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Abstract

In recent years, we have witnessed the collection of
larger and larger multi-modal, image-caption datasets:
from hundreds of thousands such pairs to hundreds of mil-
lions. Such datasets allow researchers to build powerful
deep learning models, at the cost of requiring intensive
computational resources. In this work, we ask: can we use
such datasets efficiently without sacrificing performance?
We tackle this problem by extracting difficulty scores from
each image-caption sample, and by using such scores to
make training more effective and efficient. We compare two
ways to use difficulty scores to influence training: filtering
a representative subset of each dataset and ordering sam-
ples through curriculum learning. We analyze and compare
difficulty scores extracted from a single modality—captions
(i.e., caption length and number of object mentions) or im-
ages (i.e., region proposals’ size and number)—or based
on alignment of image-caption pairs (i.e., CLIP and con-
creteness). We focus on Weakly-Supervised Object Detec-
tion where image-level labels are extracted from captions.
We discover that (1) combining filtering and curriculum
learning can achieve large gains in performance, but not all
methods are stable across experimental settings, (2) single-
modality scores often outperform alignment-based ones, (3)
alignment scores show the largest gains when training time
is limited.

1. Introduction

The size of multi-modal, image-caption pair datasets has
drastically increased in the past decade: from hundreds of
thousands (e.g., COCO Captions [5]) to millions (e.g., Con-
ceptual Captions [4, 27]) to hundreds of millions (e.g., data
used to train models such as CLIP [21] or ALIGN [15])
to billions (e.g., LAION-5B [26]). While the collection of
such datasets has allowed researchers to build computer vi-
sion models that achieve impressive performance on a vari-
ety of tasks [15, 21], training on such datasets becomes very

Figure 1. Top: we extract two image-caption alignment difficulty
scores, two caption-based scores, and two image-based scores.
Bottom: we train WSOD models by (1) randomly sampling im-
ages (baseline), (2) filtering out low-scoring samples, (3) using
curriculum learning to sort images and sample high-scoring ones
before low-scoring ones, and (4) combining (2) and (3) by apply-
ing curriculum learning to the top-scoring images only.

resource-intensive. We aim to compare different ways to re-
duce such burden while preserving (or improving) models’
performance.

When collecting such large numbers of images, clean,
descriptive captions cannot be obtained through paid crowd-
sourcing (as done for smaller datasets [5]), but text that al-
ready accompanies images must be crawled instead (e.g.,
the alt-text HTML field [4, 27] or captions to images shared
on Reddit [6]). We refer to such datasets as “in-the-wild”
since the captioning process is not regulated and people cap-
tioning images are not paid to do so. Unlike crowdsourced
captions, which provide a precise and thorough description
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of the image, in-the-wild ones, e.g., ones on Reddit, aim to
complement the image, thus their level of alignment or rele-
vance to the image may vary; see Fig. 2. Overall, extracting
supervision (labels) for the image from the caption can be
more productive for some image-caption pairs than others.

In this work, we compare ways to reduce the computa-
tional burden of training computer vision models on large-
scale, in-the-wild datasets, while focusing on productive
supervision from image-text pairs. Specifically, we fo-
cus on Weakly Supervised Object Detection (WSOD) mod-
els trained on labels extracted from captions. In-the-wild
datasets are not commonly used for this task due to reduced
image-text alignment, but their potential is worth exploring
due to their size. Our key idea is to extract difficulty scores
from the image-caption pairs, and use this information to
efficiently train WSOD models: such scores represent how
easy/hard it would be for a model to learn from each image-
caption pair. We leverage difficulty scores in three ways: (1)
by filtering training samples to only include the “easiest”
part of a dataset, (2) via curriculum learning (CL), where
different samples are shown at different training stages, and
(3) by combining filtering and CL. Fig. 1 shows a summa-
ryof our approaches.

We consider three ways of extracting difficulty scores
from image-caption pairs: single-modality, from (1) cap-
tions alone or (2) images alone, and based on alignment
(3) of the image-text pair. For the first, we consider cap-
tion length and number of mentioned objects of interest; for
the second, average size and number of region proposals
per image; and, for the last, CLIP score [21] and concrete-
ness [13]. We argue that caption length can be considered
a proxy for number of mentioned objects of interest: intu-
itively, the longer a caption, the more likely it is to men-
tion an object. Number of mentions (and caption length)
represents a difficulty score since the more mentioned ob-
jects, the denser the supervisory signal (i.e., more signal
to learn from per image). The advantage of using cap-
tion length over the number of mentioned objects is that
there is no need to define what such objects are, provid-
ing a more generalizable difficulty score that could be ap-
plied to other tasks beyond WSOD. In addition to caption-
only scores, we consider two image-only scores: average
size of region proposals and their number, which we regard
as proxies for ground truth object size and number, which
have been shown to capture useful information in previous
work [29, 44], but are unavailable in in-the-wild datasets.
Finally, we consider image-caption alignment: a way to
quantify how well a caption describes its corresponding im-
age. The assumption behind using alignment as a difficulty
score is that better aligned captions should provide better
supervisory signal. We test two ways to compute align-
ment: using the CLIP model to compute the cosine similar-
ity between image and caption, and using the concreteness

score, which captures how similar images whose captions
use the same words are (the more similar such images, the
more concrete the words). We compare the promise of us-
ing these scores for curriculum learning and filtering in a
variety of experimental settings: across datasets, hyperpa-
rameters, and training schedules.

We show that: (1) single-modality scores outperform
alignment-based scores when hyperparameter selection is
suboptimal, but are less stable across datasets; (2) align-
ment scores boost performance especially when training re-
sources, such as training time, are limited; (3) the CLIP
alignment score shows the most consistent performance im-
provements across datasets, hyperparameters choices, and
training schedules; (4) curriculum learning is generally
more effective than filtering, but their combination can
boost results further.

2. Related Work
Weakly Supervised Object Detection. While fully super-
vised object detection [12, 22] refers to the task of find-
ing objects in an image when bounding boxes and their la-
bels are available as supervision, in Weakly Supervised Ob-
ject Detection (WSOD) only image-level labels are avail-
able at training time. One of the first successful approaches
for WSOD is Weakly Supervised Deep Detection Net-
works (WSDDN) [3], from which numerous models orig-
inated [24, 32, 33, 38]. These approaches use Multiple-
Instance Learning (MIL) to combine region proposal-level
predictions and allow supervision from image-level labels.
We use WSDDN in our experiments as it is the base
model for so many WSOD frameworks. Some prior work
[36] tests filtering (but not curriculum learning) using only
dataset-specific alignment metrics (unlike CLIP) on small
datasets/subsets (e.g., 64k images, 14 times smaller than the
907k we use for RedCaps), thus leading to conclusions that
do not hold for large-scale, in-the-wild datasets (e.g., filter-
ing never improves results).

As an alternative to MIL approaches, recent methods
have started providing textual input to the model in addi-
tion to the image and using contrastive learning to train the
model in a self-supervised way [9, 20, 40]. Different from
our approach, such methods require ground-truth bounding
boxes for training for the base classes, which we do not.
CLIP-based Approaches. CLIP [21] has become a popular
image-text model included in many architectures [9, 18, 23,
28, 40]. Our use of CLIP differs from these since we use the
CLIP model offline (not during training as either part of the
architecture or as supervision), running our image-caption
data through it before training starts. This makes our ap-
proach modular, where we can replace CLIP with any other
multi-modal model’s score without changing our model’s
architecture.

While we focus on sample selection and ordering, Pro-
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posalCLIP [28] uses CLIP-based similarity scores offline
to refine region proposals, which is orthogonal to our ap-
proach. Unlike our work, ProposalCLIP includes a multi-
step refinement process and trains a neural network from
CLIP-derived pseudo ground truth labels to achieve its goal.

Finally, CLIP has been used to filter out potentially mis-
matched image-caption pairs during data collection in the
LAION datasets [25, 26], where pairs with CLIP cosine
similarity below a threshold were removed. We formally
evaluate the impact such choice makes, comparing perfor-
mance for models trained with all data and with filtered
data. In addition, we use curriculum learning to make use
of all the collected data while making model training more
effective and efficient.
Curriculum Learning. The idea of curriculum learning
(CL) was introduced in [2] and inspired by how humans
learn: from easy concepts to more difficult ones. CL posits
that models should be trained with easy samples first, and
the difficulty of samples should be increased throughout
training. CL thus relies on two main components: a dif-
ficulty score to sort samples from easy to hard and a pac-
ing function to decide how to choose samples during each
training step [10, 37]. The choice of difficulty score allows
researchers to introduce domain knowledge into the train-
ing process since they decide which characteristics of the
data make a sample easy/hard. For computer vision applica-
tions, number of ground truth objects [44], object size [29],
and human performance on visual tasks [31, 34] are among
the scores that have been investigated. For WSOD appli-
cations, previous CL approaches focus on image features
(such as number of objects) since image-level ground truth
labels are assumed known. Our approach differs since we
extract labels from captions (which may be noisy) and are
the first, to the best of our knowledge, to use caption-based
and image-caption pair-based difficulty scores, thus exploit-
ing the image-caption relationship that is not leveraged in
previous studies.

3. Methods

In this section, we introduce the difficulty scores we con-
sider, explain the ways we use such scores to guide model
training, and summarize the network architecture we exper-
iment with.

3.1. Caption-based Difficulty Scores

We extract caption length (defined as the number of words
in a caption) as our main caption-based difficulty score.
Such score is simple to compute and is generalizable to
tasks other than WSOD since it does not require knowledge
of which categories of interest models are trained on. We
argue that caption length could be a proxy for the number
of objects of interest mentioned by a caption: the longer the

caption, the more likely it is to mention objects of interest,
and, consequently, the more supervision it can provide.

3.2. Image-based Difficulty Scores

We use average size of the region proposals per image
and number of regions proposals per image as our image-
only difficulty scores. We use Selective Search [35] and
MCG [1] to compute region proposals (Sec. 4.2). We
choose such scores as proxies for number and size of ground
truth objects, which have been successfully used with CL in
previous work [29, 44], but are unavailable for large, not
manually annotated, in-the-wild datasets.

3.3. Image-caption Alignment Difficulty Scores

Image-caption alignment measures aim to quantify how
well a caption describes an image. We hypothesize that
higher alignment should translate to a stronger supervisory
signal provided by the caption for WSOD. We consider
two alignment measures: a CLIP score [21] and concrete-
ness [13]. The former is a general-purpose score derived
from a model trained on a wide variety of image-caption
pairs (which has been linked to this model’s robustness
across datasets [7]), the latter is a dataset-specific method
aiming to capture nuances in alignment that could be differ-
ent from one dataset to another.

3.3.1 CLIP-based Alignment

The CLIP model [21] maximizes the cosine similarity be-
tween corresponding image-caption embeddings and mini-
mizes the similarity between all non-corresponding image-
caption pairs’ embeddings in the batch. Given an image-
caption input pair, we compute the cosine similarity be-
tween the CLIP text and image embeddings and consider it
as our alignment score. Fig. 2 shows examples of image-
caption pairs for the two in-the-wild datasets we use in
our experiments, stratified according to their CLIP-based
alignment. While we see that captions in top-scoring pairs
closely describe the image, in bottom-scoring pairs, they
do not. For instance, the bottom two pairs represent mis-
alignment errors naturally occurring in in-the-wild datasets.
Captions for intermediate-scoring pairs are more descriptive
than bottom-scoring ones, but more vague than top-scoring
pairs.

3.3.2 Concreteness

The idea behind concreteness is to measure how well-
clustered images with shared words in their captions are in
an image features space; if a word is tightly clustered, it is
highly concrete [13]. In detail, let wv represent the set of
words associated with image v, and let Vw be the set of im-
ages associated with a word w. For image v ∈ Vw, we first

2598



Figure 2. Examples of top- (left), middle- (center), and bottom- (right) scoring captions according to our CLIP-based alignment for the
two in-the-wild datasets we consider: Conceptual Captions (top) and RedCaps (bottom).

measure how often v’s nearest neighbors are also associated
with w by computing the expected value of the Mutually
Neighboring Images (MNI) of word w as:

EPdata
[MNIkw] =

1

|Vw|
∑
v∈Vw

|NNk(v) ∩ Vw| (1)

where NNk(v) represents the set of k Nearest Neighbors
of v in image space. To correct for word frequency, con-
creteness is computed as the ratio of the value in Eq. 1 and
the expected value computed under a random distribution of
image data.

concreteness(w) =
EPdata

[MNIkw]

EPrandom
[MNIkw]

(2)

3.4. Guiding Model Training with Difficulty Scores

With the previously introduced metrics, we can assign a
score to each image-caption pair: the higher the score, the
easier learning from the pair is assumed to be. Here, we
introduce three ways such scores can guide model training:
(1) filtering, (2) curriculum learning, and (3) their combina-
tion.

3.4.1 Filtering

With this approach, we train models only on a subset of
high-scoring, easy-to-learn-from image-caption pairs. This
method is easy to implement and can significantly reduce
the amount of resources needed to train a model, depending
on how many samples one filters out. In the experiments,
for each score, we take the top scoring (i.e., most aligned
or easiest to learn from) 50% of each dataset and train a
WSOD model on these subsets. With this approach, we

view each sample as either informative (thus included) or
noisy (thus filtered out). This binarization of the difficulty
scores does not fully leverage the nuances in quantifying
difficulty provided by difficulty scores, and thus may seem
like an oversimplification. To remedy this issue, we experi-
ment with curriculum learning, described next.

3.4.2 Curriculum learning

With curriculum learning (CL) [2], we train models on
“easy” concepts first, and then build up to more complex
ones. To do so, training samples must be scored by diffi-
culty and a model is first trained with the easiest samples.
Harder samples are progressively included in the training
set as training progresses. Specifically, for each score, sam-
ples are grouped in four subsets representing the four quar-
tiles according to a given difficulty score. WSOD models
are trained on the top quartile only first and additional quar-
tiles are sequentially added as training progresses. CL is
thus able to leverage the nuanced order our proposed dif-
ficulty scores provide: all samples are used, but the model
learns from them at different stages. CL can still provide
computational advantages since early epochs do not include
all data: by keeping the number of epochs fixed, fewer im-
ages are seen during training, thus making the training pro-
cess more efficient. At the same time, since all data points
are used at a certain point for training, the resulting training
speedup is not as high as the one provided by the filtering
approach.

3.4.3 Filtering and curriculum learning

Finally, we investigate the benefit of combining the two ap-
proaches. We apply filtering first and then train models us-
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ing CL within the chosen subset. With this approach, we
further improve training speed by not training a model on
the whole filtered subset at each epoch. Specifically, we
only consider the top-scoring 50% or 75% of each dataset,
and we train the model using CL within the chosen subset.
We consider 75% in addition to 50% (as used for filtering)
because combining filtering and CL causes a more dramatic
scarcity of data seen compared to filtering only (since CL
trains on a subset of the already-filtered data in each epoch).

3.5. Weakly Supervised Deep Detection Network

3.5.1 Architecture

We use the Weakly Supervised Deep Detection Network
(WSDDN) [3] model for WSOD (with some architectural
changes, as done in previous work [36, 43]). WSDDN rep-
resents one of the first successful approaches for WSOD
and has been used as the base network for future mod-
els [24, 32, 33, 38]. This model adapts a VGG16 [30] to
make it trainable for WSOD: the last pooling layer is re-
placed by a region pooling layer which, given an image fea-
ture matrix and a region, returns a feature representation
for that region. While WSDDN uses spatial pyramid pool-
ing [11, 17], we use the common ROI pool [8]. Region-
level features are then processed by two fully-connected
layers with ReLU activation functions. After these layers,
two streams branch out: a classification data stream, and a
detection data stream. The two streams are then combined
to obtain a score matrix xR ∈ RC×|R|, with C being the
number of classes and |R| the number of regions. Regions
are then sorted by this score (for each class independently)
and non-maxima suppression is applied to obtain the final
list of class-specific detections for each image. To go from
region-level scores to image-level class prediction scores yc,
we sum scores xR for a given class across the regions, and
the network is trained by computing an image-level loss as
the sum of class-specific binary entropy losses. Finally, the
WSDDN paper introduces a spatial regularizer, which we
omit.

3.5.2 Extracting Objects from Captions

To leverage captions as supervision to train WSOD mod-
els, we extract mentions of objects of interest (i.e., COCO
categories) from the captions. To do so, we apply
ExactMatch (also previously used in [7, 42]), where we
extract verbatim mentions of such objects. [42] report 89%
precision and 62% recall of the labels extracted from COCO
Captions, but in our setting these values are likely lower
due to the variable and reduced image-text alignment in the
datasets from which we extract training data, Conceptual
Captions and RedCaps. Note no image-level labels are pro-
vided in these datasets.

4. Experimental Validation

4.1. Datasets

We focus our experiments on two in-the-wild datasets, Con-
ceptual Captions and RedCaps. We also conduct a limited
set of experiments on COCO Captions, to compare and con-
trast findings about the impact of filtering and curriculum
learning on in-the-wild versus more traditional, descriptive
captions. We use COCO for evaluation of WSOD mod-
els trained with supervision from captions in these three
datasets.

Conceptual Captions [27] (CC) includes 3M image-
caption pairs crawled from the Internet where captions are
extracted from the alt-text HTML field. This dataset
represents one of the first in-the-wild datasets since captions
are not generated ad hoc after the collection of the dataset,
but they are still pre-processed to ensure as high quality a
dataset as possible (e.g., removal of captions with high to-
ken repetition rate or with high noun rate or capitalized-
word ratio). Because we extract mentions of objects of in-
terest from the captions to use as supervision, we exclude
all image-caption pairs for which ExactMatch extracts
no mention, yielding a dataset of 416,642 images.

RedCaps [6] includes 12M image-caption pairs collected
from 350 manually selected subreddits to ensure the in-
clusion of photographs (rather than, for instance, memes)
and to limit the number of people (which are present in
the majority of images in other common manually curated
datasets [5]). RedCaps differs from CC as it applies mini-
mal caption pre-processing and instead relies on the nature
of Reddit to produce high quality data: captions are gen-
erated from human users to accompany each image. The
dataset maintains its in-the-wild characteristics though be-
cause users are not bound to caption images with their de-
scription. In addition, the limited amount of pre-processing
makes RedCaps potentially more likely to include noisy
data (e.g., misaligned pairs as shown in Fig. 2). The re-
duced amount of human involvement in curating this dataset
(via preprocessing) and its larger size make it even more
appealing than CC as a source of supervision for WSOD.
As done for CC, we exclude images whose captions do
not contain mentions of objects of interest as extracted by
ExactMatch, resulting in a total of 907,339 images.

We also use COCO Captions [5] to train WSOD mod-
els and verify if results for in-the-wild datasets apply to
older, manually curated datasets as well. COCO Captions
includes an average of 5 captions per image in COCO Ob-
jects. Such captions were crowd-sourced from human an-
notators. As they were collected with specific instructions
to human annotators, these captions differ from in-the-wild
ones, which naturally co-occur with images. After exclud-
ing images whose captions include no mentions of objects
of interest, 95,110 images remain in the dataset.
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Since the previously introduced datasets do not include
annotated samples, we evaluate our WSOD models on
COCO Objects [19], which includes 118,287 training im-
ages and 5,000 validation images.

4.2. Implementation

We use PyTorch 1.7.1 to implement our models. We ex-
tract region proposals using Selective Search [35] for CC
and RedCaps, and using MCG [1] for COCO training and
evaluation. We empirically found MCG proposals to work
better than SS for COCO, but they are not available for CC
and RedCaps. All models are trained on 2 Titan X Nvidia
GPUs with total batch size of 4.

4.2.1 Curriculum and training schedule

For curriculum learning, we use a step pacing function over
the course of 4 (partial) epochs. Training starts with a first
partial epoch containing images in the top quartile only,
based on one of the difficulty metrics. Then the second
top-scoring one is added, thus in the second partial epoch
the model is trained with half of the data (the “easier” half
based on difficulty metrics). In the third partial epoch, the
third quartile is added, and in the fourth epoch, the model is
trained with all the data. The only exception to this scheme
is that used for number of mentioned objects: due to the
limited number of samples with more than one mentioned
object, we train the model for 3 epochs with images whose
captions mention more than one object, and with all im-
ages for a final epoch. For filtering, models are trained for
4 epochs as well (each epoch containing the same 50% of
the dataset). Filtering experiments using number of men-
tions are an exception, as they are trained twice as long
(i.e., 8 epochs) given the low number of captions with more
than one object mention. The filtering+CL method is also
trained for 4 epochs. Baselines are trained for 3 epochs
to ensure that baseline models do not train on fewer im-
ages than those used for CL: given that we add a quarter of
the data at each epoch, CL models are trained on 2.5 times
(0.25+0.5+0.75+1) the original size of each dataset. Base-
line models see all data in each epoch. Overall, baselines are
trained with 3x the number of images in the original data,
CL methods with 2.5x that size, filtering methods with 2x,
and combination methods with 1.25x or 1.875x (depending
on whether we keep the easiest 50% or 75% of the data in
each of 4 epochs). All models trained on COCO are trained
for 7 epochs due to the smaller training set size.

4.3. Main analysis on in-the-wild datasets

Curriculum learning uses all data but uses it more effi-
ciently by only training on a subset of the data in early
epochs. Thus, we test curriculum learning for each of
the six introduced difficulty scores (i.e., CLIP-based align-

ment, concreteness, caption length, number of mentioned
objects, proposal number, proposal size). For a subset of
these difficulty scores, we also test filtering and the com-
bination of filtering and CL. Specifically, we combine the
best-performing filtering method and two well-performing
CL methods. As our baseline, we train WSDDN models on
RedCaps and CC without filtering or CL.

Table 1 reports results for our filtering and CL strategies
on CC and RedCaps, using a learning rate of 1e-3. We no-
tice how CL outperforms filtering approaches (italic results,
indicating methods that outperform the baseline). This is
true for eight of the twelve methods tested for CL, and only
one of the four tested for filtering. Looking at CLIP and
concreteness specifically, results are better (or comparable)
with CL than filtering.

CC RedCaps
Baseline 2.2 1.8
Filtering (keep 50% of data)

CLIP 1.5 2.6
Concreteness 0.7 1.4

Curriculum learning
Caption length n/a 2.5

Num. mentioned objects 1.5 4.4
Proposal size 2.9 3.0

Proposal number 1.7 3.1
CLIP 2.4 2.5

Concreteness 2.5 1.6
Filtering + curriculum learning
Keep 50% of data

CLIP + Caption length 0.9 3.6
CLIP + Proposal size 0.9 1.9

Keep 75% of data
CLIP + Caption length 5.8 5.2

CLIP + Proposal size 2.5 3.4

Table 1. Main filtering and CL results: mAP@0.5 (in percentage)
on COCO val 2017 for WSDDN models trained on CC and Red-
Caps with the two approaches individually and combined. Bold:
highest performance per group. Italic: methods outperforming the
baseline. n/a: model training failed to converge.

Our CLIP score outperforms (or performs on par with)
concreteness and results in more similar performance across
datasets (especially for CL). This is compatible with the
observation that CLIP is a general-purpose tool trained on
a variety of images, while concreteness was developed for
manually curated datasets (i.e., COCO and Flickr30K [14]),
which may make it less suitable for in-the-wild datasets.

We next compare CL with alignment scores with single-
modality caption-based and image-based scores. These
are effective at boosting performance (mAP@0.5=2.9% for
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proposal size on CC, and mAP@0.5=4.4% for number of
mentioned objects on RedCaps). However, the boost they
provide is not reliable, with a score helping on one dataset
but not on the other (e.g., number of mentioned objects, pro-
posal number). Such unreliability is further exemplified by
results using caption length on CC, where training diverges.

Finally, we report results for the combination of the best
filtering strategy (CLIP) and two CL strategies (i.e., pro-
posal size and caption length). When keeping 50% of the
data followed by CL, performance increases (compared to
the corresponding row under CL) for caption length on Red-
Caps (mAP@0.5=3.6% vs 2.5%), but otherwise decreases,
especially on CC. Sub-optimal performance for CC was ex-
pected since the filtering approach under-performs the base-
line. Overly reducing the size of the training set is expected
to lead to decreased performance, and our results indicate
we have reached that point with CC (but not for RedCaps,
which is twice as big as CC). To prove this, we repeat the
combination experiments with 75% of the data (instead of
50%), reporting substantially higher performance than the
baseline for our proposed filtering and CL on both CC and
RedCaps (mAP@0.5=0.9% to 5.8% and from 3.6% to 5.2%
for CL with caption length, respectively). This combina-
tion achieves the best results across all methods in Table 1.
These results show how combining filtering and CL could
make training not only more efficient but more effective,
too.

4.4. Analysis on hyperparameter choice and train-
ing schedule

Next, we investigate the recent claim that CL may only ben-
efit training of models with the Adam optimizer [16] when
suboptimal hyperparameters are chosen [39]. For this rea-
son, we test 1e-4 as the learning rate and re-run our ex-
periments on in-the-wild datasets using this decreased (and
more optimal) learning rate. Gains from curriculum learn-
ing with suboptimal hyperparameters are valuable since hy-
perparameter search can be costly.

Finally, following previous work reporting a beneficial
impact on performance for CL when training resources are
limited [41], we repeat select experiments with optimized
learning rate, but shorter training time: 1 epoch for the base-
line and 2 epochs for filtering and CL (which see the data
the same number of times or fewer times than the baseline:
0.5+0.5 or 0.25+0.5, respectively).

4.4.1 Curriculum learning and learning rate

We report results for experiments with lower learning rate
on CC and RedCaps in Table 2. We observe that curriculum
learning and filtering still provide gains over the baseline re-
sults. In the case of filtering, three of the four methods out-
perform the baseline, compared to just one in Table 1. Gains

CC RedCaps
Baseline 10.3 10.3
Filtering (keep 50% of data)

CLIP 10.5 10.6
Concreteness 10.3 11.0

Curriculum learning
Caption length 9.6 10.9

Num. mentioned objects 9.0 9.7
Proposal size 9.4 10.9

Proposal number 9.8 10.6
CLIP 10.8 10.4

Concreteness 9.6 10.3
Filtering (50%) + curriculum learning

CLIP + Caption length 10.7 10.8
CLIP + Proposal size 10.2 10.6

Table 2. Decreased learning rate from 1e-3 to 1e-4. mAP@0.5 on
COCO val 2017 for WSDDN models trained on CC, RedCaps.

CC RedCaps
Baseline 9.7 9.4
Filtering

CLIP 10.5 10.9
Concreteness 10.5 11.0
Curriculum learning

CLIP 10.5 11.5
Concreteness 9.6 10.9

Table 3. Shorter training schedule (lr=1e-4, showing mAP@0.5).

are more pronounced on RedCaps, and using CLIP for
CL. However, the best-performing single-modality meth-
ods using CL now fail to outperform the baseline (e.g.,
mAP@0.5=2.9% for proposal size in Table 1 and 2.2% for
the baseline on CC, vs 9.4% in Table 2 and 10.3% for the
baseline). This result partly confirms the claims advanced
in [39] for NLP applications, but in the new context of com-
puter vision. Note that CL using CLIP outperforms the
baseline using both learning rates.

4.4.2 Shorter training schedule

Table 3 reports results for select experiments with optimized
learning rate and reduced training time. Comparing Table 3
and Table 2, we observe that absolute gains over the base-
line are increased in Table 3. For example, CL using CLIP
gains 0.8 percentage points (=10.5-9.7) over the baseline on
CC, and 2.1 on RedCaps, in Table 3. In Table 2, these gains
are 0.5 and 0.1, respectively. This verifies previous claims
that CL is most beneficial when training resources are lim-
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100% 50%
GT labels* 16.5* 6.2*
Baseline 10.7 2.0
Curriculum learning - alignment

CLIP 10.9 3.8
Concreteness 13.7 5.6
Curriculum learning - GT info
Num. objects 13.0 5.8

Obj. size 6.6 6.0

Table 4. Training on COCO using 100% and a random 50% sub-
set: baseline and CL mAP@0.5 (in percentage) on COCO val
2017. The * denotes upper bound.

ited [41], a result that has not been shown in the context of
vision-language training or WSOD before.

4.5. Analysis on COCO

While we focus on in-the-wild datasets, we also test
whether our conclusions hold on traditional, manually cu-
rated, “clean” datasets like COCO Captions. Table 4 re-
ports results for WSDDN models trained on labels extracted
from the full (i.e., 100%) COCO Captions data and on a ran-
dom 50% subset. First, we report both a baseline result, and
an upper-bound result with ground-truth labels (rather than
those extracted from captions, as the baseline does). Fol-
lowing previous work, we expect CL to be the most benefi-
cial when training data is limited [41]. Indeed, we observe
larger gains under the 50% setting (e.g., mAP@0.5=2.0%
for the baseline to 3.8% for CLIP and 5.6% for concrete-
ness, vs 10.7% to 10.9% and 13.7% in the 100% setting).
This is the first time the impact of CL under a limited-
data setting is reported for WSOD from caption supervision.
Note that concreteness outperforms CLIP-based alignment,
which is reasonable since concreteness was developed for
COCO [13].

Our focus is on using weak labels, but, for compari-
son, we also test CL with ground-truth bounding box in-
formation. CL with number of objects and object size out-
performs CL using alignment very slightly, or even un-
derperforms (in the 100% setting). CL with concrete-
ness achieves performance similar to CL with number of
objects, highlighting the promise of alignment-based CL.
Finally, CL with concreteness almost closes the gap be-
tween training with caption-extracted labels and with GT
(mAP@0.5=5.6% vs. 6.2%) in the 50% setting.

5. Discussion and Conclusions

In this work, we compared ways to train WSOD models
with caption-extracted supervision on in-the-wild datasets
in a more efficient and effective way using curriculum learn-

ing, which has not been evaluated in this setting before. We
tested a diverse spectrum of difficulty scores. We showed
the benefit of image-caption alignment to boost perfor-
mance, with improvements consistent across choices of hy-
perparameters, training schedules, and datasets. We report
how such benefit is more pronounced when training time or
data is limited, or for sub-optimal choices of learning rate,
compatibly with recent claims in the NLP field [39].

Our study has some limitations: first, we used verba-
tim mentions of objects of interest to extract labels from
captions. This method’s low recall [42] shows we are dis-
carding image-caption pairs with supervisory signal. We
could use a different extraction method including a list of
synonyms for class names or train a model to extract labels
from captions. Additionally, we only considered a step pac-
ing function; alternative pacing functions may lead to better
results, although previous work has shown that the choice of
pacing function does not seem to significantly impact per-
formance [37].
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