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Abstract

As transfer learning techniques are increasingly used to
transfer knowledge from the source model to the target task,
it becomes important to quantify which source models are
suitable for a given target task without performing compu-
tationally expensive fine-tuning. Inspired by active learning
techniques, we propose ACT (ACtive Transferability), a new
strategy to improve the performance of transferability esti-
mation methods, by leveraging an informative subset of the
target data. By leveraging the model’s internal and out-
put representations, we introduce two techniques – class-
agnostic and class-aware – to identify informative subsets
and show that ACT can be applied to any existing trans-
ferability metric to improve their performance and reliabil-
ity. Our experimental results across multiple source model
architectures, target datasets, and transfer learning tasks
show that ACT metrics are consistently better or on par with
the state-of-the-art transferability metrics.

1. Introduction
Transfer learning (TL) [49, 69, 74] aims to improve the per-
formance of pre-trained models on target tasks by utilizing
the knowledge from source tasks. With the increasing de-
velopment of large-scale pre-trained models [12, 13, 16, 55]
and the availability of multiple model choices (e.g., model
hubs of Pytorch, Tensorflow, and HuggingFace) for TL, it is
critical to estimate their transferability without training on
the target task and determine how effectively TL algorithms
will transfer knowledge from the source to the target task.
To this end, transferability estimation metrics have been
recently proposed to estimate the ease of transferring the
knowledge learned from these models to any given target
dataset. They work with little to no training on the target
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dataset, avoiding the infeasible fine-tuning techniques to
find the best source-target combination.

Recent years have seen a surge of transferability estima-
tion techniques [1, 44, 50, 71, 81] for a given pair of source
models and target tasks. Transferability estimation tech-
niques find application in a wide range of tasks (explored
and evaluated in Sec. 4). However, these methods possess
some limitations, and the stability and generalizability of
these metrics across various settings is a major area of con-
cern. For instance, Agostinelli et al. [4] shows that existing
transferability metrics do not work consistently across all
settings, with different metrics showing superiority in dif-
ferent settings. Most transferability metrics achieve lower
performance in experimental settings [78], when the source
and target datasets possess large domain differences [44], or
when the experimental parameters are slightly modified [4].

In this work, we aim to alleviate the above drawbacks
of transferability metrics and improve their performance
across a wide range of tasks. While investigating these
shortcomings, we found a small performance gap when a
set of good source models is transferred to a target dataset,
where this gap primarily stems from a subset of the dataset,
as we later show in Sec. 3. In addition, Agostinelli et al.
[4] argues that transferability metrics are highly sensitive
to changes in the target dataset. Hence, we hypothesize
that a refined subset of the target dataset can provide the
most new information to the source model, and will help
boost the performance of existing transferability metrics.
An analogous of the above phenomenon is also observed
in active learning methods [56], where they attempt to
maintain model performance using a lower annotation cost
by selecting a small subset of samples. This informative
subset forms a representative sample of the entire dataset,
providing information on the data geometry and class
boundaries with far fewer examples [3]. Similar findings
have been shown in other contexts [2, 17, 35, 35, 66, 83],
where a small subset of representative samples can be ben-
eficial to the learning process, and that certain samples are
redundant [37], with minimal impact to model performance.
Present work. Building on the above observations, in this
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work, we follow an information-theoretic approach to im-
prove the performance of existing transferability methods
by identifying a small subset of the target dataset that pro-
vides the most new information to the source model. We
show that using this subset in conjunction with existing
transferability metrics helps boost their performance. Our
identified subsets of maximal new information follow the
observations in [3] and are found to lie closer to the deci-
sion boundary (Fig. 3), thus providing critical information
on the usefulness of samples from one domain for another.
To this end, we propose a simple framework, ACT, that can
be applied to any existing transferability metric to estimate
transferability using a carefully selected subset of the target
dataset. More specifically, we introduce two independent
techniques — class-agnostic and class-aware — to iden-
tify the subsets from a target dataset that provide the most
new information to the source model, using the model’s
internal (class-agnostic) and output (class-aware) represen-
tations (Sec. 3). We utilize these subsets to improve the
performance and reliability of existing transferability met-
rics. Our empirical analysis across a range of transfer learn-
ing tasks like source architecture selection (Sec. 4.1), tar-
get dataset selection (Sec. 4.2), ensemble model selection
(Sec. 4.4), semantic segmentation (Sec. 4.3) and language
models (Sec. 4.5) show that ACT scores better correlate with
the transfer accuracy than their counterparts.

2. Related Work
Our work lies at the intersection of transfer learning, trans-
ferability estimation metrics, and active learning.
Transfer Learning. Such methods can be broadly orga-
nized into three categories: (i) Inductive Transfer [19, 77]
methods, which leverage inductive bias; (ii) Transductive
Transfer methods that include domain adaptation meth-
ods [73, 76]; and (iii) Task Transfer [48, 80] methods, which
transfer between different tasks instead of models. Amongst
these, the most common form of transfer learning is fine-
tuning a pre-trained source model on a given target dataset.
Recent works show the use of large-scale pre-trained
models [15, 54] for learning representations for different
source tasks. We request the readers to refer to [47, 86] for
further details and strategies used in transfer learning.
Transferability Metrics. Despite the availability of large
numbers of source models, achieving an optimal transfer
for a given target task is still an open research area as it
is non-trivial to identify the best source model or dataset
for efficient transfer learning. Transferability metrics are
used as proxy scores to estimate the transfer accuracy from
a source model to a target task. Recent years have witnessed
the development of such metrics. For instance, NCE [70]
and LEEP [44] utilize the labels in the source and target
task domains to estimate transferability, whereas metrics
like H-Score [7], GBC [50], TransRate [30], PARC [10],

SFDA [62], and E-Tran [23] use the embeddings from
the source model to estimate transferability. In contrast
to the above metrics that focus on a single source model,
Agostinelli et al. explored metrics to estimate the transfer-
ability of an ensemble of models and introduced two met-
rics [5] – MS-LEEP and E-LEEP – for identifying a subset
of model ensembles from the pool of available source mod-
els. None of these existing efforts however considered the
use of an informative subset in the target dataset to estimate
transferability, which is the focus of this work.
Task Transferability. Our work focuses on the problem
of estimating the transferability of a source model to the
target dataset in two settings: (i) identifying the most
suitable model from a pool of pre-trained source models
to perform transfer learning on a given target dataset, and
(ii) for a given pre-trained source model, finding the most
suitable target dataset from a collection of datasets to
perform transfer learning. Some other recent transferability
works [18, 64, 65, 81] consider models that are pre-trained
on one or more tasks, and study transfer of such models to
another task, often requiring an expensive fine-tuning pro-
cess. These works only discuss task transferability, i.e., they
have a different objective and establish task relatedness.
In addition, these works either perform fine-tuning from
scratch or have computational costs similar to fine-tuning,
and do not aim to study or propose transferability metrics,
which is the focus of our work. In a related area, [82]
quantified transferability for the task of Domain Generaliza-
tion, [68] discussed transferability for multi-source transfer,
both of which operate in a setting different from ours.
Active Learning. Given a large, unlabeled dataset, active
learning methods aim to select the best possible samples to
annotate, assuming the availability of a labeling oracle. Tra-
ditional active learning methods can be broadly categorized
into (i) Uncertainty-based approaches [9, 26, 33, 61] which
select samples that the model is most uncertain about and
(ii) Diversity-based methods [22, 24, 45], which encourage
the model to learn more generalized representations. The
rise in popularity of deep learning methods has brought
attention to deep active learning [3, 56] methods that bring
down annotation costs. Existing methods for deep active
learning [21, 27, 32, 60] largely build upon traditional
active learning methods, or a hybrid of a few methods to
achieve their objective. Our objective in this work, however,
is different from mainstream active learning and is rather
focused on subset selection for transferability estimation.

3. Methodology
3.1. Notations and Preliminaries

Problem Statement. Given a pre-trained model fs
✓ trained

on a source dataset Ds, and a target dataset Dt, a transfer-
ability metric aims to produce a score Â which estimates
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Figure 1. Top-10 images from subsets from Caltech101 containing most and least new information as estimated w.r.t. ImageNet source
dataset. These show that the subsets with the most informative images (cliparts in this case) that are out-of-distribution when compared to
the source images. See the Appendix for more qualitative results.

how effectively transfer learning algorithms can transfer
knowledge from the source task to the target task, without
fine-tuning on the target task. In contrast to existing trans-
ferability metrics [5, 44, 50, 70, 78], our objective is to im-
prove the transferability estimation performance of existing
metrics by focusing on a carefully selected subset of exam-
ples from the target dataset. Note that this subset selection
is only carried out for transferability estimation, and has no
bearing on the underlying transfer learning process itself.
Notations. Let fs

✓ be a pre-trained source model trained
on a source dataset Ds={Dtrain

s ,Dtest
s }, and a target dataset

Dt={Dtrain
t ,Dtest

t }. In transfer learning, we obtain a target
model fs!t

✓ initialized using the source model weights and
fine-tuned on the target dataset Dtrain

t . The performance of
the target model fs!t

✓ is quantified using the target model
accuracy As!t when evaluated on the unseen target test
data Dtest

t . Let T s!t be a transferability metric that esti-
mates the ease of transferring knowledge from the source
model to the target dataset, where the metric only has ac-
cess to the pre-trained source model fs

✓ , and dataset Dtrain
t ,

and produce their estimates without expensive fine-tuning
on the target dataset. Hence, the key task of transferability
estimation is to define a metric that produces a score Âs!t,
that reliably estimates the target test accuracy As!t:

T s!t(fs
✓ ,Dtrain

t ) 7! Âs!t (1)

Evaluation. A good transferability metric T s!t should
reliably estimate the target model accuracy, Âs!t. Hence,
the performance of a transferability metric is evaluated as
the correlation between Âs!t and As!t across multiple
combinations of source model and target dataset. Follow-
ing earlier work [44], we employ the Pearson Correlation
Coefficient (PCC) and Kendall Tau metrics for this purpose.

3.2. Informative Subsets for Transferability Esti-
mation

To understand the limitations of existing transferability met-
rics, we begin by investigating the behavior of models af-
ter fine-tuning. As shown in Fig. 2, we observe that across
multiple source models, certain subsets of the target dataset

Figure 2. Transfer learning accuracies on different subsets of the
Oxford-IIIT target dataset, after fine-tuning multiple source mod-
els trained on ImageNet. Evidently, across all models, we note that
some subsets demonstrate low accuracy when compared to others,
motivating us to identify such subsets from the target dataset.

have very uncertain predictions from the model, leading to
a lower accuracy on this subset in relation to other subsets.
The samples of such subsets of the target dataset bear higher
uncertainty, and hence provide more new information about
the target dataset to the source model. Besides being in-
dicative of the performance after finetuning, these samples
also most strongly influence the performance gaps between
different models, as can be seen in the figure.

We posit that one can view the transferability estimation
as how well a source model captures information about a
target domain. In particular, we hypothesize that carefully
selecting a subset of samples from the target dataset that
provides the most new information w.r.t. the source model
will help better estimate transferability. This is similar to
Support Vector Machines, where the samples with most un-
certainty provide the most information, or active learning
methods, where information-theoretic methods are used to
identify a subset of instances from a given pool to label, so
as to achieve the most effective training. We define AC-
tive Transferability (ACT) estimation as a technique which
utilizes these informative subsets to improve the quality of
existing transferability metrics:

TACT = T (fs
✓ ,Dinf

t ), (2)
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where T is any existing transferability metric, and Dinf
t is

the identified subset of most informative samples. For in-
stance, in Fig. 2, the first subset may be the most informative
one to choose for estimating transferability, but we do not
have access to the fine-tuned model during transferability
estimation. Hence, we need to identify such a subset using
an estimate of information using the target dataset samples.

Taking inspiration from active learning methods [3, 56],
we aim to approach the problem of subset selection for
transferability estimation using an information-theoretic ap-
proach. We use estimates of mutual information between
the source and target domains to identify the most informa-
tive samples. More precisely, we aim to select a subset of
samples Dinf

t from the target dataset, which has the lowest
mutual information w.r.t. the source domain.

Dinf
t = argmin

D⇢Dtrain
t

I(Dtrain
s ;D), (3)

where I is the mutual information. Intuitively, a subset of
target domain samples with the least mutual information
w.r.t. the source domain is the source of most new infor-
mation for the source model. Further, this subset provides
an estimate of the difficulty of fine-tuning on the target do-
main. Note that the subset is from the training set of the tar-
get domain, but we evaluate the transferability performance
on a held-out test set from the target domain. We propose
two methods to identify these samples; Fig. 3 shows that
the subset of samples identified by our methods indeed have
higher uncertainties than other subsets, lie closer to the de-
cision boundary, and thus help provide useful information
about performance on the target dataset. For convenience
and ease of reading, we refer to these subsets of minimal
mutual information as informative subsets, going forward.

3.3. Identifying Informative Subsets

We propose two methods – class-aware and class-agnostic
– to estimate the mutual information between the source and
target domains, where we make no assumptions about the
source model or source dataset/task. While the class-aware
method utilizes the label information in the target dataset,
the class-agnostic method does not consider the label in-
formation, and only utilizes the distance between source
and target datasets to estimate the mutual information. We
use this estimate to model the informativeness of the target
dataset samples and choose the most informative subset.
Class-Aware Method. When the target task is classifica-
tion, we leverage the fact that mutual information I be-
tween two random variables X and Y can be written as the
difference between entropy H(X) and conditional entropy
H(X|Y ). The conditional entropy can then be written in
terms of the negative expectation of the conditional proba-
bility P (X|Y ), i.e.:

I(X;Y ) = H(X)�H(X|Y )

=) I(X;Y ) = H(X) + E[ log P (X|Y ) ] (4)

Hence, a low value of the conditional probability corre-
sponds to a low value of mutual information between the
two domains. We use the source model as a proxy for the
information in the source domain and compute the condi-
tional probability between embeddings of the target samples
in the source model space f

s
✓ (xt) and target dataset labels

yt. Following [50], we model the conditional distribution
P (fs

✓ (xt)|yt) as a Gaussian in the source model embedding
space for each class in the target dataset. The Gaussian is
parametrized by the mean and variance as given below:

µc =
1

Nc

X

j:yt
j=c

f
s
✓ (x

t
j) (5)

⌃c =
1

Nc

X

j:yt
j=c

(fs
✓ (xj)� µc)(f

s
✓ (xj)� µc)

> (6)

where y
t
j=c, and Nc is the number of samples in class c.

To find the target dataset samples that contain the least
mutual information with the source dataset, we identify the
samples that minimize the conditional probability. Hence,
the informativeness of a target dataset sample xt, with label
yt with respect to the source model fs

✓ can be computed as
the distance from the corresponding class mean, i.e,

I(fs
✓ ,x

t)CAW =
q
(fs

✓ (x
t)� µc)>⌃

�1
c (fs

✓ (x
t)� µc)

(7)
Class-Agnostic Method. The class-aware method is effi-
cient to compute, and as seen in Sec. 4, helps improve the
performance of a wide range of existing transferability met-
rics across multiple settings, but is limited to the classifi-
cation setting. To ameliorate this shortcoming, we propose
the class-agnostic method for identifying informative sam-
ples. The mutual information I can be written in terms of
the joint distribution, i.e.,

I(X;Y ) = E


P (X,Y )

P (X)P (Y )

�
(8)

To identify subsets of the target dataset that have low mu-
tual information with the source dataset, we simply identify
a subset that lies in a region of low joint probability den-
sity. We take inspiration from [6, 67], which estimate the
distance betweeen datasets using optimal transport. Given
two discrete empirical distributions ↵ = (a1, . . . , am) and
� = (b1, . . . , bn) and a cost function C, Optimal Trans-
port [34, 53] estimates an optimal joint distribution (pairing
matrix) ⇡. For any pair of points, the optimal joint dis-
tribution is inversely proportional to the cost function for
that pair of points, i.e., ⇡ij / 1

C(ai,bj)
. In particular, we

follow [67] and model the optimal transport problem for
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(a) Dogs - Full Dataset (b) Informative Subset - CAG (c) Informative Subset - CAW

Figure 3. t-SNE embeddings of the whole target dataset and its most informative subset using a ResNet-50 source model trained on
ImageNet. We show sample embeddings from five random classes from the StanfordDogs target dataset, using class-agnostic (b) and
class-aware (c) methods. We observe that embeddings from informative subsets are more entangled than the entire dataset.

the distributions of the source Ds and target Dt datasets
by utilizing the dot product between the source model em-
beddings of the source and target samples as a measure of
cost/similarity. In addition, we average the `2 distances over
multiple layers of the model, i.e.,

C(xs
i ,x

t
j) =

1

L

LX

l=1

||El(xs
i )� El(xt

j)||2, (9)

where El(·) is the intermediate representation from the l-th
layer of f

s
✓ and L is the total number of layers in f

s
✓ . A

similar approach of averaging the L2 distance over multiple
layers has also been used for other settings as in [84].

Following from Eqn. 9, the target dataset samples lie far
away from the source dataset, as these points lie in regions
of low probability density, and hence are those that pos-
sess the lowest mutual information with the source domain.
Hence, we score the information of target samples by the
average distance from the source domain, i.e.:

I(fs
✓ ,Ds,x

t
j)CAG=

1

M

MX

i=1

C(xs
i ,x

t
j), where M=|Ds|

(10)

3.4. ACT (ACtive Transferability) Estimation

Given the above methods to estimate informative subsets,
we define our overall proposed technique, ACT, as a
means to improve existing transferability metrics. Building
on our observations in Sec. 3.2, we first select the most
informative subset of the target dataset Dinf

t using either of
the information scores described in Sec. 3.3, i.e.:

Dinf
t ={(xt

q1 , y
t
q1), . . . , (x

t
qNs

, y
t
qNs

)} (11)

where {q1, q2, . . . , qN}, Ns  N denote the indices of the
sorted samples, and the information score of each sample
follows I(xt

q1)�I(xt
q2)� . . .�I(xt

qN ). This informative
subset is then passed to existing transferability metrics, i.e:

TACT = T (fs
✓ ,Dinf

t ) (12)

3.5. Extending Active Transferability to Ensembles
We also extend our proposed metrics to the setting of select-
ing source model ensembles. MS-LEEP and E-LEEP [5] are
state-of-the-art transferability metrics for selecting source
model ensembles. In this setting, our objective becomes to
measure how well an ensemble of source models can cap-
ture information about the target domain. Formally, this
setting involves Ne source models, i.e., {fs1

✓ , . . . , f
sNe
✓ },

trained on Ne source datasets, {Ds1 , . . . ,DsNe
} (which

may repeat when different source models are trained on the
same source dataset), and a target dataset Dt. For a given
set of source models, the number of possible ensembles is
2Ne . While applying transferability metrics on each candi-
date ensemble is possible, evaluating the ground truth As!t

for each candidate is computationally expensive. Hence,
following [5], we set the size of the candidate ensembles
to k, and evaluate TACT, and As!t for each of the the

�N
k

�

possible candidate ensembles. Given a candidate ensem-
ble of k models, the most informative subset obtained via
our ACTframework is different for each source model, lead-
ing to k most informative subsets, {Dinf

1 , . . . ,Dinf
k }, corre-

sponding to each model respectively. Then, we treat our ac-
tive variants of MS-LEEP and E-LEEP differently. In case
of MS-LEEP, we note that it is simply the sum of LEEP [44]
scores over each source model in the candidate ensemble.
Hence, our ACT counterpart of MS-LEEP follows as the
sum of ACT-LEEP scores over the candidate set:

MS-LEEPACT =
kX

i=1

LEEP(fsi
✓ ,Dinf

i ) (13)

E-LEEP considers the ensembled predictor pens(yi|xi) by
evaluating the prediction probability for each sample in the
target dataset, across all models in the candidate ensemble:

E-LEEP =
1

|Dt|
X

(xt,yt)2Dt

log pens(y
t|xt) (14)

This requires a common target dataset to be considered
across all models in the ensemble. To apply ACT for E-
LEEP, we take the union of the most informative subsets
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obtained for each source model and use this for the E-LEEP
calculation, i.e.:

E-LEEPACT =
1

|Dens
t |

X

(xt,yt)2Dens
t

log pens(y
t|xt), (15)

where Dens
t =

Sk
i=1 Dinf

i .

4. Experiments
Next, we present experimental results to show the effective-
ness of ACT metrics for different transfer learning tasks,
including source architecture selection (Sec. 4.1), target
dataset selection (Sec. 4.2), semantic segmentation task
(Sec. 4.3), ensemble model selection (Sec. 4.4), and lan-
guage domain transferability (Sec. 4.5).
Evaluation Metrics and Baselines. We use the Pear-
son Correlation Coefficient (PCC) for correlation between
T s!t and As!t. For baselines, we use LEEP, NCE,
LogME, H-Score, TransRate, GBC, E-Tran, SFDA, and
PARC for single model transferability tasks, and MS-LEEP
and E-LEEP for ensemble model selection. See Appendix
for more details (Sec. S3), and results using other correla-
tion coefficients (Sec. S4).

4.1. Source Architecture Selection
Experimental setup. We follow the experimental setup
from [50] where the target dataset is fixed and T s!t is
computed over multiple source architectures. The corre-
lation scores are computed between T s!t and the trans-
fer accuracies As!t. We consider seven target datasets for
our these experiments: i) Caltech101 [20], ii) CUB200 [75],
iii) Oxford-IIIT Pets [51], iv) Flowers102 [46], v) Stanford
Dogs [36], vi) Imagenette [28], and vii) PACS-Sketch [38].
Model architectures and Training. We consider seven
source architectures pre-trained on ImageNet [57] dataset,
including ResNet-50, ResNet-101, ResNet-152 [25],
DenseNet-121, DenseNet-169, DenseNet-201 [29], and
MobileNetV2 [58]. All models were set using the pub-
licly available pre-trained weights from the Torchvision li-
brary [43]. Following Pandy et al. [50], we calculate the
target accuracy As!t by fine-tuning the source model on
each target dataset. We fine-tune the source model for 100
epochs using an SGD optimizer with a momentum of 0.9, a
learning rate of 10�4, and a batch size of 64.
Results. On average, across seven target datasets,
ACT metrics show an improvement in correlation scores
of +129.74% for LEEP, +29.38% for NCE, +120.53% for
LogME, and -0.07% for GBC (Table 1). Interestingly, for
most target datasets, both Class-Agnostic and Class-Aware
variants of the ACT metrics outperform the baseline scores.
We also observe an improvement of +1.13% for H-Score,
+3.21% for TransRate, 50.40% for PARC, 15.10% for
SFDA, 287.03% for E-Tran (See App. S4 for more results).

4.2. Target Dataset Selection
Experimental setup. Here, the source model is fixed and
the transferability metric is computed over multiple tar-
get datasets [44]. We construct 50 target datasets by ran-
domly selecting a subset containing 40% to 100% of the
total classes from the original target dataset. For each class,
all train and test images are included in the respective train
and test subsets. The PCC is computed between T s!t and
As!t across all 50 target tasks. We consider six target
datasets including Caltech101, CUB200, Oxford-IIIT Pets,
Flowers102, Stanford Dogs, and PACS-Sketch.
Model architectures and Training. We consider two
source models: ResNet-18 pre-trained on CUB200 and
ResNet-34 pre-trained on Caltech101. We train the trans-
ferred models for 100 epochs using SGD with a momentum
of 0.9, a learning rate of 10�3, and a batch size of 64.
Results. Across multiple source and target datasets, ACT-
LEEP achieves the highest correlation for the target selec-
tion task and outperforms their respective baseline methods
(Table 2). In particular, we observe an improvement in cor-
relation scores of 236.16% for LogME, +0.99% for LEEP,
+1.15% for NCE, and +5.11% for GBC. We also observe
an improvement of +79.2% for H-Score, and +58.6% for
TransRate (See Appendix S4 for detailed results).

4.3. Semantic Segmentation
Experimental setup. We follow the fixed target setting
described in [50] and report the correlation between
meanIoU and T s!t for each target dataset. We consider
a Fully Connected Network (FCN) [41] with a ResNet-50
backbone pre-trained on a subset of COCO-2017 [40].
We consider CityScapes [14], CamVid [11], BDD100k
[79], IDD [72], PascalVOC [39] and SUIM [31] datasets.
Among them, we consider the target datasets CityScapes,
CamVid, BDD100k, and SUIM. Note that we use the
Class-Agnostic variant of ACT for semantic segmentation
as segmentation does not have class labels.
Model architectures and Training. We train an FCN
Resnet50 [41] model for each source dataset and individu-
ally fine-tune them on Dtrain

t . We train the individual models
independently for 100 epochs using SGD with a momentum
of 0.9, weight decay of 10�4, a batch size of 16, a learning
rate of 10�3, and reduce it on plateau by a factor of 0.5.
Results. On average across four target datasets, ACT met-
rics outperform their baseline methods (Table 3). We ob-
serve an improvement in correlation scores of +182.23%
for LEEP, +33.34% for NCE, and +149.30% for GBC.

4.4. Ensemble Model Selection
Experimental setup. Given a pool with P number of
source models, the ensemble model selection task aims to
select the subset of models whose ensemble yields the best
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Table 1. Results on source architecture selection task. Shown are correlation scores (higher the better) computed across all source archi-
tectures trained on ImageNet. Results where ACT metrics perform better are in bold.

Target (Dt) LEEP ACT-LEEP GBC ACT-GBC LogMe ACT-LogMe NCE ACT-NCE
CAG CAW CAG CAW CAG CAW CAG CAW

CUB200 0.534 0.405 0.667 0.790 0.811 0.785 -0.310 0.082 0.365 0.330 0.040 0.500
StanfordDogs 0.926 0.943 0.931 0.784 0.944 0.834 0.921 0.953 0.943 0.930 0.924 0.955
Flowers102 0.504 0.508 0.723 -0.012 -0.013 -0.02 -0.210 0.483 0.614 0.382 0.390 0.388
Oxford-IIIT 0.921 0.952 0.927 0.668 0.867 0.745 0.940 0.973 0.930 0.846 0.851 0.916
Caltech101 0.416 0.439 0.458 0.810 0.793 0.821 0.358 0.712 0.792 0.204 0.461 0.504
Imagenette 0.950 0.950 0.962 0.709 0.723 0.711 0.928 0.930 0.971 0.927 0.940 0.889
PACS-Sketch -0.029 0.196 0.253 0.612 0.637 0.601 -0.423 0.677 0.117 -0.129 0.160 -0.208

Table 2. Results on target task selection using the fine-tuning method for Caltech101 source models. Shown are correlation scores (higher
the better) computed across all target datasets. Results where ACT metrics perform better than their counterparts are in bold. See the
Appendix for results on CUB200 source models.

Target (Dt) LEEP ACT-LEEP GBC ACT-GBC LogMe ACT-LogMe NCE ACT-NCE
CAG CAW CAG CAW CAG CAW CAG CAW

CUB200 0.948 0.950 0.948 0.916 0.917 0.916 -0.951 0.945 0.943 0.944 0.948 0.944
Flowers102 0.769 0.820 0.761 0.743 0.742 0.727 -0.759 0.795 0.723 0.762 0.823 0.758
StanfordDogs 0.884 0.901 0.884 0.873 0.876 0.856 -0.887 0.847 0.842 0.885 0.899 0.886
Oxford-IIIT 0.899 0.907 0.905 0.845 0.854 0.858 -0.899 0.852 0.476 0.899 0.905 0.908
PACS-Sketch 0.940 0.943 0.944 0.692 0.852 0.894 0.044 0.035 0.416 0.939 0.940 0.941

Table 3. Results on the semantic segmentation source architecture
selection task. Shown are correlation scores (") computed across
all source architectures. Results where ACT metrics (denoted by
‘A’) perform better than their counterparts are in bold.

Target (Dt) LEEP A-LEEP NCE A-NCE GBC A-GBC
BDD100k 0.147 0.197 0.731 0.743 0.645 0.660
CamVid 0.063 0.374 0.573 0.583 0.334 0.796
SUIM 0.823 0.980 0.204 0.461 -0.218 0.784
CityScapes 0.045 0.127 0.524 0.545 0.952 0.923

Table 4. Results on the ensemble model selection task. Shown are
correlation scores (higher the better) computed across all ensemble
candidates. Results where ACT metrics (denoted by ‘A’) perform
better than their counterparts are in bold.

Target (Dt) MS-LEEP A-MS-LEEP E-LEEP A-E-LEEP
CAG CAW CAG CAW

Flowers102 0.230 0.368 0.251 0.271 0.314 0.244
Stanford Dogs 0.400 0.378 0.400 0.503 0.522 0.506
CUB200 0.334 0.411 0.324 0.402 0.403 0.434
OxfordPets 0.112 0.148 0.133 0.276 0.338 0.281
Caltech101 0.462 0.502 0.467 0.520 0.513 0.518

performance on a fixed target dataset [5]. Since evaluat-
ing every ensemble combination of the P source models
is computationally expensive, the ensemble size K (i.e.,
number of models per ensemble) is fixed, which yields

�P
K

�

candidate ensembles. The correlation is then computed be-
tween T s!t and As!t across all candidate ensemble. We
use K=4 and P=11 in our experiments and consider Cal-
tech101, CUB200, Oxford-IIIT Pets, Flowers102, and Stan-
fordDogs datasets as our target datasets.
Model architectures and Training. We include source
models pre-trained on the above datasets as well as Ima-
geNet. Each ensemble of model architectures consists of
one or more models from the pool of ResNet-101, VGG-
19 [63], and DenseNet-201, pre-trained on the mentioned
datasets. For a given candidate ensemble, each member

model is fine-tuned individually on the target train dataset
Dtrain

t , and the ensemble prediction is calculated as the mean
of all individual predictions. Each model is fine-tuned on
the target dataset independently, using SGD with a momen-
tum of 0.9, a learning rate of 10�4, and a batch size of 64.
Results. Our empirical analysis in Table 4 shows that, on
average across five datasets, ACT metrics outperform the
baselines. We observe an improvement in correlation scores
of +14.43% for MS-LEEP and +4.10% for E-LEEP.

4.5. Additional Results on Language Models
Experimental setup. To show the generalizability of our
proposed approach, we evaluate the performance of ACT on
a language task – sentiment classification and show results
in the target dataset selection setting. We consider three tar-
get datasets, including TweetEval [8], IMDB Reviews [42],
and CARER [59], for our language experiments.
Model architecture and Training. We include source
models trained using a classification head on a pre-trained
BERT [16] model on CARER [59] and AG-News [85]
datasets. We fine-tune the entire source model, including
the BERT layers for 3 epochs using the Adam optimizer,
with a learning rate of 5⇥ 10�5, and a batch size of 8.
Results. Table 5 show that ACT metrics outperform their
baseline counterparts. On average, across four source-target
pairs and two techniques, we observe an improvement of
+38.13% for LEEP, +33.40% for NCE, and +57.24% for
GBC using ACT metrics. We also observe an improvement
of +121.11% for H-Score, and +52.51% for TransRate
(See Appendix S4 for detailed results).

4.6. Ablation Studies
We conduct ablations on two key components of ACT: i)
choice of information scoring method and ii) correlation
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Table 5. Results on target task selection for sentiment classification. Shown are correlation scores (higher the better) computed across all
target candidates. Results where ACT metrics perform better than their counterparts are in bold.

Source - Target Pair LEEP ACT-LEEP NCE ACT-NCE GBC ACT-GBC
CAG CAW CAG CAW CAG CAW

Emotion - IMDB -0.172 0.115 0.06 -0.192 0.073 0.050 -0.097 0.141 0.109
Emotion - TweetEval 0.884 0.892 0.885 0.884 0.892 0.885 0.828 0.834 0.824
AGNews - Emotion 0.939 0.943 0.944 0.940 0.947 0.944 0.808 0.808 0.808
AGNews - TweetEval 0.776 0.779 0.784 0.884 0.892 0.885 0.549 0.549 0.549

Table 6. Results for ACT transferability metrics compared against
other information scoring methods. ACT transferability metrics
outperform their base counterparts (shown in bold).

Transferability Metric CAG CAW Entropy Random Subset Base
LEEP 0.943 0.931 0.924 0.924 0.926
NCE 0.953 0.943 0.920 0.919 0.921

score of informative subsets. We also study the impact of
different model architectures, size of the informative sub-
set, and less informative samples on the performance of
ACT metrics (Appendix S5)
Choice of Information Score. The key component of
ACT is the process of identifying informative subsets, as
the quality of these identified subsets determines the per-
formance of ACT when applied on existing transferability
metrics. We use the source architecture selection setting,
and study the effect of using alternative measures to select
subsets for the ACT estimation. In particular, we compare
the performance of four methods (using PCC scores) – our
proposed class-agnostic and class-aware methods, entropy
of the target samples in the source model output space, and
random selection – on LEEP, and NCE. (Table 6). We also
include a comparison with the respective base metrics. Our
proposed class-agnostic and class-aware methods consis-
tently pick more informative subsets, leading to better per-
formance over the base transferability metrics.
Transferability for different Informative Buckets. A key
question in ACT is to explore the effect of the informative-
ness of a subset on estimating transferability. We follow the
source architecture selection experimental setup (Sec. 4.1),
calculate ACT-LEEP using different buckets, and compare
it with the baseline LEEP score (full dataset). Results
show that transferability estimates are the best (highest
correlation scores) for the most informative subsets and
gradually degrade while moving towards less informative
subsets (Fig. 4), confirming the core hypothesis of ACT.

4.7. Computational Cost
The computational cost associated with transferability esti-
mation methods is crucial as it aims to replace the expensive
finetuning-based trial-and-error method. While ACT sig-
nificantly improves the performance of the base metrics,
it adds computational overhead over these methods, when
identifying the informative subsets. However, our results
in Table 7 show that this overhead is still far lower than

Figure 4. Correlation scores for LEEP (y-axis) for most-to-least
informative buckets (x-axis) show that the correlation scores are
the highest for the most informative subset.

the computational cost associated with model fine-tuning,
thereby showing that ACT transferability estimators are an
effective, and efficient method for transferability estimation.

Table 7. Runtimes for base and ACT transferability metrics using
a Resnet-18 trained on CUB200 as the source model. The timings
shown for CAG and CAW variants of ACT are an overhead cost
upon the base metrics using the experimental setup from Sec. 4.
We found a minimum of 50 finetuning epochs necessary for con-
vergence. All values are in seconds.

Dataset LEEP NCE GBC CAG CAW Finetuning

Oxford-IIIT 7.2s 7.3s 8.3s 24.9s 0.6s ⇡ 1250s
StanfordDogs 21.1s 21.0s 29.6s 41.8s 1.1s ⇡ 3660s

5. Conclusion
We propose and address the problem of estimating transfer-
ability from a source model to a target task using examples
from an informative subset of the target dataset. To this
end, we introduce ACT which leverages class-agnostic
and class-aware strategies to identify informative subsets
from a target dataset and can be used with any existing
transferability metric. We show that ACT metrics outper-
form their counterparts across different transfer learning
tasks, data modalities, models, and datasets. In contrast
to the findings in [5] (i.e., one metric doesn’t work for
all transfer learning tasks), we show that ACT metrics
achieve favorable results across diverse transfer learning
settings (Sec. 4). We anticipate that using ACT could open
new frontiers in estimating transferability and pave the
way for several exciting future directions, like develop-
ing new techniques to identify informative subsets and
extending ACT analysis to other transfer learning tasks.
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Lengyel. Bayesian active learning for classification and pref-
erence learning. arXiv preprint arXiv:1112.5745, 2011. 2

[28] Jeremy Howard. Imagenette: A smaller subset of 10 easily
classified classes from imagenet, 2019. 6

[29] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-
ian Q. Weinberger. Densely connected convolutional net-
works. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 2261–2269, 2017. 6

[30] Long-Kai Huang, Junzhou Huang, Yu Rong, Qiang Yang,
and Ying Wei. Frustratingly easy transferability estimation.
In Proceedings of the 39th International Conference on Ma-
chine Learning, pages 9201–9225. PMLR, 2022. 2

[31] Md Jahidul Islam, Chelsey Edge, Yuyang Xiao, Peigen Luo,
Muntaqim Mehtaz, Christopher Morse, Sadman Sakib Enan,
and Junaed Sattar. Semantic Segmentation of Underwater
Imagery: Dataset and Benchmark. In IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS).
IEEE/RSJ, 2020. 6

[32] David Janz, Jos van der Westhuizen, and José Miguel
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