0 23.5 26.9 34.1 35.1 39.1 30.8 34.8 42.8 49.5 49.8
MPSR[32] ✗ 42.8 43.6 48.4 55.3 61.2 29.8 28.1 41.6 43.2 47.0 35.9 40.0 43.7 48.9 51.3

DeFRCN[21] ✗ 57.0 58.6 64.3 67.8 67.0 35.8 42.7 51.0 54.4 52.9 52.5 56.6 55.8 60.7 62.5
Meta R-CNN[34] ✗ 16.8 20.1 20.3 38.2 43.7 7.7 12.0 14.9 21.9 31.1 9.2 13.9 26.2 29.2 36.2

FSRW[13] ✗ 14.8 15.5 26.7 33.9 47.2 15.7 15.3 22.7 30.1 39.2 19.2 21.7 25.7 40.6 41.3
MetaDet[29] ✗ 18.9 20.6 30.2 36.8 49.6 21.8 23.1 27.8 31.7 43.0 20.6 23.9 29.4 43.9 44.1

FsDetView∗[33] ✗ 25.4 20.4 37.4 36.1 42.3 22.9 21.7 22.6 25.6 29.2 32.4 19.0 29.8 33.2 39.8
CFA w/ fc [9] ✗ 40.0 35.5 40.9 54.1 56.9 22.2 27.1 35.2 38.5 40.9 29.7 35.1 39.5 47.2 51.3

CFA w/ cos [9] ✗ 41.2 43.6 49.5 56.5 57.3 21.3 27.4 35.3 39.1 42.1 31.7 39.1 44.6 49.9 52.6
CFA-DeFRCN [9] ✗ 58.2 63.3 65.8 68.9 67.1 37.1 45.5 51.3 55.2 53.8 54.7 57.8 56.9 60.0 63.3
DeCRCN-UPPR ✗ 60.2 64.7 66.4 70.1 68.4 38.7 46.4 52.8 56.2 54.6 55.5 58.7 57.9 61.2 64.7

Retentive R-CNN[5] ✓ 42.4 45.8 45.9 53.7 56.1 21.7 27.8 35.2 37.0 40.3 30.2 37.6 43.0 49.7 50.1
CFA w/ fc [9] ✓ 39.0 34.9 41.4 54.8 57.0 21.8 26.1 35.3 37.1 40.1 29.9 34.3 40.1 47.0 52.6

CFA w/ cos [9] ✓ 42.4 43.9 50.3 56.6 57.3 21.0 27.5 35.3 38.6 41.4 32.3 38.0 44.5 49.8 52.7
CFA-DeFRCN [9] ✓ 59.0 63.5 66.4 68.4 68.3 37.0 45.8 50.0 54.2 52.5 54.8 58.5 56.5 61.3 63.5
DeCRCN-UPPR ✓ 61.0 64.5 67.8 69.7 69.0 38.5 46.9 51.4 55.9 53.6 55.3 59.4 57.5 62.8 64.1

Table 3. PASCAL-VOC G-FSOD (nAP50) results for 1, 2, 3, 5, 10-shot settings for all three splits are reported. Similar to [5, 9], w/E
denotes the ensemble-based inference paradigm [5]. The best and second-best results are color coded.

Model Configuration Base Training Base Novel Overall
AP AR AP AR nAP nAR bAP bAR

A DeFRCN 38.5 33.2 36.5 32.4 16.8 20.2 31.6 29.4
B DeFRCN (NT: UE) 38.5 33.2 34.9 31.3 17.5 20.8 30.5 28.6

C DeCRCN 41.4 35.7 38.2 34.1 17.5 21.6 33.0 31.0
D DeCRCN (NT: UE) 41.4 35.7 38 34.2 18.2 22.5 33.1 31.3

E DeCRCN (BT + NT: UE) 42.0 36.1 40.2 36.6 19.0 23.6 34.7 32.6
F DeCRCN (BT: UE, NT: ATT) 42.0 36.1 40.2 36.6 19.3 24.2 34.8 32.8
G DeCRCN (BT + NT: UE + ATT) 41.7 36.2 37.3 34.6 18.7 23.6 32.6 31.8
H DeCRCN (BT: UE, NT: UE + ATT) (UPPR) 42.0 36.1 40.5 36.7 19.2 24.0 35.0 32.8

Table 4. An ablation study performed on MS-COCO for the 10-shot setting to highlight the impact of different design choices. BT and NT
denote base training and novel training, respectively. UE denotes uncertainty estimation (aleatoric and epistemic). ATT is the stage-wise
instance-level attention.

FRCN. In config B, we add aleatoric and epistemic uncer-
tainty estimation to the RoI head during novel training only
and observe a decline in the bAP with a slight upgrade in
the nAP. Replacing the RoI head with a Cascade R-CNN
and the RPN with CenterNet in configuration C yields im-
provements in the base metrics. We denote this model by
DeCRCN. We observe that adding uncertainty estimation
in a stagewise manner D maintains the bAP of the previous
configuration while increasing the nAP. This highlights the
importance of applying uncertainty estimation in a stage-
wise manner instead of applying it only once in a single
stage. While uncertainty estimation applied naively causes
some forgetting, it can enhance the proposal refinement pro-
gressively in the Cascade R-CNN. In E, we improve all met-
rics by learning uncertainty during base training as well.
Finally, in F, H and G, we show the impact of applying at-
tention blocks during novel training. With or without UE,
they can boost bAP and nAP when applied during the novel-
training stage. We note, however, that when included in
the base training phase, the performance drops on the base

classes, indicating the importance of our design choice to
train attention blocks on a balanced set of both classes.

5. Conclusion
We propose DeCRCN-UPPR, a novel G-FSOD framework
that alleviates forgetting on the base images while improv-
ing the detection of the novel classes that only have a few
labeled instances during training. Our main contribution
is the design of a detector that learns to refine proposals in
a stagewise manner by leveraging predictive uncertainties
to detect objects despite the few training instances. Fur-
thermore, we append each R-CNN stage with an attention
block during novel training allowing the next stage to
selectively focus on the discriminative features that enable
a better classification. The interleaving of ensemble stages
and attention blocks significantly boosts the detection of
base and novel classes. We hope our proposed approach
sheds light on the potential of predictive uncertainties
in enhancing the performance of few-shot models and
promoting their use in robotics and industrial applications.
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