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(a) Initial labels (b) Similarity-based predictions (c) SemiGPC predictions

Figure 1. SemiGPC pseudo-labeling with class imbalance. (a) Four-class dataset containing unlabeled (gray) and labeled samples (in
color). (b) and (c) show the labels propagated according to the similarity-based aggregate [17] and SemiGPC methods. (c) In A, the
initial labels are mixed so SemiGPC is more conservative there (many samples are not pseudo-labeled at the current threshold level). In B,
SemiGPC is able to propagate the labels of the minority green class despite being surrounded by the majority blue one. In C, SemiGPC
assigns low confidence to the set of outliers (labels are not propagated). In contrast, the similarity-based approach expands the majority
classes at the expense of the minority ones, cf . B and C.

Abstract

In this paper we introduce SemiGPC, a distribution-
aware label refinement strategy based on Gaussian
Processes where the predictions of the model are derived
from the labels posterior distribution. Differently from
other buffer-based semi-supervised methods such as Co-
Match [17] and SimMatch [34], our SemiGPC includes a
normalization term that addresses imbalances in the global
data distribution while maintaining local sensitivity. This
explicit control allows SemiGPC to be more robust to con-
firmation bias especially under class imbalance. We show
that SemiGPC improves performance when paired with
different Semi-Supervised methods such as FixMatch [23],
ReMixMatch [4], SimMatch [34] and FreeMatch [32] and
different pre-training strategies including MSN [2] and
Dino [5]. We also show that SemiGPC achieves state of
the art results under different degrees of class imbalance
on standard CIFAR10-LT/CIFAR100-LT especially in the
low data-regime. Using SemiGPC also results in about
2% avg. accuracy increase compared to a new competitive
baseline on the more challenging benchmarks SemiAves,
SemiCUB, SemiFungi [27] and Semi-iNat [26].

1. Introduction

Semi-Supervised Learning offers a more cost effective al-
ternative to fully supervised learning when scaling up the
data collection process. Current state the of the art semi-
supervised methods rely on self-learning by generating
pseudo-labels for the unlabeled samples. However, pseudo-
labels can also hurt the final performance when they intro-
duce persistent incorrect predictions, a problem known as
confirmation bias. In particular, self-learning can bias the
label distribution if the data is imbalanced. To address this,
recent works such as CoMatch [17] and SimMatch [34] rely
on a buffer of samples to refine the predicted pseudo-labels.
However, no counter measure is adopted to globally balance
the data in the memory bank. As such, the resulting refined
pseudo-labels are plagued by the class imbalances present
in the unlabeled data.

To overcome these limitations we introduce SemiGPC,
a novel semi-supervised learning method that generates
pseudo-labels using a distribution-aware label-refinement
strategy. This distribution awareness stems from the use
of Gaussian Processes, which accounts for local data con-
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centration disparities and counteracts them. This results in
more robust pseudo-labels especially for minority classes
and outliers as shown in Figure 1. In particular, SemiGPC
correctly assigns nearby points to the minority classes de-
spite the larger count of the majority class at a bigger
scale, i.e. it has a better local sensitivity, while remaining
faithful to the global data distribution. SemiGPC is flex-
ible and can be used on-top of previous label-refinement
schemes on other semi-supervised methods. Furthermore,
we show that the similarity-based pseudo-labels heuristics
used in SimMatch and CoMatch can be cast as a special
case of SemiGPC. To improve computational efficiency of
our method and allow for fast batched updates essential
for Semi-Supervised learning methods, we pair SemiGPC
with a batched online update rule that significantly re-
duces its forward pass cost (×7.5 speed-up). We show
the benefit of using SemiGPC on top of semi-supervised
algorithms such as FixMatch [23], ReMixMatch [4], Sim-
Match [34] and FreeMatch [32] (∼ 0.8% avg. improve-
ment) and different self-supervised pre-training strategies
such as MSN [2] and Dino [5] resulting in a ∼ 1.3% avg.
improvement. This highlights the general purpose nature
of SemiGPC as a relevant extension for semi-supervised
methods based on label refinement strategies. We experi-
mentally show that SemiGPC is able to achieve state of the
art results on CIFAR10-LT (≥ +7.65%) and CIFAR100-
LT (≥ +1.84%) as well as the more challenging semi-
supervised benchmarks SemiAves, SemiCUB, SemiFungi
and Semi-iNat (∼ +1.92% compared to our baseline and
∼ +20.52% compared to numbers reported in the litera-
ture [26, 27]). We also show that SemiGPC is able to nar-
row the gap between the high and low data regimes with 10-
100x fewer labeled samples as we report a 45% and 32%
relative improvement over the baseline across regimes for
CIFAR10-LT and CIFAR100-LT respectively.

2. Related Works
Consistency-based Semi-Supervised Learning. Semi-
supervised learning methods such as FixMatch [23],
ReMixMatch [4], SimMatch [34] and FreeMatch [32] share
the common design choice of enforcing the consistency
of the model predictions across augmentations of different
strength levels on the unlabeled samples. FixMatch [23] en-
forces this consistency as a cross-entropy loss applied using
the one-hot encoding of the model predictions on weakly
augmented unlabeled samples as pseudo-labels for their
strongly augmented counterpart. Weak augmentations con-
sist of random image flipping and translation while strong
augmentation combine AutoAugment [6] and Cutout [8].
The consistency loss is only applied on high confidence pre-
dictions where the predicted probability value is higher than
a fixed threshold. ReMixMatch [4] instead opts for using
temperature sharpened model predictions as pseudo-labels

for its consistency regularization in addition to a rotation
prediction regularization loss. FreeMatch [32] introduces
a per-class confidence threshold update rule based on the
models predictions combined with an entropy-based diver-
sity loss making it more suitable for imbalanced settings.
Methods such as CoMatch [17] and SimMatch [34] choose
to enforce consistency across additional data representa-
tions. In particular, CoMatch [17] encourages the consis-
tency between the pseudo-labels and embeddings similar-
ity graphs while SimMatch [34] encourages the consistency
between semantic-level and instance-level pseudo-labels.
Both methods choose to smooth the predicted pseudo-labels
based on a similarity based aggregate of a memory buffer
of samples in order to mitigate confirmation bias. How-
ever, these pseudo-label refinement strategies fail to elimi-
nate data biases w.r.t. the class balance.

Probabilistic Models for Semi-Supervised Learning.
Gaussian Processes (GP) are a class of non-parametric func-
tion approximation methods fully characterized by their
mean and kernel functions. Given a set of observations and
their corresponding measurements, GPs define a posterior
distribution over measurements for new observations. Their
ability to explicitly model uncertainty makes them a natural
fit for Semi-supervised learning. Early works such as [15]
introduce GPs in the context of Semi-supervised learning
by assuming that the data density in regions between the
class-conditional densities should be low while [22] lever-
ages GPs to model the relationship between labeled and un-
labeled samples by incorporating the geometry of the latter
in the construction of the global kernel function. However
such early works are limited to toy datasets due to the com-
putational cost of GP. The more recent UaGGP work [18]
proposed to address uncertainty caused by erroneous neigh-
borhood relationships in the context of graph-based semi-
supervised learning by leveraging the ability of GPs to gen-
eralize well from few samples. NP-Match [29] proposed
Neural Processes instead of GPs as a probabilistic model
for uncertainty estimation which, in turn, allows for better
computational efficiency compared to MCDropout [12].

Gaussian Processes and Deep Learning. Beyond Semi-
Supervised Learning, Gaussian Processes have been used
alongside neural networks in multiple other fields. DG-
PNet [14] relies on GPs in the context of dense few-shot
segmentation to capture complex appearance distributions
while [16] leverages GPs for fast and accurate uncertainty
estimates in robotics systems. Furthermore, different works
draw parallels between Gaussian Processes and Neural Net-
works by interpreting the action functions of the latter as as
interdomain inducing features [10] or by proving a corre-
spondence between the two classes of models [33].
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Figure 2. SemiGPC Outline. x, us, uw, h and y are the labeled,
strongly/weakly augmented unlabeled samples, their feature vec-
tor and the ground truth labels respectively. The SemiGPC buffer
is used to derive the model predictions ŷ.

3. SemiGPC
In this section, we present the basic framework of
consistency-based semi-supervised learning, how it can be
extended with a memory buffer and analyze where confir-
mation bias comes into play. We then introduce our Gaus-
sian Processes-based classifier, SemiGPC, and highlight its
advantages over other classifiers using a toy example. The
general outline of SemiGPC is shown in Figure 2. In the
following, we shall denote the labeled dataset with Dl =
{(xi

l, y
i
l)}

nl
i=1 and the unlabeled one with Du = {(xi

u)}
nu
i=1,

where x ∈ X are RGB images and y ∈ RC are labels be-
longing to a fixed set of concepts C. We indicate a feature
extractor with h : X → Z where Z = Rd and d is the
dimension of the feature space, and call the classification
head g : Z → RC . The model predictions are defined as
ŷ(x) = g ◦ h(x).

3.1. Consistency-based Semi-Supervised Learning

Given labeled and unlabeled datasets Dl and Du, consis-
tency based Semi-Supervised methods [4, 17, 23, 32, 34]
rely on the labeled set and high-confidence pseudo-labels
computed on the unlabeled set. Pseudo-labels are com-
puted using strongly augs(x) and weakly augw(x) aug-
mented views of a given image x, as follows: ŷs(x) =
g(h(augs(x))) and ŷw(x) = g(h(augw(x))). We refer to
[17, 23, 34] for typical strong and weak data augmentations.
In this work, we adopt those used in FixMatch [23]. More
precisely, the labeled and unlabeled losses are defined as

Ll = H(ŷw(x), y); (x, y) ∈ Dl

Lu = 1[conf(x)>τ ]H(ŷs(x), f(ŷw(x))); x ∈ Du

with conf(x) = max[softmax(ŷw(x))] (1)

where H is the cross-entropy loss, τ is the confidence
threshold specifying which unlabeled samples to use and
f : RC → RC is a label refinement function (e.g. see [4]).
The model confidence is defined as the maximum of the

softmax vector. Different choices of f include the identity
function (no refinement), one hot encoding (hard pseudo-
labels used in FixMatch [23]), temperature sharpening [4],
etc.

For a linear classification head, such pseudo-labels are
sensitive to outliers in the sense that a new unlabeled sample
located far from the labeled data can have high confidence,
cf . Figure 3a. To overcome such limitation, works such
as SimMatch [34] and CoMatch [17] propose to ground
their pseudo-labels using a memory buffer during train-
ing. The buffer, (hQ, yQ), is a set of NQ feature vec-
tors of weakly augmented labeled samples using augw, i.e.,
hQ := {h(augw(xl));xl ∼ Dl} ∈ Rn×d, and their associ-
ated labels. Then, the smoothed pseudo-labels (output of f )
on any given input x are defined as

f(ŷ(x))) = (1− α)ŷ(x) + αŷsim (2)

with ŷsim = k(h(x), hQ)yQ (3)

where α, k and h(x) are a smoothing factor, a kernel simi-
larity function and the feature representation of the input x.
The pseudo-labels ŷsim introduced in eq. (3) closely reflects
the data distribution. However, biases present in the data, if
not addressed, could be amplified due to the un-weighted
kernel average (e.g., by favoring the majority classes cf .
Figure 3b over minority ones). In this work, we address
short-comings of previous approaches by introducing a nor-
malization term, computed leveraging Gaussian Processes,
that automatically counteracts class imbalances in the data.

3.2. Gaussian Processes-based Label Refinement

We now introduce SemiGPC, our label refinement strat-
egy based on Gaussian Processes (GPs). Our key moti-
vation is that the normalized kernel similarity used in the
GP posterior mean helps address class imbalance by equal-
izing the local contribution of each sample in the buffer
w.r.t. each class population. Similarly to previous methods
[17, 23, 34], SemiGPC aggregates global information for
the refinement of each pseudo-label’s input-location. How-
ever, SemiGPC retains local sensitivity by favoring the mi-
nority classes when appropriate despite the global aggregate
favoring the majority ones as first shown in Figure 1.

Given a memory buffer containing features and labels
(hQ, yQ), we define SemiGPC refined pseudo-labels as

ŷGP (x) = λ µGP (h(x)) = λ k(h(x), hQ)K
−1yQ (4)

with K = k(hQ, hQ) + σ2I

where µGP is the posterior mean of the GP, λ is the logit
scaling factor, σ a regularization parameter of the GP which
represents how much we trust labels in the memory bank
and k is the GP kernel function (e.g., the RBF kernel). By
comparing equations (4) and (3) we see that the GP ap-
proach aggregates all labels in the memory bank and re-
weights them according to the inverse covariance matrix
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(a) Linear classifier confidence (b) Similarity-based classifier confidence (c) GP classifier confidence

Figure 3. Comparison of confidence maps: (a) a linear model, (b) a similarity-based classifier [17] and (c) a GP classifier are represented
using the contour lines. The number of samples per class grows clockwise by a factor of 2 starting from the top right cluster. We grey out
regions that are below 80% confidence. The outlier at (-3,3) is indicated with an ×. (c) Only the GP classifier is able to define confidence
levels that are not biased toward the majority classes and ignore the outlier.

K−1. Such normalization is particularly useful to counter-
act class imbalance as we show in Figure 3.

In the following, we use the RBF kernel defined as
k(x, y) = η exp(−∥x−y∥2

/2l2) where η and l are the ker-
nel scale factor and length scale respectively. Note that
eq. (4) characterizes the posterior mean of a GP whose like-
lihood function is Gaussian, in general, other non-Gaussian
choices are available and typically applied to build GP-
based classifiers [21]. However, when non-Gaussian likeli-
hood are used, no closed-form solution exists and approxi-
mation schemes which entail higher computational costs are
required [21]. Thus, we choose to refine pseudo-labels by
directly regressing the logits ŷ using a Gaussian likelihood.
Connection with other label refinement methods. Eq. (4)
can also be rewritten as µGP (x) = k(h(x), hQ)yK , a
similarity-based aggregation of yK , the propagated version
of yQ through the graph defined by K. When η/σ2 → 0
K → σ2I . In this setting, eq. (4) becomes equivalent to
eq. (3). Thus, we obtain the similarity-based aggregation
strategy of works such as SimMatch [34] and CoMatch [17].
Furthermore, clipping the kernel below a given threshold re-
sults in a matrix K equivalent to an epsilon graph.
SemiGPC robustness to class imbalance. We now il-
lustrate with a toy example how SemiGPC is more ro-
bust to class imbalance than previous methods. In partic-
ular, we compare SemiGPC with a linear classifier and the
similarity-based classifier used in CoMatch [17] in Figure 3.
We build a dataset with 4 normally distributed classes cen-
tered at (1, 1), (1, -1), (-1, -1) and (-1, 1) resp., and plot the
model confidence as defined in eq. (1). To simulate class im-
balance, the number of samples per class grows by a factor
of 2 starting from the top right cluster and going clock-wise.

First, note how samples far from the data distribution,
e.g. (-3, 3), are assigned very high confidence by the lin-
ear model although such points are locally isolated from

the others and therefore should not be considered well sup-
ported by evidence. Second, note that the minority class
(in blue) is a low confidence region for both the linear and
similarity-based classifier, despite locally containing many
samples supporting that class. On the other hand, the GP-
based classifier defines an appropriate high confidence re-
gion for each supported class and its sensitivity to the con-
fidence threshold is much smaller than the similarity-based
classifier used in CoMatch [17] as highlighted by the con-
tour plots.

Summarizing, thanks to the use of a GP-based label re-
finement strategy, SemiGPC is confident if: (1) the consid-
ered sample is close to a subset of hQ regardless of whether
it belongs to the majority or minority classes since K−1

reweighs the kernel similarity to counteract disparities in
class populations while all samples far from the data are
considered outliers, and (2) the sample is located in a high
purity region w.r.t. yQ since the average of conflicting re-
sults in a model confidence that is spread between classes.

3.3. Efficient GP update

As we mentioned in section 3.2, applying GPs in a clas-
sification setting requires approximation schemes that are
in general computational expensive. To reduce the forward
time of SemiGPC we choose to model the refined pseudo-
labels using a Gaussian likelihood. In this way, computing
the posterior mean for each input image only requires solv-
ing a quadratic optimization problem available in closed-
form. However, computing µGP is still computationally
expensive since we need to update the set hQ after each
model update and invert the covariance matrix K which
scales with the cube of the memory bank size (NQ) at each
mini-batch forward pass. To speed up computations we start
from the key observation that at each optimization iteration,
most of the samples in the queue do not change. Therefore,
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Table 1. Complexity Comparison of GP updates.We observe a
×7.5 speedup in practice.

Classic GP update Efficient GP update

O(N3
Q +BN2

Q) O(B3 +BN2
Q +B2NQ)

at the t-th iteration after observing the new batch of data of
size B, we update the previously computed covariance at
step t − 1 with an incremental update rule. In the follow-
ing, we implement SemiGPC using the well-know matrix
inversion lemma [3] (Woodbury identity) which provides a
simple batched iterative rank-B correction to the inverse of
a given invertible matrix.

In particular, for each labeled training mini-batch of size
B, we replace the B oldest samples in the buffer with the
features computed using the current mini-batch. Let Kt−1

and Kt be the covariance matrices at iteration t − 1 and t
respectively. We now show how to compute Kt by updating
Kt−1 after having updated the memory bank with the new
samples from the current mini-batch. Let,

Kt =

[
k(ho, ho) k(ho, hn)
k(ho, hn)

⊤ k(hn, hn)

]
+ σ2I =

[
A C
C⊤ D

]
,

where ho and hn denote the old samples that were kept in
the buffer and the new samples added to the buffer. I is the
identity matrix. The inverse of Kt is given by

K−1
t =

[
A C
C⊤ D

]−1

=

[
K11 K12

K⊤
12 K22

]
where K22 = (D − C⊤A−1C)−1

K12 = −A−1CK22

K11 = A−1 +A−1CK22C
⊤A−1

Note that computing K−1
t only requires inverting the two

matrices A and (D − C⊤A−1C). The latter is of size B ×
B while the former is still a relatively large matrix of size
(Nq −B)× (Nq −B). However, A does not depend on the
newly added samples, yet it is not equal to K−1

t−1. Therefore,
A−1 can be computed efficiently only requiring the inverse
of a B ×B matrix as follows:

K−1
t−1 =

[
M11 M12

M⊤
12 M22

]
A−1 = M11 −M12M

−1
22 M⊤

12

For simplicity, we assume that the new samples are located
at the end of the buffer, however the derivation remains true
for an arbitrarily ordered buffer up to a permutation matrix.

To summarize, using block matrix linear algebra, the
cost of the inverting Kt can be reduced to computing the

inverse of a couple of B × B matrices which is in turn
much more efficient when B ≪ Nq as is the case in our
setting. The detailed derivation is provided in the supple-
mentary material. For example, for a buffer size NQ ∼ 16k
and a batch size B = 8, using our efficient update rule re-
sults in ×7.5 speedup.
Class-balanced SemiGPC. SemiGPC has the additional
benefit of allowing us to explicitly address the class imbal-
ance without altering the training scheme. We split hQ into
C class buffers and insert the new samples based on their
labels, thus ensuring a balanced hQ. We compare this ap-
proach to the classic class rebalancing in the supplementary
material.

4. Experimental Settings
4.1. Implementation details

We use the semi-supervised training recipe of USB [31]1.
It uses an ImageNet [7] pre-trained ViT to initialize the stu-
dent model. This training scheme allows for faster train-
ing time and better performance overall. We use a ViT
Small/Tiny with a patch size of 2 and a resolution of 32
for CIFAR100/10 respectively. For our other experiments,
we use a ViT Small with a patch size of 16 and a resolution
of 224. All our experiments can be ran on a single V100
GPU. All our model are trained using AdamW [19] for 200
epochs using a batch size of 8. The detailed set of hyper-
parameters are provided in the supplementary material. For
most of our experiments, we use SimMatch as our baseline.
We include a comparison of SemiGPC across different al-
gorithms in section 6.1. For all SemiGPC experiments, we
use a buffer size Nq = 16300. Following most works in the
literature, we adopt the Top 1 Accuracy as our main eval-
uation metric and report the mean and standard deviation
across 3 random seeds.

4.2. Datasets

CIFAR10-LT, CIFAR100-LT. We evaluate SemiGPC on
imbalanced versions of CIFAR10 and CIFAR100. The class
distribution of these datasets can be fully described using
the imbalance ratio γ and the number of samples in the ma-
jority class N1. For each class 1 < i ≤ K its number of
samples Ni is defined as

Ni = N1γ
− i−1

K−1

where γ = N1/NK

where γ, NK , and K are the imbalance ratio, the cardinality
of the minority class and the number of classes respectively.
FGVC Benchmarks. We also evaluate SemiGPC on the
fine-grained semi-supervised benchmarks introduces in [26,

1https://github.com/microsoft/semi-supervised-
learning
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27]. These challenging benchmarks contain naturally long-
tailed distributions with highly similar class pair. Note that
both works [26, 27] argue that Semi-supervised methods
struggle on such benchmarks. These datasets include a la-
beled set Lin and two unlabeled Uin and Uout with seen and
unseen classes.
SemiAves. This dataset [24] is built using the Aves king-
dom in iNaturalist 2018 dataset [13]. Lin, Uin and Uout

include 200/200/800 species and 5959/26640/122208 im-
ages respectively. The test set is balanced and contains 40
samples per class. Its reported imbalance ratio is γ = 7.9.
SemiFungi. This dataset is based on the CVPR 2018
FGVCx Fungi challenge dataset [1]. Lin, Uin and Uout in-
clude 200/200/1194 species and 4141/13166/64871 images
respectively. The test set is balanced and contains 20 sam-
ples per class. Its reported imbalance ratio is γ = 10.1.
Semi-iNat. This dataset was introduced at CVPR 2021
FGVC8 workshop [25]. Lin, Uin and Uout include
810/810/1629 species and 13771/91336/221912 images re-
spectively. The test set is balanced and contains 100 sam-
ples per seen class. Its imbalance ratio is γ = 8.5.
SemiCUB. This dataset is based on the Caltech-UCSD
Birds-200-2011 (CUB) dataset [28]. Lin, Uin and Uout in-
clude 100/100/100 species and 1000/3853/5903 images re-
spectively. Unlike the other three, only the unlabeled sets
are imbalanced with γ ∼ 2 for Uin. The test set is balanced
and contains 1000 samples.

We use U = Uin as our unlabeled dataset. Results for
U = Uin ∪ Uout are shown in the supplementary material.

5. Experimental Results
In this section, we showcase SemiGPC’s robustness un-
der various degrees of class imbalance across different data
regimes on CIFAR10-LT and CIFAR100-LT. We then re-
port the performance on the more challenging long-tailed
semi-supervised benchmarks SemiAves, SemiCUB, Semi-
Fungi and Semi-iNat. Lastly, we benchmark SemiGPC on
the classic balanced semi-supervised splits of CIFAR10 and
CIFAR100. For all our imbalanced experiments, we forgo
using techniques such as CReST as they don’t necessarily
improve performance when combined with the USB [31]
training recipe. These results can be found in the supple-
mentary material.

5.1. Imbalanced Semi-Supervised Learning

In this section, we evaluate the robustness of SemiGPC un-
der different degrees of class imbalance on CIFAR10-LT
and CIFAR100-LT. More specifically, we explore two im-
balanced settings based on whether one has access to a bal-
anced labeled dataset or not:
• Setting A (γl = γu > 1). Both the labeled and unla-

beled sets are imbalanced using the same factor. Follow-
ing prior works, we use (N l

1, N
u
1 ) = (150, 500) for the

Table 2. Top1 Accuracy obtained on CIFAR100-LT for different
values of γl = 1 and γu. †: A class balanced buffer is used for
SemiGPC. *: as reported by [11]. The difference to the baseline is
highlighted in green/red.

Model γl γu nlb Top1 Acc
CoSSL [11]* 20 20 4741 55.80 ±0.62

SimMatch 20 20 4741 83.38 ±0.48

w/ SemiGPC† 20 20 4741 83.76 ±0.26 (+0.37)
CoSSL [11]* 50 50 3751 48.90 ±0.61

SimMatch 50 50 3751 78.82 ±0.60

w/ SemiGPC† 50 50 3751 79.79 ±0.08 (+0.97)
CoSSL [11]* 100 100 3218 44.10 ±0.59

SimMatch 100 100 3218 73.90 ±0.75

w/ SemiGPC† 100 100 3218 74.48 ±0.98 (+0.58)
SimMatch 1 20 400 76.28 ±0.28

w/ SemiGPC 1 20 400 77.79 ±0.51 (+1.53)
SimMatch 1 50 400 72.78 ±0.29

w/ SemiGPC 1 50 400 75.21 ±0.53 (+2.43)
SimMatch 1 100 400 70.19 ±0.43

w/ SemiGPC 1 100 400 73.47 ±0.63 (+3.28)

imbalanced version CIFAR100, i.e. CIFAR100-LT, and
(N l

1, N
u
1 ) = (1500, 5000) for the imbalanced version CI-

FAR10, i.e. CIFAR10-LT. N l
1 and Nu

1 are the number of
samples for the majority class in the labeled and unla-
beled datasets respectively.

• Setting B (γl = 1; γu > 1). Only the unlabeled set is
imbalanced. For the labeled setting, we use 4 samples
per class resulting ×100/ × 10 fewer labeled samples
compared to A for CIFAR10-LT and CIFAR100-LT re-
spectively. We argue that this setting is more challenging
and better represents real-world scenarios. Indeed, real-
istically, a small set of balanced labeled samples can be
curated while one cannot make any assumptions on the
distribution of the unlabeled dataset based on its labeled
counterpart.

CIFAR100-LT (Table 2). For Setting A, we use the class-
balanced version of SemiGPC. We also include the numbers
reported by [11] for CoSSL+ReMixMatch as they represent
the current state of the art. For setting A, we observe that
SemiGPC outperforms the baseline across all values of γu.
This highlights SemiGPC’s robustness with respect to class
imbalance and its inherent ability to address it explicitly us-
ing a balanced buffer. The results obtained for setting B
further support the robustness of SemiGPC with respect to
class imbalance. Indeed, when provided with balanced sam-
ples that are 10× fewer than setting A, SemiGPC is able to
outperform our baseline across all values of γu by a margin
greater than +1.5%. Additionally, for each model and value
γu we measure the gap ∆(γu) = Acc(A) − Acc(B) be-
tween the accuracies Acc(A) and Acc(b) in setting A and B
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Table 3. Top1 Accuracy obtained on CIFAR10-LT for different
values of γl = 1 and γu. †: A class balanced buffer is used for
SemiGPC. *: as reported by [11]. The difference to the baseline is
highlighted in green.

Model γl γu nlb Top1 Acc
CoSSL [11]* 50 50 4196 87.70 ±0.21

SimMatch 50 50 4196 96.48 ±0.26

w/ SemiGPC† 50 50 4196 96.80 ±0.12 (+0.32)
CoSSL [11]* 100 100 3720 84.10 ±0.56

SimMatch 100 100 3720 94.59 ±0.59

w/ SemiGPC† 100 100 3720 95.74 ±0.37 (+1.15)
CoSSL [11]* 150 150 3496 81.30 ±0.83

SimMatch 150 150 3496 94.07 ±1.46

w/ SemiGPC† 150 150 3496 95.41 ±0.56 (+1.34)
SimMatch 1 50 40 80.59 ±2.24

w/ SemiGPC 1 50 40 88.22 ±2.38 (+7.63)
SimMatch 1 100 40 76.69 ±2.13

w/ SemiGPC 1 100 40 86.86 ±4.48 (+10.17)
SimMatch 1 150 40 75.68 ±4.31

w/ SemiGPC 1 150 40 84.25 ±8.92 (+8.57)

respectively. When comparing ∆ averaged over all γu val-
ues, we observe a gap of 5.62% and 3.85% for SimMatch
and SemiGPC respectively. In addition to improving perfor-
mance across both settings, SemiGPC is better at bridging
the gap between the two data regimes by about 32%.
CIFAR10-LT (Table 3). For setting A, we observe the
SemiGPC outperforms the baseline across different values
of γu especially for the more challenging setting γu = 150
where we observe a gap of +1.34%. This highlights the
robustness of SemiGPC to class imbalance. SemiGPC also
largely outperforms our baseline in the setting B. We ob-
serve an accuracy increase of at least 7.63% across all val-
ues of γu with the gap growing bigger for higher values
of γu up to +10.17%. Additionally, we report an average
gap across settings of 17.39% and 9.54% for SimMatch and
SemiGPC respectively, i.e., a relative improvement of 45%.
Thanks to its normalization scheme, SemiGPC reduces the
risk of confirmation bias which is more prominent when the
labeled data is scarce.

5.2. Semi-Supervised FGVC Benchmarks

In the section, we evaluate the performance of SemiGPC on
the naturally long-tailed semi-supervised benchmarks such
as SemiAves, SemiFungi and SemiCUB and for Semi-iNat.
In addition to the class imbalance, these datasets includes
highly similar classes, cf . supplementary material.

We report the obtained results on Table 4. For refer-
ence, we report the numbers obtained by [27] for SemiAves,
SemiFungi and SemiCUB and obtained by [26] for Semi-
iNat. We show that using the USB [31] training recipe pro-
duces a strong semi-supervised baseline as opposed to the

Table 4. Top1 Accuracy obtained on the considered fine-grained
semi-supervised benchmarks.*: as reported by [26, 27]. The dif-
ference to the baseline is highlighted in green.

Dataset Model Top1 Acc

SemiCUB
FixMatch [27]* 53.20
SimMatch 84.53 ±0.45

w/ SemiGPC 85.43 ±0.67 (+0.90)

SemiAves
FixMatch [27]* 57.40 ±0.80

SimMatch 68.47 ±0.43

w/ SemiGPC 69.59 ±0.09 (+1.12)

SemiFungi
FixMatch [27]* 56.30 ±0.50

SimMatch 68.01±0.19

w/ SemiGPC 71.50 ±0.49 (+3.49)

Semi-iNat
FixMatch [26]* 44.10
SimMatch 64.95 ±0.11

w/ SemiGPC 66.54 ±0.85 (+1.59)

numbers reported by [26, 27]. Furthermore, SemiGPC out-
performs the baseline on all fine-grained benchmarks. This
is especially true for the most imbalanced dataset Semi-
Fungi (γ = 10.1) where SemiGPC improves upon the base-
line accuracy by +3.49%. This shows that SemiGPC is not
only more robust with respect to class imbalance on arti-
ficially skewed benchmarks such CIFAR10/100-LT but is
also better suited for naturally imbalanced datasets contain-
ing fine-grained classes where it establishes a new state of
the art.

5.3. Standard CIFAR10/CIFAR100

Lastly, we evaluate our SemiGPC method on different split
of CIFAR100 and CIFAR10. We report the obtained per-
formance on Table 5 when using 200/400 and 40/250 la-
beled samples for CIFAR100 and CIFAR10 respectively.
For reference we include the numbers reported by USB [31]
and FreeMatch [32] as the current state of the art. We ob-
serve that SemiGPC improves performance across different
amount of available labeled samples on CIFAR100, with
the biggest improvement +0.83% in the low data regime.
However, SemiGPC is simply on par with the baseline on
CIFAR10. We argue that the semi-supervised performance
is already saturated on this benchmark when using the USB
training recipe.

6. Ablations

In order to establish the general purpose nature of
SemiGPC, throughout this section we highlight the im-
pact of SemiGPC on top of different underlying algorithms
and/or pre-training strategies.
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Table 5. Top1 Accuracy obtained on CIFAR10 and CIFAR100 for
different numbers of labeled samples. *: reported by [31, 32].

Dataset Model nlb Top1 Acc
CIFAR100 USB [31]* 200 79.15
CIFAR100 SimMatch 200 79.18
CIFAR100 w/ SemiGPC 200 80.01 (+0.83)
CIFAR100 USB [31]* 400 83.20
CIFAR100 SimMatch 400 83.25
CIFAR100 w/ SemiGPC 400 83.87 (+0.62)
CIFAR10 FreeMatch [32]* 40 95.10
CIFAR10 SimMatch 40 97.32
CIFAR10 w/ SemiGPC 40 97.14 (-0.18)
CIFAR10 FreeMatch [32]* 250 95.12
CIFAR10 SimMatch 250 97.21
CIFAR10 w/ SemiGPC 250 97.39 (-0.18)

Table 6. Comparison of the Top1 Accuracy on SemiAves when
using different Semi-supervised algorithms.

Model Dataset Top1 Acc
FreeMatch SemiAves 66.97
w/ SemiGPC SemiAves 67.93 (+0.96)
FixMatch SemiAves 67.36
w/ SemiGPC SemiAves 68.31 (+0.95)
ReMixMatch SemiAves 67.9
w/ SemiGPC SemiAves 68.31 (+0.41)
SimMatch SemiAves 68.45
w/ SemiGPC SemiAves 69.30 (+0.85)

6.1. Semi-Supervised Learning Algorithms

The design of SemiGPC is agnostic to the underlying choice
of the semi-supervised algorithms. In this section, we eval-
uate the impact of our proposed GP-based classifier on dif-
ferent Semi-Supervised methods including FixMatch [23],
ReMixMatch [4], SimMatch [34] and FreeMatch [32] on
the SemiAves benchmark. The obtained results are reported
in Table 6. Despite FreeMatch [32] being designed to better
tackle class imbalance, we observe that SimMatch [34] out-
performs it when using the USB [31] training recipe. This
justifies why we use SimMatch as our baseline throughout
this work. Not only does SemiGPC improve performance
across all considered methods, but its performance also im-
proves monotonically with respect to the performance of the
base method. This allows SemiGPC to remain relevant to
future better semi-supervised algorithms.

6.2. Pre-training Strategy

As stated in section 4.1, we used a pre-trained ViT [9] to
initialize our semi-supervised models. We evaluate the im-
pact of SemiGPC across different pre-training strategies by
training SimMatch on the SemiAves benchmark using su-

Table 7. Comparison of the Top1 Accuracy on SemiAves when
using different pre-training strategies.

Model Pretraining Top1 Acc
SimMatch DINO 64
w/ SemiGPC DINO 65.32 (+1.32)
SimMatch MSN 64.7
w/ SemiGPC MSN 67.73 (+3.03)
SimMatch Supervised 68.45
w/ SemiGPC Supervised 69.30 (+0.85)

pervised pre-training, Dino [5] and MSN [2] pre-training
on ImageNet [7]. Both Dino [5] and MSN [2] are self-
supervised methods that produce competitive performance
on ImageNet with MSN being the top performer out of the
two. We report the obtained results in Table 7. Not only
does the SemiGPC performance scale based on the perfor-
mance of the pre-training methods, it also improves perfor-
mance across all considered pre-training strategies.

7. Conclusion and Future Work

Our method SemiGPC is able to achieve state of the art
results across different benchmarks and settings thanks to
its ability to counteract imbalances in the data distribution.
However, SemiGPC still has a few limitations. We ob-
serve in Tables 3 and 5 that SemiGPC shows mixed results
when used on top of an already strong baseline (> 94%
accuracy) such as on CIFAR10. Also, although our up-
date rule greatly speeds up the matrix inversion, it does not
fully eliminate the additional computational overhead. Fur-
thermore, the quadratic scaling of the memory cost of this
matrix limits the maximum size of the buffer in SemiGPC
to around NQ = 16K. However, this limitation can be
addressed using an ensemble of GPs each using a sepa-
rate buffer. This would allow us to scale SemiGPC to
NQ ∼ 80K. Furthermore, our update rule is not compatible
with using trainable kernel hyper-parameters since it relies
on reusing previous values of the kernel matrix. Leveraging
matrix-vector-matrix solvers [30] fixes both these limita-
tions. Indeed, by enabling efficient GP inference with train-
able hyper-parameters, SemiGPC would forgo sharing the
kernel hyper-parameters across classes and adapt the geom-
etry induced by the kernel function on a per-class basis. We
leave deriving an online update rule using matrix-vector-
matrix solvers to future work. Lastly, combining SemiGPC
with alternative definitions of confidence to eq. (1) by either
using the sample-wise posterior covariance provided by GP
or by leveraging recent advances in efficient Neural Tangent
Kernel (NTK) computation [20, 35] remains an open area of
research.
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