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Figure 1. Point-supervised video instance segmentation in this work (YoutubeVIS-2021). Top: point-level annotations in the training
set (pseudo masks generated from our method overlaid); Bottom: mask predictions in the validation set.

Abstract

Video instance segmentation (VIS) is a challenging vi-
sion task that aims to detect, segment, and track objects
in videos. Conventional VIS methods rely on densely-
annotated object masks which are expensive. We reduce
the human annotations to only one point for each object
in a video frame during training, and obtain high-quality
mask predictions close to fully supervised models. Our
proposed training method consists of a class-agnostic pro-
posal generation module to provide rich negative samples
and a spatio-temporal point-based matcher to match the ob-
ject queries with the provided point annotations. Compre-
hensive experiments on three VIS benchmarks demonstrate
competitive performance of the proposed framework, nearly
matching fully supervised methods.

1. Introduction
Video instance segmentation (VIS) is emerging as a chal-
lenging vision task which aims to detect, segment, track ob-
jects in continuous videos [61]. It has achieved increasing
attention recently [9, 18, 21, 35, 39, 45, 67] due to its wide
real-world applications such as video editing, 3D recon-

*Work done during internship / affiliation with NVIDIA.

struction [20, 31, 69], and view point estimation [30, 52].
Annotating per-frame object masks in videos is time-

consuming and even more challenging than annotating im-
age instance segmentation masks. Due to the limited video
annotations, a common strategy to train a video instance
segmentation model is to first train on image instance seg-
mentation datasets with ground truth mask and category an-
notations (e.g. COCO [40]), and then finetune on video in-
stance segmentation datasets with ground truth masks, cat-
egory and tracking annotations [13, 29]. However, the cat-
egories in image datasets do not necessarily fully overlap
with the video datasets, and hence adapting models from
the image domain to the video domain has challenging gen-
eralization issues due to the emergence of new categories.

There are some recent efforts to reduce video annota-
tion cost for video instance segmentation. They propose to
learn with sub-sampled video frames [26], category annota-
tions in videos [42], or without any video annotations [19].
However, these approaches either still require dense masks
in the sub-sampled frames [26] or are barely competitive
compared with supervised approaches [42] or can only
handle the overlapped category between video and image
dataset [19]. These limitations of existing approaches show
that it is still unclear what is the optimal way to reduce an-
notation cost for video instance segmentation.

In this paper, we ask the question: To what level can we
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Figure 2. Method Overview. Our method consists of class-agnostic spatial-temporal proposal generation, a spatio-temporal point-based
matcher to match object queires with point annotations for high-quality pseudo-label generation, and self-training to mitigate the domain
gap between images and videos. See text for details.

reduce human annotations in videos and still train an ac-
curate model for video instance segmentation? We believe
that point supervision presents a “sweet spot” for annotat-
ing objects in videos. Point annotations are significantly
cheaper than other alternatives, such as bounding boxes, as
one simple click only costs around 1 second [4, 14]. In the
most extreme case we considered, every object instance in a
frame only contains one labeled point, as shown in Figure 1.
Despite the many benefits of point supervision, using it to
supervise dense predictions is challenging and raises many
ill-conditioned issues, such as the sparsity of ground truth
and the lack of informative negative samples.

In this work, we introduce a point-supervised VIS frame-
work (PointVIS) to address these challenges. PointVIS
leverages the knowledge from image-based (e.g. COCO)
pre-raining and guides the VIS task in an open set manner.

Our main contributions are:
• PointVIS is the first attempt to comprehensively investi-

gate video instance segmentation with point-level super-
vision. Our work significantly reduces the amount of re-
quired annotations in VIS and opens up the possibility to
address the task with minimal supervision.

• PointVIS overcomes the challenges in point-supervised
video instance segmentation, using the proposed class-
agnostic proposal generation and a point-based matcher.

• PointVIS is simple to implement, achieving competitive
results compared with fully-supervised methods on three
major VIS benchmarks.

• We further conduct comprehensive studies in different
settings of points with important observations, providing
a deeper understanding on what kind of point supervision
matters in the VIS task.
The key challenge of using point supervision is the spar-

sity of ground truth, which further leads to the lack of in-
formative negative samples that are along the boundaries

of dense mask annotations. We address these challenges
by proposing to (1) generate class-agnostic spatio-temporal
instance proposals without video mask annotation and (2)
match these proposals with our point annotations to obtain
dense pseudo-label for training the VIS model. We lever-
age COCO pre-trained image instance segmentation model
to generate per-frame instance proposals and use bipartite
matching on query embeddings to convert them to spatio-
temporal video instance proposals. We further design a loss
function to match these proposals with our sparse point an-
notations as there could be multiple proposals that overlap
with a single point annotation. We show that both of these
designs are crucial to generating high-quality pseudo mask
annotations for learning with only point supervision. An
overview of our approach is shown in Figure 2.

We further conduct comprehensive studies on how point
annotations affect VIS and make the following important
observations: (1) even one positive point annotated per
video object already achieves good performance, retaining
87% of the performance of fully-supervised methods on
Youtube-VIS 2019 [61]; (2) given positive points, increas-
ing negative points improves performance, while adding
positive points alone could provide little gain; (3) the posi-
tions of positive points have limited effect on performance
while the positions of negative points matter more. These
observations shed lights on what kind of point supervision
matters for video instance segmentation, making it a step
closer towards more realistic open-world applications.

2. Related Work

2.1. Image instance segmentation

Supervised Instance Segmentation. Instance segmenta-
tion requires bounding-box regression, classification, and
pixel-level segmentation of all objects present in images.
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After the success of two-stage instance segmentation meth-
ods [22, 25, 36, 46, 47], one-stage instance segmentation
methods [7, 15, 34, 50, 60, 66] not only significantly im-
prove the accuracy but also reduce the computation cost.
Recent video instance segmentation approaches [13, 26, 35,
41, 57, 62] are built on those one-stage methods.

Weakly supervised instance segmentation. Due to the
heavy segmentation annotation costs, weakly supervised in-
stance segmentation is a potential way to reduce this cost.
Zhou et al. [68] and Ahn [1] propose learning instance seg-
mentation with image-level annotations. Another collection
of instance segmentation approaches leverage box-level su-
pervision [2, 24, 32, 51]. Recently, image instance seg-
mentation with both box and point-level supervision shows
competitive results [14]. Note that our point-supervised
video instance segmentation differs from [14] as we do not
use any additional bounding box annotations.

2.2. Video Instance Segmentation

Supervised video instance segmentation. Video Instance
Segmentation is a joint task of detection, instance segmen-
tation, and tracking, which was first proposed by Yang et
al. [61]. Most previous approaches [18, 35, 45, 62, 67]
follow the tracking-by-detection paradigm, which segments
and classifies objects and then associates objects across
frames. Another trend of video instance segmentation [3,
6, 39] follows the clip-match paradigm, where the video is
separated into multiple overlapped clips, and objects are de-
tected and segmented in each clip and then associated across
different clips. Tracking-by-regression approaches [41, 57]
have also been proposed to generate detections and asso-
ciate object bounding boxes of the same objects across con-
tiguous frames. Recently, transformer-based approaches for
VIS have attracted much attention [13, 29, 56, 63]. Our
work is built on top of MinVIS [26] for its excellent perfor-
mance in VIS using image-based training. We verify that
this design also benefits our task and provides better induc-
tive bias in our weakly-supervised learning setting.

Weakly/Semi-supervised video segmentation. As anno-
tations of VIS are expensive, there are emerging methods
that aim to learn VIS with reduced annotations [19, 26, 42].
Liu et al. [42] propose to learn VIS by using image-level
annotations with correspondences [1, 27, 28]. Fu et al. [19]
propose to leverage instance segmentation annotations of
COCO dataset and learn VIS without video annotations.
However, these methods either still require dense masks
in the sub-sampled frames [26] or are barely competitive
compared with supervised approaches [42] or can only
handle the overlapped category between video and image
dataset [19]. In contrast, our PointVIS can cover and han-
dle all categories with largely reduced annotation cost. In
addition, we for the first time show that video instance seg-

mentation with one point per object can achieve decent per-
formance compared with the fully-supervised counterparts.

2.3. Point-supervised methods.
Recently point-level supervision has attracted growing
attention in computer vision, including object localiza-
tion [65], object detection [11, 53], image instance segmen-
tation [14, 33], and image panoptic segmentation [17, 37].
Point-level interactions are also popular in the field of inter-
active image segmentation [12, 16, 43] and interactive video
segmentation [5, 8, 23, 48], with a focus on label propaga-
tion or reducing interaction time. The closest work to ours
is PointPanoptic [17] where they use a single point to train
image panoptic segmentation. Note that this fundamentally
differs from our work, as we aim for reducing video anno-
tations by utilizing pretrained image representations while
PointPanoptic [17] aims for reducing image annotations by
training from scratch. To our best knowledge, there is no
prior work that utilizes point-level supervision for VIS.

3. Method
Our PointVIS design is motivated by three major challenges
in point-supervised VIS:
Sparsity in ground truth. Unlike masks and boxes, points
do not provide detailed localization and shape information
about objects, especially their boundaries, sizes and ex-
treme points. Points are also sparse, which causes diffi-
culties during model training. Our task is further compli-
cated by the lack of negative supervision when only posi-
tive points are annotated, which is important to learn a cor-
rect decision boundary. Since many VIS methods involve
COCO pretraining, we similarly leverage this pipeline to
enrich our supervision using object shape priors.
Matching sparse annotations. An important step in re-
cent Transformer-based instance segmentation models is to
match their mask proposals with ground truth masks using
some costs, usually defined as the intersection-over-union
(IoU) between two masks. This matching step is the key
to enable end-to-end training without non-maximum sup-
pression (NMS). However, such matching process becomes
problematic in our case, since points do not provide infor-
mative measurement on how accurate a mask is. Therefore,
special designs need to be taken into consideration when
defining the cost of matching step in PointVIS.
Novel categories. In real world applications, there is no
guarantee that the categories of downstream VIS tasks over-
lap with those in images. Therefore, a point-supervised
framework has to handle arbitrary new categories and learn
efficiently with sparse supervision.
Our solution. We therefore propose several designs in
PointVIS to address the above challenges. We first pre-
train instance segmentation models on COCO and use the
pretrained models to generate spatiao-temporal mask pro-
posals in training videoes. Despite the issue mentioned
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above, this class-agnostic proposal generation mechanism
works well in open set scenarios, providing good cover-
age on categories not seen in COCO. We then propose a
point-based matcher that incorporates annotation-free neg-
ative cues from other instances in the same video frame.
Finally, we address the generalization issue for new cate-
gories in videos by conducting self-training to mitigate the
domain gap and refine our results. We iterate the training
with pseudo masks from prior round. These solutions to-
gether allow us to learn VIS with points effectively.

3.1. Problem Setup

Due to the high annotation cost in videos, in the standard su-
pervised setup, a prevalent strategy to train a video instance
segmentation model is to first train on image instance seg-
mentation datasets, and then finetune on video instance seg-
mentation datasets. Formally, there is a full-labeled image
instance segmentation dataset DI with category space size
OI and a full-labeled video instance segmentation dataset
DV with category space size OV , both of which are anno-
tated with object masks.

In our proposed point-supervised setup, we adopt a video
dataset with point annotations (denoted as DVp

) instead of
with masks for each video object as in DV . Specifically,
given a video V ∈ RH×W×T of T RGB frames with width
W and height H , the point annotations for the jth video ob-
ject in the video V is denoted as Gj = {{Pt

j ,L
t
j}Tt=1,bj},

where Pt
j ∈ RNt

j×2 are the x-y coordinates of the anno-

tated points at the tth frame, Lt
j ∈ RNt

j are the corre-
sponding binary labels for the annotated points indicating
foreground or background, N t

j is the number of annotated
points, bj ∈ ROV is the one-hot category label and t is
the time index. In this setup, a video instance segmentation
model F is first trained on image dataset DI with full masks,
resulting an image model F(; θI). Then F(; θI) is finetuned
on video dataset DVp

with point-level annotations, resulting
the final video instance segmentation model F(; θVp

).
Supervising a model solely based on annotated points

with a loss function like cross-entropy can lead to the model
collapsing, especially if only positive points are annotated.
Therefore, densifying point annotations and including nega-
tive supervision signals become crucial for learning a struc-
tured dense prediction task via points.

3.2. Learning VIS with Sparse Points

Class-agnostic proposal generation. To obtain meaning-
ful dense supervision with abundant negative signals, we
shift one step back to the image model instead of dwelling
on a degenerated video model finetuned with points. Re-
call that we have image instance segmentation datasets with
mask annotations ready at hands. A pretrained image model
on such datasets should already know rough object shape,

even if never trained on videos and the categories do not
fully overlap. Given this simple yet non-trivial discov-
ery, we propose to generate dense class-agnostic spatial-
temporal proposals for each video by utilizing a pretrained
image model that encodes rich shape prior.

It is challenging to obtain spatio-temporal proposals
when video supervision is unavailable. We address this
challenge by leveraging COCO pre-trained image instance
segmentation model [15] to generate per-frame instance
proposals and use bipartite matching on query embeddings
to convert them to spatio-temporal video instance propos-
als. While previous work has used a similar technique for
VIS with full video supervision [26], we here show that this
enables cross-domain video instance proposals generation
trained with image dataset only.

Concretely, given model F(; θI) trained on image dataset
DI and a video sequence V from DVp , we obtain the initial
proposals R̂ for V by conducting inference as below:

R̂ = F(V; θI) = {M̂r, ĉr}Rr=1 (1)

, where M̂ ∈ RH×W×T is a spatial-temporal proposal with
continous logits after sigmoid but before binarization, ĉr is
the confidence score, R is the maximum number of propos-
als for a video (e.g. 100).

Given the above dense proposals, there is still one open-
set problem worth resolving. As there could be new cat-
egories in DVp

and F(; θI) has never been finetuned on
DVp , the confidence score ĉr is not meaningful for every
video. To represent the confidence of class-agnostic pro-
posals without the reliance on categories, we propose to use
maskness score following [55] to obtain the confidence of
a mask as cr = 1

H×W×T

∑
x,y,z M̂r(x, y, z) where x,y are

the x-axis and y-axis spatial coordinates, t indexes the time.
Therefore, our final class-agnostic dense spatio-temporal

proposals R for a video V is denoted as R = {Mr, cr}Rr=1,
where Mr ∈ RH×W×T is the binarized mask of M̂r, cr is
the maskness score.

Point-based matcher. Given the dense class-agnostic
proposals, the next challenge is to assign the best proposal
to a video object and produce the final pseudo mask when
only point annotations are available in videos. This can be
challenging since there may be multiple proposals overlap-
ping with a single point, making it difficult to determine
which proposal provides the best boundary information.

To address this issue, we develop a matching cost func-
tion that combines cues from both point annotations and
spatio-temporal proposals to effectively match proposals
and video objects with points. With our proposed point-
based matcher, we can formulate the pseudo-label filtering
problem as a bipartite matching problem between the pro-
posals and the objects. We provide details on the matching
process and the design of the matching cost below.
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Figure 3. Visualization of point annotations and pseudo masks obtained by our method on Youtube-VIS 2019 [61] (row1), Youtube-VIS
2021 [61] (row2), and OVIS [49] (row3) training set.

Specifically, we search for a permutation σ̂ between the
set of dense proposals and the set of video ground truth with
points given a video. Assuming R is larger than the number
of objects in the video, we consider G as a set of video
ground truth with size R padded with ∅ (no object). To
find a bipartite matching between R and G, we search for
a permutation σ ∈ ΩR of R elements with the lowest cost:

σ̂ = argmin
σ∈ΩR

R∑
j=1

Lmatch(Gj ,Rσ(j)) (2)

where Lmatch(Gj ,Rσ(j)) is a pair-wise matching cost be-
tween ground truth Gj and a proposal with index σ(j).
This optimal assignment is computed efficiently with the
Hungarian algorithm following prior work [10]. Next, we
present the specific matching cost Lmatch given point anno-
tations.

To penalize proposals that do not overlap with the anno-
tated points consistently, we first define an annotated cost
Lann(Gj ,Rσ(j)) calculated over T frames as below:

Lann(Gj ,Rσ(j)) =

T∑
t=1

Nt
j∑

k=1

1[Mσ(j)(P
t
j(k), t) ̸= Lt

j(k)]

(3)

where 1[·] is the indicator function, k is the point index, t
is the time index, Pt

j(k) ∈ R2 is the x-y coordinates for the
kth point of the jth video object at the tth frame.

To combat a server lack of negative points during
matching, especially when only positive points are anno-
tated, we further develop a cross instance negative cost

Lcineg(Gj ,Rσ(j)) to filter out multiple overlapping propos-
als. The key idea is that the positive points for one video ob-
ject can serve as accurate negative points for the other video
objects in the same video frame. By aggregating the posi-
tive point annotations from other video objects in the same
frame, we obtain additional accurate negative point annota-
tions for each video object. Therefore, this annotation-free
Lcineg can penalize inaccurate proposals that overlap with
the positively annotated points in other video instances.

In addition to the annotated cost and cross instance neg-
ative cost, we also define a maskness cost Lmaskness as the
negative of the maskness score to favor confident proposals.
As a result, our proposed matching cost Lmatch is a weighted
combination of the annotated cost, cross instance negative
cost, and maskness cost as below:

Lmatch = λ1Lann + λ2Lcineg + λ3Lmaskness (4)

where λ1, λ2 and λ3 are the weight balancing parameters.
To handle the birth and death of objects, we compute the

matching cost only over video frames where objects show
up. After matching, we remove the pseudo-labels for frames
where objects die. With our carefully designed matching
cost, we can obtain high quality dense pseudo-mask for ob-
jects with point annotations via the optimal permutation.

Self-training for generalization. With the above high-
quality pseudo masks, we can train our video instance seg-
mentation model on videos with standard loss for mask pre-
diction (cross-entropy and dice loss) and cross-entropy loss
for classification following the existing work [13, 26].
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Method Dataset Sup. AP AP50 AP75 AR1 AR10

TeViT [64] YouTube-VIS-2019 M 56.8 80.6 63.1 52.0 63.3
IDOL [59] YouTube-VIS-2019 M 64.3 87.5 71.0 55.6 69.1
MinVIS [26] YouTube-VIS-2019 M 61.6 83.3 68.6 54.8 66.6
PointVIS (P1) YouTube-VIS-2019 P1 53.9 (87.5%) 75.7 (90.9%) 61.8 (90.1%) 47.5 (86.7%) 61.4 (92.2%)
PointVIS (P1N1) YouTube-VIS-2019 P2 59.6 (96.7%) 83.3 (100%) 67.1 (97.8%) 52.7 (96.2%) 63.8 (95.8%)

SeqFormer [58] YouTube-VIS-2021 M 51.8 74.6 58.2 42.8 58.1
IDOL [59] YouTube-VIS-2021 M 56.1 80.8 63.5 45.0 60.1
MinVIS [26] YouTube-VIS-2021 M 55.3 76.6 62.0 45.9 60.8
PointVIS (P1) YouTube-VIS-2021 P1 46.3 (83.7%) 70.5 (92.0%) 51.1 (82.4%) 37.7 (82.1%) 52.9 (87.0%)
PointVIS (P1N1) YouTube-VIS-2021 P2 48.5 (87.7%) 73.0 (95.3%) 54.4 (87.7%) 41.7 (90.8%) 54.1 (89.0%)

MaskTrack [38] Occluded VIS M 28.9 56.3 26.8 13.5 34.0
IDOL [59] Occluded VIS M 42.6 65.7 45.2 17.9 49.6
MinVIS [26] Occluded VIS M 39.4 61.5 41.3 18.1 43.3
PointVIS (P1) Occluded VIS P1 28.6 (72.6%) 49.6 (80.7%) 27.5 (66.6%) 15.0 (82.9%) 32.8 (75.8%)
PointVIS (P1N1) Occluded VIS P2 28.6 (72.6%) 51.2 (83.3%) 27.2 (65.9%) 14.7 (81.2%) 32.2 (74.4%)

Table 1. Full mask (M) vs. our point supervision (P) on validation set of YouTube-VIS 2019 [61], YouTube-VIS 2021 [61], and
OVIS [49]. All results below are based on Swin-L backbone. Our PointVIS results are with self-training.

To generalize from images to videos for new cate-
gories, we conduct self-training by regenerating pseudo-
labels again from our finetuned video model. The reason
is that our pseudo-labels are initially generated from an im-
age model that has never been trained on videos, and there
is obviously a domain gap. During self-training, we use
confidence score instead of maskness score for pseudo-label
matching as the model has been finetuned on videos.

4. Experiments

We evaluate our method on three VIS datasets: YouTube-
VIS 2019 [61], YouTube-VIS 2021 [61], and Occluded
VIS [49]. We describe our experimental setup (Sec.4.1),
compare PointVIS with SOTA fully-supervised methods
(Sec.4.2), and provide an ablation study (Sec. 4.3). For
more details, please refer to the supplementary material.

4.1. Experimental Setup

Datasets. YouTube-VIS 2019 [61] is a popular dataset for
VIS with 2,883 labeled videos, 131K instance masks, and
40 classes. YouTube-VIS 2021 [61] is an improved ver-
sion with 8,171 unique video instances and 232k instance
masks. OVIS [49] is a recently proposed challenging VIS
dataset with heavy occlusion and long sequences, contain-
ing 296k instance masks and 5.8 instance per video from
25 classes. We synthesize point annotations by randomly
sampling points given the ground truth mask in each frame.

Architecture and optimization. We build our PointVIS on
top of MinVIS [26] by strictly following its model archi-
tecture, training hyper parameters and losses. The only two
modifications during video training are: 1) we use pseudo
masks obtained from our method given point-level annota-
tions while MinVIS uses annotated masks; 2) we use larger

iterations as pseudo-labels require longer time for conver-
gence. All models are pre-trained with COCO instance seg-
mentation [40] then finetuned on videos with Swin back-
bone [44] unless otherwise stated. For our point-based
matcher, we set λ1 = 5.0, λ2 = 5.0, and λ3 = 2.0 for
all three datasets. We conduct one iteration of self-training.
Baselines. We propose new baselines for comparison as
no prior work is directly applicable to our new point-
supervised setting for VIS. 1) VISP: naive training MinVIS
with points, where only locations with annotated points are
supervised during video training. 2) VISP+CINeg: adding
annotation-free negative point loss to VISP by enforcing
cross-instance negative cues on top of it, as described in
Sec. 3.2. This strategy is denoted as “CINeg”. 3) VISC: to
ablate the benefits of points and decouple the impact of pre-
trained image model, we obtain pseudo-labels by selecting
the top k most confident proposals from our proposal set R̂
sorted by the confidence score ĉr.

We also include the existing unsupervised/semi-/weakly-
supervised VIS work to compare with our point-supervised
setting as follows. 1) VIS-Unsup [19]: pretrained COCO
image model built on top of SOLO [54] without finetuning
on videos. 2) VIS-Semi [19]: finetuning on videos on top of
VIS-Unsup but without video annotations. Note that VIS-
Unsup and VIS-Semi can only handle the overlapped cate-
gories, therefore we report AP/AR (seen) in line with [19].
3) VIS-Weak [42]: the first weakly-supervised VIS model
that uses category annotations only in each video frame.
Metrics. We use AP and AR for evaluation and train on
the training split and evaluate on the validation split using
public evaluation servers of the three datasets. Baselines
VISC, VIS-Unsup [19] , and VIS-Semi [19] can only han-
dle categories overlapped with the image model, so we re-
port AP/AR (seen) computed by averaging only over the
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Model LAnn LCINeg Lmaskness Self-Train mAP

MinVIS [26] (Upperbound) - - - - 55.3

VISP (P1) - - - - 0.4
VISP+CINeg (P1) - - - - 9.7
PointVIS (P1) ✓ - - - 40.4
PointVIS (P1) ✓ ✓ - - 45.7
PointVIS (P1) ✓ ✓ ✓ - 46.0
PointVIS (P1) ✓ ✓ ✓ ✓ 47.3

Table 2. Effects of each component on YouTube-VIS 2019 [61]
val-dev.

Model ID Sampling method for Pos Sampling method for Neg mAP

PointVIS (P1) Random - 46.0
PointVIS (P1) Distance Transform - 47.1

PointVIS (P1N1) Random Random (In-box) 48.6
PointVIS (P1N1) Random Random (Out-box-but-in-200%-box) 48.0

Table 3. Analysis of point selection bias on YouTube-VIS
2019 [61] val-dev.

Model ID CINeg DPPointMatcher P1 P10 P1N1 P5N5

VISP - - 0.4 0.5 27.6 33.0
VISP+CINeg ✓ - 9.7 10.0 45.6 48.9

PointVIS (Ours) ✓ ✓ 46.0 45.9 48.6 49.4

Table 4. Effects of additional points on YouTube-VIS 2019 [61]
val-dev. “DPPointMatcher” means Dense Pseudo via Point
Matcher. “CINeg” means enforcing additional negative point loss.

overlapped categories for these baselines following [19].

4.2. Comparison with Fully-Supervised SOTA

We compare our PointVIS with recent fully-supervised
methods including IDOL [59], MinVIS [26], TeViT [64],
SeqFormer [58], and MaskTrack [38], as shown in Table 1.
Note that MinVIS [26] serves as the fully-supervised coun-
terpart of PointVIS, therefore we compute the retention rate
as the performance of PointVIS divided by the performance
of MinVIS. We use M to indicate full supervision from
dense masks, and Pn to indicate sparse supervision from n
points. P1 means only one positive point is labeled. P1N1
means one positive and one negative opint are labeled, and
similarly for larger number of points.

YouTube-VIS 2019. With one single point per object
(P1), PointVIS achieves 53.9 mAP. With two points per ob-
ject (P1N1), PointVIS achieves 59.6 mAP, which is 96.7%
of the supervised counterpart and even surpassed recent
fully-supervised method TeViT [64] by nearly 3 AP. These
competitive results demonstrate the potential of our point-
supervised video instance segmentation framework.

YouTube-VIS 2021. On this more challenging dataset, we
can still achieve 87.7% performance of the supervised coun-
terpart, reaching 48.5 AP, which is only 3 AP away from

Model Backbone Sup. mAP AP50 AP75 AR1 AR10

VIS-Unsup [19] R50 V 23.9 43.3 21.5 26.7 37.3
VIS-Semi [19] R50 V 38.3 61.1 39.8 36.9 44.5
VISC R50 V 42.0 62.5 47.3 48.7 56.7

PointVIS (P1-Ours) R50 P1 47.0 67.4 53.4 44.4 50.9
PointVIS (P1-Ours) Swin-L P1 58.6 80.3 66.2 54.1 64.2

(a) Evaluation on seen categories

Model Backbone Sup. mAP AP50 AP75 AR1 AR10

VIS-Weak [42] R50 C 10.5 27.2 6.2 12.3 13.6

PointVIS (P1) R50 P1 38.5 58.9 41.2 36.4 46.4
PointVIS (P1-Ours) Swin-L P1 52.5 74.5 59.2 47.2 61.5

(b) Evaluation on all categories

Table 5. Comparison with baselines on YouTube-VIS 2019 [61]
validation set.

recent fully-supervised approach SeqFormer.
OVIS. PointVIS achieves 28.6 AP on this challenging
dataset, 72.6% of the supervised counterpart, and matches
previous fully-supervised methods [38]. The retention rate
is relatively lower compared to the other two datasets, likely
due to the quality of spatio-temporal proposals, which de-
grades due to extremely long sequences in OVIS.

4.3. Ablation Study

In this section, we conduct ablation studies to 1) verify the
effectiveness of each individual component of our proposed
framework; 2) analyze training with subsampled frames; 3)
analyze the effect of number of points; 4) analyze point se-
lection bias and 5) compare with baselines on YouTube-
VIS 2019 [61]. We split the training set of YouTube-VIS
2019 [61] into train-dev for training and val-dev for testing
with Swin-B backbone unless otherwise stated. We do not
use self-training by default for simplicity unless otherwise
stated. Each ablation is conducted under the same experi-
mental setting for a fair comparison.

4.3.1 Effects of model components.

Table 2 presents the ablation results for each component of
our model. The VISP baseline, which trains the VIS model
with only point supervision, yields a near-zero AP. Incorpo-
rating cross instance negatives (VISP+CINeg) improves it
to 9.7 mAP. Our method achieves a decent mAP of 40.4 by
incorporating pseudo masks generated through our point-
based matcher with only LAnn in the matching process. Fur-
ther addition of LCINeg and Lmaskness results in a significant
boost of 5.7 mAP, highlighting the importance of incorpo-
rating cross instance negatives. Finally, with self-training
reducing the domain gap, our PointVIS achieves 47.3 mAP,
which is 85.6% of the fully-supervised upperbound.

4.3.2 Analysis of subsampling frames.

PointVIS can be extended to the setting of using a subset of
frames following MinVIS [26] (Table 6). With point labels
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in only 1% frames, PointVIS (55.0 AP) is only 6.6 AP be-
hind the one uses full-masks in 100% frames, and achieves a
retention rate of 93.2% of its counterpart with full-masks in
1% frames. This indicates the practical utility of our work.

PointVIS could be further easily extended to a per-frame
setting where frames are annotated with points in parallel
w/o tracking annotations. The main change here is that we
cannot compute spatio-temporal matching cost. Instead, we
change matching to per-frame by computing the matching
cost for each annotated frame independently. We refer the
resulting per-frame model as PointVIS (PF). PointVIS (PF)
achieves competitive results while PointVIS has its own ad-
vantages, especially with less frames (Table 6).

4.3.3 Analysis of point selection bias.

To analyze how point selection bias affects performance,
we synthesized point annotations using different sampling
methods (Table 3). Under the P1 setting, we compared ran-
dom sampling with human distance transform and found
that different methods achieved similar results, but distance
transform performed around 1AP better. This suggests that
our method is generally robust to annotated point locations,
but human annotation can potentially yield higher gains.
Under the P1N1 setting, we compared sampling negatives
inside versus outside the bounding box and found that the
latter was only 0.6 AP behind, indicating that negatives do
not need to be constrained within boxes.

4.3.4 Analysis with additional points.

Table 4 summarizes our results on adding more points. In-
creasing the number of positive points alone (P1 vs P10)
did not improve performance because the model lacks ad-
ditional cues about the background region. Adding both
negative and positive points improved the performance of
VISP and VISP+CINeg, which rely heavily on point anno-
tations for knowing foreground and background. Our pro-
posed method’s performance improved significantly with
just one more negative point and remained stable across all
point settings, indicating its robustness.

4.3.5 Comparison with additional baselines.

Table 5 shows the comparison with additional baselines.
Compared with VIS-Unsup [19] without using video anno-
tations, our PointVIS outperforms VIS-Unsup by more than
10 AP with little annotation overhead. Compared with the
VISC baseline that does not use video annotations but gen-
erating pseudo-labels by confidence, PointVIS outperforms
it by 5 AP showing the benefit of point annotations.

5. Conclusion
In this work, we address the challenging point-supervised
video instance segmentation problem and introduce a point-

Model Sup. Matching 1% 5% 10% 100%

MinVIS [19] M - 59.0 59.3 61.0 61.6

PointVIS (PF) P2 Per-frame
52.3

(88.6%)
54.5

(91.9%)
54.7

(89.7%)
57.3

(93.0%)

PointVIS P2 Spatio-temporal
55.0

(93.2%)
55.5

(93.6%)
56.1

(92.0%)
57.4

(93.2%)

Table 6. PointVIS (P1N1) with subsampled video frames on
YouTube-VIS 2019 validation set (w/o self-training).

Figure 4. Failure cases on OVIS [49]. We observe temporal in-
consistency (e.g. tiger in the top left) or missing instances (e.g.
person in white) in our pseudo masks.

supervised VIS framework. The key ingredients are uti-
lizing object shape prior from a pretrianed COCO image
instance segmentation model, and our proposed spatio-
temporal point-based matcher for generating high-quality
dense pseudo-labels for videos. Our method allows us to
reduce annotations to only one point for each object in a
video frame, yet retaining high quality mask predictions
close to full supervision. We conduct comprehensive ex-
periments on three datasets and achieve competitive perfor-
mance compared with the fully-supervised methods.

Limitations. While PointVIS shows promising results in
the direction of weakly-supervised video instance segmen-
tation, it has some limitations. Typical failure cases are
shown in Figure 4. We observe missing instances and tem-
poral inconsistency. One hypothesis is that our performance
is bounded by the quality of proposals, and we believe
stronger video instance architecture can mitigate this gap.
Another potential direction is to utilize video correspon-
dences for label propagation and other denoising techniques
for higher-quality proposals. We leave these as future work.

Broader Impacts. We open up the possibility of learning
video instance segmentation with point-level supervision.
We hope that our framework can be used to largely reduce
annotation cost for a wide range of video recognition tasks
in computer vision, including video object detection, video
object segmentation, and video panoptic segmentation.
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