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Abstract

Weakly-Supervised Temporal Action Localization (WS-
TAL) aims to jointly localize and classify action segments
in untrimmed videos with only video-level annotations.
To leverage video-level annotations, most existing meth-
ods adopt the multiple instance learning paradigm where
frame-/snippet-level action predictions are first produced
and then aggregated to form a video-level prediction. Al-
though there are trials to improve snippet-level predictions
by modeling temporal relationships, we argue that those im-
plementations have not sufficiently exploited such informa-
tion. In this paper, we propose Multi-Modal Plateau Trans-
formers (M2PT) for WS-TAL by simultaneously exploiting
temporal relationships among snippets, complementary in-
formation across data modalities, and temporal coherence
among consecutive snippets. Specifically, M2PT explores
a dual-Transformer architecture for RGB and optical flow
modalities, which models intra-modality temporal relation-
ship with a self-attention mechanism and inter-modality
temporal relationship with a cross-attention mechanism. To
capture the temporal coherence that consecutive snippets
are supposed to be assigned with the same action, M2PT
deploys a Plateau model to refine the temporal localization
of action segments. Experimental results on popular bench-
marks demonstrate that our proposed M2PT achieves state-
of-the-art performance.

1. Introduction
Temporal Action Localization (TAL) aims to identify tem-
poral timestamps of action instances and classify their ac-
tion categories. Most existing works address this problem
by training models with fully-annotated data that include
both timestamps (start and end positions) and class la-
bel of each action instance [4, 20, 42]. TAL is analogous
to object detection, but instead localizes and classifies in-
stances in the temporal dimension. Similar to object detec-
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Figure 1. Overview of the proposed network, where RGB and op-
tical flow from an untrimmed video are fed into the pre-trained
I3D network to extract features Xr/o. Then cross-attention Trans-
former is to generate the refined latent features Zr/o with comple-
mentary information from another modality. Attention units gen-
erate attention weights for each branch to filter out background
snippets and concatenated features for classification.

tion, TAL methods can be categorized as two-stage methods
that first generate proposals and then refine them [1, 10],
and one-stage methods that directly generate detection re-
sults [6, 40].

While achieving impressive results, TAL methods re-
quire fully-annotated data to train models. Collecting fully-
annotated training data is expensive and time-consuming,
especially for videos that often contain lots of frames. To al-
leviate this issue, Weakly-Supervised Temporal Action Lo-
calization (WS-TAL) is explored to learn from training data
with only video-level labels, i.e., action categories within a
video; the timestamps of action instances are not provided
[5, 8, 9, 26, 37]. Due to the absence of temporal anno-
tations, existing WS-TAL methods usually adopt a Multi-
ple Instance Learning (MIL) paradigm that each video is
viewed as a labeled bag consisting of unlabeled snippets
(instances) [8, 9, 17]. While it is infeasible to directly learn
from predictions of individual snippet, a video-level predic-
tion can be obtained by aggregating the individual predic-
tions.

However, the naive MIL-based solution typically

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

2704



achieves promising action classification but unsatisfactory
localization, because of insufficient action segment bound-
ary supervision. Various efforts have been made to improve
this. To name a few, Hong et. al. exploited cross-modal fea-
tures to reduce task-irrelevant information redundancy from
direct feature fusion [11]. He et. al. designed intra- and
inter-segment attention modules to explore temporal simi-
larity within and across action segments [9]. With respect
to feature learning, contrastive learning was also deployed
to refine intermediate features [39]. Along this, Yang et. al.
proposed to generate reliable pseudo labels from noisy pre-
dictions under an uncertainty-aware mechanism and train
the model in a fully-supervised way under such pseudo la-
bels [37]. Despite substantial improvements achieved by ex-
isting works, the temporal structures of action videos have
not been sufficiently utilized.

In this paper, we propose Multi-Modal Plateau Trans-
formers (M2PT) to solve WS-TAL by extensively modeling
various temporal structural cues in action videos (shown
in Figure 1), namely, temporal relationships among snip-
pets, complementary information across data modalities,
and temporal coherence among consecutive snippets. It
should be noted that while these temporal structural cues
have been modeled individually by the existing methods,
M2PT is the very pioneering work to exploit all these cues
simultaneously, within a modern Transformer-based frame-
work. Specifically, M2PT takes the RGB and optical flow
features extracted from videos as two modalities, and adopts
a dual-Transformer structure for the two modalities, respec-
tively. The temporal relationship among continuous snip-
pets is modeled by the self-attention mechanism within
each individual Transformer, meanwhile the complemen-
tary information between different modalities is modeled
by a cross-modality cross-attention mechanism. To encour-
age the temporal coherence among consecutive snippets,
which implies that consecutive snippets are supposed to be
assigned with the same label, we explore a Plateau model
[22] to refine the temporal localization of action segments
and enhance the model with the refined results as the pseudo
labels. In fact, to our best knowledge, this is the first dual
Transformer-based model for the WS-TAL task. To sum up,
our contributions are highlighted as:

• First, we design a multi-modal Transformer model which
takes RGB and optical flow as modalities, and models
intra-modality temporal relationship with a self-attention
mechanism and inter-modality temporal relationship with
a cross-attention mechanism.

• Second, we propose to explore Plateau model into
weakly-supervised temporal action localization to im-
prove the quality of temporal localized action segments.

• Finally, our proposed M2PT achieves state-of-the-art per-
formance on two popular action benchmarks, i.e., THU-
MOS14 and ActivityNet1.2 datasets.

2. Related Work

Fully-Supervised Temporal Action Localization (FS-
TAL). Different from action recognition, FS-TAL is more
difficult and usually processes longer untrimmed videos
probably containing multiple action instances. In the fully-
supervised setting, models can be trained with data anno-
tated with timestamps and class labels for all instances. In
essence, FS-TAL can be analogous to object detection, but
rather aims to “detect” instances in the temporal dimen-
sion. Similarly, FS-TAL can also be categorized as two-
stage methods that first generate action proposals and then
refine the boundaries [1, 4, 10, 28, 34, 42], and one-stage
methods that directly predict action probability on snippets
in videos and use a bottom-up mechanism to group action
snippets to action segments [6, 18, 40].

Weakly-Supervised Temporal Action Localization (WS-
TAL). WS-TAL only requires video-level labels for train-
ing, which has attracted increasing attention from re-
searchers. UntrimmedNet [32] firstly proposes multiple in-
stance learning loss to tackle the classification problem
of untrimmed videos. STPN [24] adds a sparsity loss to
UntrimmedNet to efficiently separate background snippets
and proposes Temporal Class Activation Map (TCAM) to
generate action proposals. CO2 [11] proposes a cross-modal
network in WS-TAL task which constructs the relation be-
tween RGB feature and Optical Flow feature, and filters out
task-irrelevant information redundancy. To alleviate the lack
of enough temporal annotations, some works utilize pseudo
labels to lead full supervision, which causes many false pos-
itive action proposals because pseudo labels are not reliable.
UGCT [37] introduced an uncertainty loss on pseudo la-
bels, which filters out highly uncertain pseudo labels and
decreases false positive samples. RSKP proposed a repre-
sentative snippet summarization and propagation method
which produced pseudo labels only from representative
snippets [12]. ASM-Loc used an additional uncertainty pre-
diction module to explicitly output an uncertainty score for
weighting each snippet [11].

Transformer Models. Transformer-based architecture [31]
has shown excellent performance in modeling long se-
quence data, especially in Natural Language Processing
(NLP). Vision Transformer (ViT) [7] introduces Trans-
former to computer vision, shifting the backbone from
CNN to Transformer. DeiT [30] introduces several train-
ing strategies to fit ViT to the smaller ImageNet-1K dataset.
CDTrans [35] proposes the cross-attention mechanism of
Transformer in domain adaption and achieved state-of-the-
art performance.

Differently, our proposed Multi-Modal Plateau Transform-
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ers (M2PT) aims to address WS-TAL within a Transformer-
based framework, which simultaneously models temporal
relationships among snippets, complementary information
across data modalities, and temporal coherence among con-
secutive snippets.

3. The Proposed Method
3.1. Preliminary and Motivation

Given an untrimmed video set {Vi}Ni=1, where N is the num-
ber of videos and i is the index of the sequence sample. The
video-level label is associated as {yi}Ni=1, where yi ∈ RC , C
is the total number of action categories and yi,c indicates the
existence of action c in Vi. Note that yi is a multi-label vec-
tor when there are more than one action in the input video
and will be normalized with ℓ1-norm.

Following recent methods [5, 9, 11, 13, 24], each video
Vi first is divided into a sequence of non-overlapping snip-
pets {X1,⋯,XT }, where T is the number of snippets. These
snippets are input into a pre-trained I3D network [3] to gen-
erate feature representation Xr ∈ RT×D and Xo ∈ RT×D for
each video in RGB and optical flow modality, respectively.
Note that r and o represent RGB modality and optical flow
modality, and D denotes the dimension of features.

Existing WS-TAL methods have exploited temporal rela-
tionships among snippets [9, 24] and complementary infor-
mation across data modalities [5, 11] individually, we model
them simultaneously with a Transformer model with self-
attention and cross-modality cross-attention mechanism.
Specially, cross-modal methods are to alleviate the redun-
dant information problem which is first proposed by [11],
and [5] expands it with evidential optimization. However,
existing cross-modal methods ignore snippet-wise relations.
This motivates us to build a Transformer structure for each
modality branch and achieve cross-modal by cross-attention
mechanism. Plateau models have been exploited in [22, 27],
but both works require providing an annotated seed frame
for each action instance, which however is not feasible for
our weakly-supervised setting where only video-level labels
are provided. We instead employ the Plateau model to refine
detected action instances for getting more precise pseudo
labels.

Thus, we propose a novel Multi-Modal Plateau Trans-
formers (M2PT) network shown in Figure 1. The goal is to
generate a set of action proposals with each as (ts, te, c),
where ts and te are the starting and ending snippet times-
tamp for action proposal, while c indicates action category.

3.2. Base Model

First of all, we introduce the base model architecture to il-
lustrate the framework overview for WS-TAL. Following
existing dual-branch architecture [11, 37], we aim to train
a feature embedding architecture Fe(⋅) to learn more ef-

fective latent features Zr ∈ RT×D and Zo ∈ RT×D for
two modalities, which are further concatenated as Zm =
[Zr,Zo] ∈ RT×2D and fed into the video-level action clas-
sifier Fc(⋅) to obtain the Temporal Class Activation Map
(TCAM) output as:

Ocam = Fc(Zm),

where Ocam ∈ RT×C+1 contains C + 1 dimensions, since
we follow existing works [5, 9, 17] and set the last dimen-
sion as background.

Later on, the latent features Zr and Zo are input into two
attention units Fa(⋅) to generate attention weights ar ∈ RT

and ao ∈ RT , respectively. To suppress the background parts
in Ocam, we integrate the attention weights am = 1

2
(ar+ao)

and obtain the suppressed TCAM output as:

Ôcam = am ⊗Ocam,

where ⊗ denotes element-wise multiplication along the
temporal dimension. Following most works [11, 12, 15, 24],
the Multi-instance Learning (MIL) loss Lmil is the funda-
mental loss function for WS-TAL, which can be derived for
video-level classification as follows:

Lmil = Lce(y,pcam) +Lce(y, p̂cam), (1)

where pcam/p̂cam are the video-level prediction scores with
the temporal top-k pooling on Ocam and Ôcam. Lce(⋅, ⋅) is
defined as the cross-entropy loss function over the video-
level ground truth y and predicted one.

MIL-based methods [24, 32] perform poorly due to weak
and implicit supervision on the temporal boundary which
can be attributed to the lack of sufficient temporal anno-
tations. To further improve the localization of action seg-
ments, we leverage the pseudo-label module and introduce
a pseudo-label loss Lpseudo with uncertainty estimation
[9, 37] to explicitly supervise TCAM output Ocam as:

Lpseudo =
1

T

T

∑
t=1

e−utLce(p̂t,ot) + τut, (2)

where ut denotes the uncertainty value for each snippet
from one convolution layer of Zm, τ is hyper-parameter,
ot ∈ RC+1 is the snippet from Ocam, and p̂t ∈ RC+1 rep-
resents snippet-level pseudo labels. Note that we refer to
[9, 37]’s method to generate pseudo labels, which is com-
mon practice for WS-TAL. Motivated by [11], attention
weights are essential to be constrained. So we introduce the
mutual learning loss Lml to guarantee the consistency be-
tween ar and ao:

Lml =
1

2
(Lmse(ar, ϕ(ao)) +Lmse(ϕ(ar),ao)), (3)

where ϕ(⋅) represents a function that truncates the gradient
of input and Lmse(⋅, ⋅) denotes the mean square loss func-
tion. Moreover, it is also essential to make attention weights
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more sparse by using ℓ1 normalization term as Lnorm:

Lnorm =
1

3
(∣∣ar ∣∣ℓ1 + ∣∣ao∣∣ℓ1 + ∣∣am∣∣ℓ1), (4)

where ∣∣ ⋅ ∣∣ℓ1 is the ℓ1-norm.
Considering the last vector of Ocam is the probabil-

ity distribution of the background class (defined as pb), it
should be opposite to the distribution of attention weight:

Loppo =
1

3
(∣ar +pb −1∣+ ∣ao +pb −1∣+ ∣am +pb −1∣), (5)

where ∣ ⋅ ∣ is the absolute value function.
To sum up, we can obtain the final objective function for

our base model as:

L = Lmil +Lml + λ0Lpseudo + λ1(Lnorm +Loppo), (6)

where λ0 and λ1 are hyper-parameters for the pseudo label
and regularization terms.

3.3. Multi-Modal Plateau Transformers

Unfortunately, pseudo labels and attention weights gen-
erated by WS-TAL methods are generally unreliable and
contain amounts of noisy patterns. To mitigate this bottle-
neck, we propose a multi-modal Transformer fusion mech-
anism to effectively capture more complementary informa-
tion across two modalities to enhance the feature general-
ization ability. To further improve the temporal localization
segments, we explore the plateau function [22] to refine
the temporal attention weight to more continuous patterns
along the temporal direction.

3.3.1 Multi-Modal Attentive Fusion Network

Most recent works directly utilize the channel-wise concate-
nated feature to do feature refinement and action modeling
[8, 9, 17], which overlooks the impact of redundant infor-
mation and causes extra noise. [11] firstly proposes to con-
struct a cross-modal mechanism to filter out the redundant
information, which leverages the performance. However,
this method adopts global feature adaptation on the main
modal branch and ignores that videos are usually dominated
by irrelevant background snippets so it would harm the rel-
evant action features during the global merge. What’s more,
[11] ignores the temporal correlation between snippets from
different modalities.

To efficiently explore the complementary informa-
tion between RGB and optical flow modality, we de-
velop a multi-modal Transformer architecture with both
self-attention Transformer and cross-attention Transformer
through two snippet-wise attention maps. In this manner,
the most similar parts between static and motion informa-
tion are addressed and the redundant noise will be filtered
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Figure 2. (a) the mechanism of cross-attention and self-attention,
and (b) the proposed cross-supervision training strategy.

out by such mechanism. Specifically, two attention maps
Mr ∈ RT×T and Mo ∈ RT×T are defined as soft-mask in
RGB and optical flow branches, which are then normalized
with global softmax and capture the most similar action seg-
ments between two modalities.

Following the Transformer design, we define three vari-
ables (query, key, value) as Qr = XrWqr, Kr = XrWkr,
Vr = XrWvr, and Qo = XoWqo, Ko = XoWko,
Vo =XoWvo, where Wqr, Wkr, Wvr, Wqo, Wko, Wvo

∈ RD×D are the linear projection matrix for generating
query Qr/o, key Kr/o and value Vr/o for RGB and opti-
cal flow modality, respectively. Finally, these maps are ex-
ploited by each Transformer module to generate the refined
latent features:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ir =Xr +FDrop(MrVrWr),
Io =Xo +FDrop(MoVoWo),
Zr = Ir +FMLP(FLN(Ir)),
Zo = Io +FMLP(FLN(Io)),

(7)

where Wr and Wo are the learnable projections, FLN(⋅)
is the layer normalization function, FDrop(⋅) and FMLP(⋅)
are the dropout and MLP module separately, and Ir, Io are
the intermediate latent feature for RGB and optical flow.
To build the self-attention and cross-attention Transform-
ers, we can define different Mr/o. For self-attention Trans-

former, Mr = QrK
⊺

r√
T

and Mo = QoK
⊺

o√
T

; for cross-attention

Transformer, Mr = QoK
⊺

r√
T

and Mo = QrK
⊺

o√
T

. Figure 2 (a)
shows the comparison of dual-Transformer design.

Moreover, multi-head attention is also introduced to ex-
pand the capacity of attention modules [35]. Based on this,
we refine the pre-trained cross-modal features with static
and motion information from different modalities and find
out the most similar segments at the same time, which re-
duce the impact of background snippets.

3.3.2 Temporal Localization Refinement via Plateau
Modelling

Since specific action boundaries are not available for WS-
TAL task, existing works [5, 12, 24] typically apply a range
of thresholds on am to generate temporal action proposals.
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Unfortunately, continuous action patterns are not captured
by those methods, that is, an action segment should have
very similar attention weights.

To further refine the temporal localization, we propose
a plateau refined distribution function on am so that the
action probability of each snippet in a segment is evenly
distributed. Another desirable property of this distribution
is differentiability so that the function can be tuned by the
scores in am [22]. Specifically, the plateau fitting function
is defined to model the probability density of plateau distri-
bution over the snippets x of an untrimmed video as:

Fp(x∣tc, ω, ϱ) =
1

(eϱ(x−tc−ω) + 1)(eϱ(−x−tc−ω) + 1) , (8)

where Fp(⋅∣⋅) is the plateau function over the center of the
plateau tc, the width ω and the steepness of the boundary ϱ.
The range of the function is [0, 1]. We follow [22] and fit
the plateau function on am to obtain the refined tc, ω, ϱ as
follows:

tc, ω, ϱ = argmin
tc,ω,ϱ

Lmse(am,Fp). (9)

As shown in Figure 3, the gray dash line represents a seg-
ment of original attention weights am from snippet #48 to
snippet #68. The whole am is shown in Figure 4(b). To build
the plateau distribution, we firstly use proper thresholds on
am to obtain multiple action proposals and their associ-
ated attention weights (âm) which is marked in bold black.
Each âm will be input into Eq. (9) to fit Fp through MSE
loss, producing tc, ω, ϱ. Fp replaces âm as new attention
weights and refines its time scale. In Figure 3, we use a pink
dashed line “foreground plateau” to show the new attention
weights, “w” represents ω, and “c” represents tc. Specially,
tc is around the highest-scoring snippet in âm, ω constrains
the width to filter out background snippet and slope - ϱ pre-
serves edge action snippets. However, ω generally is much
wider than the real action scale and will include background
snippets as “foreground plateau” shows in Figure 3. We in-
troduce background attention weights bm (equal to 1 - am).
Same as am, we also first apply thresholds on bm to obtain
background proposals and then build background plateau
distribution, marked as “background plateau”. Thus there
will be two kinds of plateau distribution for each video sam-
ple, we filter out the “overlap” area and conclude with re-
fined attention weights (marked as “refined plateau”).

Note that we only illustrate one action proposal in Fig-
ure 3 to make it straightforward to understand the intuition.
This method can also be used in multiple action proposals.
Compared to traditional threshold methods, our “dilation-
erosion” plateau method is more reasonable since it is based
on a center snippet tc and expands with “ω”. This method
will filter out negative information while reserving edge ac-
tion snippets.

Figure 3. Mechanism of plateau refinement. Compared with tra-
ditional threshold methods, our refinement adopts a “dilation-
erosion” strategy, which not only filters out background informa-
tion but also reserves edge action boundary.

3.4. Model Training Strategy

To make the model training converge well, we deploy two-
stage training mechanism by first pre-training the trans-
former block using reconstruction loss, then fine-tuning the
whole model with our proposed framework.
Stage 1. Warm-up Stage: The goal of our transformer
module is to refine the pre-trained I3D features, al-
though existing works [24, 32] directly adopted Xr and
Xo and achieved relatively good performance. However,
transformer-based architecture needs strong supervision to
train well from scratch, which means that scratch-initialized
attention block using Eq. (7) probably results in trivial so-
lution to Zr and Zo. To increase the training stability, we
introduce a reconstruction loss Lrec to pre-train the feature
embedding function Fe(⋅) as follows:

Lrec = Lmse(Zr,Xr) +Lmse(Zo,Xo), (10)

which can guarantee the learned Zr and Zo are not far away
from Xr and Xo, so that the effective information existed
in pre-trained features would not be destroyed. Note that Zr

and Zo will not be exactly the same as Xr and Xo, since we
only optimize Eq. (10) for warming up with limited training
iterations. Details are shown in Sec 4.2. With the pre-trained
feature embedding function, we then fine-tune the whole
pipeline with Eq. (6) by a small learning rate. To achieve
fast convergence, we further apply the extra co-activity sim-
ilarity loss [25] in this stage.
Stage 2. Optimization Stage: Since we have two kinds
of Transformer architectures, we propose a novel optimiza-
tion strategy with a combination of cross-attention and self-
attention. Through pseudo labels generated by these two at-
tention modules, a cross-supervision mechanism is built as
shown in Figure 2(b) by optimizing the objective function
(Eq. (6)). The plateau refinement (Eq. (9)) is iteratively op-
timized after the cross-supervision training until the model
converges or the maximal iterations reach.

2708



Table 1. Comparison of state-of-the-art methods on THUMOS14 dataset. The average mAP (AVG) is computed under IoU thresholds
[0.1:0.1:0.7]. †means additional information is added for training, such as action frequency or human pose.

Setting Method mAP@IoU (%)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 AVG

FS-TAL

SSN [42] 60.3 56.2 50.6 40.8 29.1 - - -
TAL-Net [4] 59.8 57.1 53.2 48.5 42.8 33.8 20.8 45.1
P-GCN [38] 69.5 67.5 63.6 57.8 49.1 - - -
GTAN [20] 69.1 63.7 57.8 47.2 38.8 - - -

WS-TAL†

CMCS [19] 57.4 50.8 41.2 32.1 23.1 15.0 7.0 32.4
STAR [36] 68.8 60.0 48.7 34.7 23.0 - - -
3C-Net [23] 59.1 53.5 44.2 34.1 26.6 - 8.1 -

PreTrimNet [41] 57.5 50.7 41.4 32.1 23.1 14.2 7.7 23.7
SF-Net [21] 71.0 63.4 53.2 40.7 29.3 18.4 9.6 40.8

WS-TAL

CoLA [39] 66.2 59.5 51.5 41.9 32.2 22.0 13.1 40.9
UGCT [37] 69.2 62.9 55.5 46.5 35.9 23.8 11.4 43.6
CSCL [13] 68.0 61.8 52.7 43.3 33.4 21.8 12.3 41.9

CO2-Net [11] 70.1 63.6 54.5 45.7 38.3 26.4 13.4 44.6
FTCL [8] 69.6 63.4 55.2 45.2 35.6 23.7 12.2 43.6

RSKP [12] 71.3 65.3 55.8 47.5 38.2 25.4 12.5 45.1
ASM-Loc [9] 71.2 65.5 57.1 46.8 36.6 25.2 13.4 45.1
DGCNN [26] 66.3 59.9 52.3 43.2 32.8 22.1 13.1 41.3
Li et al. [17] 69.7 64.5 58.1 49.9 39.6 27.3 14.2 46.1
DELU [5] 71.5 66.2 56.5 47.7 40.5 27.2 15.3 46.4

TFE-DCN [43] 72.3 66.5 58.6 49.5 40.7 27.1 13.7 46.9
Two-Stream [33] 73.0 68.2 60.0 47.9 37.1 24.4 12.7 46.2

Boosting [16] - - 56.2 47.8 39.3 27.5 15.2 -
DDG-Net [29] 72.5 67.7 58.2 49.0 41.4 27.6 14.8 47.3

Ours 74.1 69.2 60.0 49.8 41.1 28.0 15.1 48.2

4. Experimental Results

4.1. Datasets

Our work is highly motivated by [5, 11]. To make fair com-
parison, we mainly evaluate our proposed method on two
public video datasets: THUMOS14 [14] and ActivityNet1.2
[2].

THUMOS14 consists of 200 untrimmed validation videos
and 213 untrimmed test videos. These videos have various
lengths from tens of seconds to several minutes. There are
20 action categories distributed in these videos, in which
one video might contain multiple actions. Following previ-
ous work [9, 11, 12], we adopt the 200 validation videos for
training and 213 test videos for evaluation.

ActivityNet1.2 is a large action localization dataset with
100 daily action classes. It includes 4,819 training videos
and 2,383 videos for validation. Considering the annota-
tions for test videos in this dataset are not released, we de-
ploy the training videos for model optimization and vali-
dation videos for performance evaluation, by following the
protocol in previous work [5, 11].

4.2. Implementation Details

We utilize the two-stream I3D [3] pre-trained on Kinetics-
400 [3] to extract two-stream features. The optical flow is
extracted by TV-L1 algorithm. The features output by I3D
network is a sequence of snippets, in which each snippet
consists of 16 non-overlapping frames sampled from the
original video. One snippet is a 2,048-dimension vector:
the first 1,024 is RGB feature and another 1,024 is opti-
cal flow feature. In the training phase, we fix the number
of snippets T as 512 for THUMOS14 dataset and 60 for
ActivityNet1.2, while the original length is retained during
testing. In view of fair comparisons, we do not fine-tune the
I3D feature extractor. For the Transformer model, we adopt
a multi-head design and the number of heads is 4. Every
Transformer only has 1 attention module in consideration
of simple structure. The attention unit is constructed with 3
convolution layers, whose output dimensions are 512, 512,
and 1 while kernel sizes are 3, 3, and 1. Two dropout layers
with a rate of 0.5 are also embedded into each attention unit.
The classification module contains 3 temporal convolution
layers, between which two dropout layers with a rate of
0.7 are added to regularize intermediate features. Note that
“self” and “cross” attention share the same model weight.
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Table 2. Comparison of state-of-the-art methods on ActivityNet1.2
dataset. The average mAP (AVG) is computed under IoU thresh-
olds [0.5:0.05:0.95].

Setting Method
mAP@IoU (%)

0.5 0.75 0.95 AVG

FS-TAL SSN [42] 41.3 27.0 6.1 26.6

WS-TAL† CMCS [19] 35.4 22.9 8.5 21.1
3C-Net [23] 36.8 22.0 5.6 22.4

WS-TAL

CoLA [39] 42.7 25.7 5.8 26.1
UGCT [37] 41.8 25.3 5.9 25.8

CO2-Net [11] 43.3 26.3 5.2 26.4
DGCNN [26] 42.0 25.8 6.0 26.2
Li et al. [17] 41.6 24.8 5.4 25.2
DELU [5] 44.2 26.7 5.4 26.9

DDG-Net [29] 44.3 26.9 5.5 27.0

Ours 45.1 27.7 5.5 27.6

Table 3. Contribution analysis of each component.

Model
Module mAP@IoU (%)

Lpseudo CS Π 0.1 0.3 0.5 0.7 AVG

Baseline
64.7 50.3 34.5 11.9 42.2

✓ 66.2 48.5 30.5 9.1 38.8
✓ ✓ 64.6 50.7 36.6 13 41.0

M2T

69.8 54.3 36.7 11.7 43.5
✓ 70.4 54.5 37.3 12.5 44.1
✓ ✓ 70.8 56.5 39.4 14.3 45.7
✓ ✓ 71.6 57.8 39.4 14.2 46.6
✓ ✓ ✓ 74.1 60.0 41.1 15.1 48.2

For the hyper-parameters, we set batch size as 10 for
one iteration, 20 iterations as one step for model evalua-
tion and pseudo label generation on THUMOS14 and 500
iterations on ActivityNet1.2. We warm up M2T with Eq.
(10) in 2,000 iterations and fine-tune it with 20,000 itera-
tions. For the plateau refinement stage threshold, we select
0.4 for action proposal generation and 0.45 for background
proposal generation. We choose λ0 = 10 for pseudo label
loss, while λ1 = 0.8 for the last two terms of loss function
[11]. For uncertainty, we set τ = 0.2 for THUMOS14 and
τ = 0.001 for ActivityNet1.2, respectively. For top-k pool-
ing of TCAM, we select k = 7 for THUMOS14 and k =
5 for ActivityNet1.2. For the model optimization, we em-
ploy Adam optimizer with a learning rate as 5e−5 and the
weight decay rate is 0.001 for THUMOS14, while 3e−5 and
5e−4 for ActivityNet1.2. All experiments are run on a single
NVIDIA RTX 3090 GPU.

4.3. Comparison with the State-of-the-Art

We compare our proposed method with state-of-the-art WS-
TAL methods and several fully-supervised TAL methods to
examine the validness of our model.

In Table 1, we report the compared results on THU-
MOS14 dataset. We observe that our method establishes a
state-of-the-art result on THUMOS14 with 48.2% average

mAP for IoU thresholds 0.1:0.7. In particular, our model
achieves better performance for all IoU thresholds than
CO2-Net [11] and most IoU than DELU [5], both of which
also apply cross-modal features for action localization. And
for those models with pseudo labels and uncertainty to
guide model training, i.e., ASM-Loc [9] and UGCT [37],
our model outperforms their methods for most IoU thresh-
olds. Our model also performs better than all Transformer-
based methods[9, 16]. Even compared with fully supervised
methods, our model performs better than SSN and TAL-
Net, and is comparable with GTAN and P-GCN at low IoU
threshold. The results validate the superior effectiveness of
our proposed method.

We also conduct experiments on larger dataset Activi-
tyNet1.2 and the results are reported in Table 2. Our method
obtains the performance of 27.6% average mAP on Activ-
ityNet1.2. The reason for slightly lower performance com-
pared to THUMOS14 is that there are only 1.5 action in-
stances per video in ActivityNet1.2, while THUMOS14
contains 15 action segments per video [11]. Also, the an-
notations are coarser than THUMOS14. These factors lead
to limited improvements on ActivityNet1.2 for all existing
methods. Following most works [5, 8, 12, 13, 17], we prefer
to conduct ablation studies on THUMOS14 dataset.

4.4. Ablation Study on THUMOS14

4.4.1 Influence of Model Variants

In Table 3, we conduct ablation study to investigate the con-
tribution of each component in our model. To efficiently
verify the effect of each component, we design a Baseline
using one convolution layer as Fe(⋅) to refine the input fea-
ture with necessary constraints, i.e., Lmil, Lml, Lnorm and
Loppo.

Based on this baseline, we design several variants of our
M2PT by including more components. First, “M2T” de-
notes that we construct Fe(⋅) with the multi-modal Trans-
former feature embedding model. “Π” means we deploy
the plateau function to refine the attention weights. We
also examine the pseudo label loss Lpseudo and the cross-
supervision training mechanism (CS).

From the results in Table 3, it is obvious that a consis-
tent gain is achieved when adding modules to the proposed
M2PT. In particular, compared with Baseline, our multi-
modal Transformers design significantly increases the per-
formance by 1.3% on average. The two branches comple-
ment each other and filter out redundant information. When
incorporating all introduced modules and adopting cross-
supervision training, our framework boosts the final perfor-
mance from 42.2% to 48.2%. Regarding the performance
drop for baseline with pseudo labels, we notice that noisy
pseudo labels impair the base model as depicted in Figure
5, which further verifies that the simple feature encoding of
baseline leads to weak robustness to negative samples.
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(a)

(b)

(c)

(a) Hammer Throwing

(a)

(b)

(c)

(b) Diving

Figure 4. Illustration of two qualitative cases from action “Hammer Throwing” and “Diving” in THUMOS14. In each figure, row-(a)
denotes the original attention weights, row-(b) shows the output of our plateau refinement and row-(c) means the ground-truth temporal
localization.

Table 4. Comparison of different plateau settings.

Setting
mAP@IoU (%)

0.1 0.3 0.5 0.7 AVG
self-attention 70.5 55.8 39.7 14.6 45.8

cross-attention 71.4 56.9 40.0 13.8 46.1
both 74.1 60.0 41.1 15.1 48.2

Figure 5. Comparison on pseudo label precision without and with
plateau refinement. The upper figure shows the comparison of
M2T and M2PT, and the bottom one lists the comparison on Base-
line and Baseline with Plateau refinement.

4.4.2 Impact of plateau function

We explore the validness of the plateau function in refining
the noisy pseudo labels and attention weights, which miti-
gates the impact of false positive samples on pseudo-label
loss. Table 4 reports the influence of different plateau set-
tings. Because we adopt a cross-supervision strategy, it is
helpful to investigate which pseudo label generation scheme
is noisier. According to the results, we conclude that pseudo
labels by self-attention Transformers contain more negative
samples.

Figure 4 illustrates the visualization comparisons among
original temporal localization, our plateau-refined localiza-
tion and ground-truth. We observe that original attention
weights are usually noisy and contain many negative sam-

ples, while most existing works heavily rely on attention
weights to generate action proposals, which hurts their per-
formance. To handle this, we propose our plateau function
to efficiently suppress these background parts and make the
pseudo label more similar to the ground truth, such as the
“Hammer Throwing” action localization in Figure 4 [Left].
As shown in Figure 4 [Right], the plateau function refines
more precise localization on short action “Diving”, which is
generally the weakness for most MIL-based methods.

Figure 5 shows the improvement in the quality of
pseudo labels. We compare “Baseline” with “Baseline
with plateau” and “M2T” with “M2PT”, separately. The
average precision of “Baseline with plateau” is 8.7%
higher than “Baseline”, and “M2PT” outperforms 10% than
“M2T”. These results substantially verify the effectiveness
of plateau functions. Additionally, pseudo label precision
of “M2T” achieves a 3.6% improvement over the baseline
model, which proves feature enhancement of multi-modal
Transformers.

More qualitative results and effects of hyperparameters
are in supplementary materials.

5. Conclusion
In this work, we propose a novel Multi-Modal Plateau
Transformers (M2PT) for weakly-supervised temporal ac-
tion localization (WS-TAL) problem. To efficiently exploit
temporal structure within videos and simultaneously reduce
redundant information caused by the pre-trained I3D net-
work, we construct cross-attention and self-attention mod-
ules to conduct feature embedding on two-stream features.
To enhance the performance of action localization, we also
utilize pseudo labels to iteratively refine latent features, and
introduce plateau functions to refine the temporal localiza-
tion and then improve the precision of pseudo labels. Ex-
periments on two popular action benchmarks verify the ef-
fectiveness of our proposed model when compared with the
state-of-the-art methods.
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