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Abstract

Broad-scale marine surveys performed by underwater
vehicles significantly increase the availability of coral reef
imagery, however it is costly and time-consuming for do-
main experts to label images. Point label propagation is
an approach used to leverage existing image data labeled
with sparse point labels. The resulting augmented ground
truth generated is then used to train a semantic segmen-
tation model. Here, we first demonstrate that recent ad-
vances in foundation models enable generation of multi-
species coral augmented ground truth masks using denoised
DINOv2 features and K-Nearest Neighbors (KNN), with-
out the need for any pre-training or custom-designed al-
gorithms. For extremely sparsely labeled images, we pro-
pose a labeling regime based on human-in-the-loop prin-
ciples, resulting in significant improvement in annotation
efficiency: If only 5 point labels per image are available,
our proposed human-in-the-loop approach improves on the
state-of-the-art by 17.3% for pixel accuracy and 22.6% for
mIoU; and by 10.6% and 19.1% when 10 point labels per
image are available. Even if the human-in-the-loop label-
ing regime is not used, the denoised DINOv2 features with
a KNN outperforms the prior state-of-the-art by 3.5% for
pixel accuracy and 5.7% for mIoU (5 grid points). We also
provide a detailed analysis of how point labeling style and
the quantity of points per image affects the point label prop-
agation quality and provide general recommendations on
maximizing point label efficiency.

1. Introduction

Effective and informed management of marine ecosystems
requires data at a range of spatio-temporal scales [8]. Ma-
rine surveys are being increasingly performed using au-
tonomous underwater and surface vehicles [9, 16]. How-
ever, these approaches generate large quantities of images
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Figure 1. Our point label propagation approach leverages the DI-
NOv2 foundation model without any fine-tuning to generate aug-
mented ground truth masks for complex underwater imagery. Top:
Prior approaches relied on layering superpixels containing point
labels (left), or pre-training a feature extractor on labeled coral im-
agery, and then clustering pixels using a custom-designed super-
pixel algorithm (right). Bottom: Our method uses KNN to cluster
deep features from the denoised DINOv2 foundation model.

of the seafloor which must first be analyzed to obtain usable
outputs such as coverage estimations of different substrates
and coral species [33, 37]. Coral images are often highly
complex, with indistinct boundaries, high variation in color
and texture among coral species and poor clarity [20, 36].
The intricate image characteristics and the difficulty in ac-
curately identifying coral species requires domain experts
to annotate underwater imagery, preventing the use of com-
mon computer vision tools such as the crowd sourcing an-
notation platform Amazon Turk.

Traditionally, marine scientists annotate underwater im-
ages using a method called Coral Point Count [24], where
randomly or grid-spaced sparse pixels are labeled. These
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pixels are called point labels [32]. Although there is a large
quantity of historic data available in both grid and random
formats [4, 13], the optimal style of point placement for the
purpose of training deep learning models to perform seman-
tic segmentation has not been explored.

In recent years, superpixels based on color information
[1, 2, 31] and deep features [32] have been used for propa-
gating point labels into dense, pixel-wise augmented ground
truth masks used to train deep neural networks to perform
semantic segmentation of unseen coral images. Most re-
cently, Raine et al. [32] introduced a novel point label aware
approach to superpixels, which clustered pixels based on
deep features. While this method improved on the state-of-
the-art, it required training on coral imagery to provide the
deep features for the superpixel method, and suffered from
performance degradation when small quantities of point la-
bels are available.

In this work, we tackle the regime in which extremely
few labels are provided. This setting is critical as ma-
rine survey projects often have limited budgets for labeling
data [8]. Furthermore, a common use case for survey data
processing involves quickly iterating and retraining models
during field trips as new species or environmental condi-
tions are encountered [8]. We propose using the general
foundation model DINOv2 [28, 38] to provide the per-pixel
deep features (Fig. 1). We use the simple K-Nearest Neigh-
bor algorithm to generate the augmented ground truth, and
outperform the state-of-the-art for small numbers of point
labels. We also demonstrate further performance improve-
ments by using a human-in-the-loop point selection regime
in which the knowledge of the human expert is leveraged to
reduce uncertainty in the KNN’s feature space.

This paper demonstrates the relevance of general foun-
dation models for multi-species segmentation of domain-
specific underwater imagery, while improving label effi-
ciency when few points are available (Fig. 1). Our contri-
butions are summarized as follows:
1. We propose to leverage a general purpose foundation

model to generate per-pixel deep features for domain-
specific coral images and establish that the features are
effective without any training or fine-tuning on coral
imagery. Combining these features with the simple
K-Nearest Neighbors algorithm is sufficient for generat-
ing accurate augmented ground truth masks from sparse
point labels and removes the need for complex super-
pixel algorithms.

2. For extremely sparse point labels, i.e. 5-25 points per
image, we propose a human-in-the-loop labeling regime,
which combines human knowledge with the model’s in-
trospective uncertainty to select informative point label
locations. We outperform the previous state-of-the-art
by 17.3% pixel accuracy and 22.6% mIoU when there
are 5 point labels available per image, and by 10.6% and

19.1% if 10 point labels are available.
3. Even without the human-in-the-loop labeling regime, us-

ing DINOv2 denoised features with a KNN improves on
the label propagation task for small numbers of point la-
bels per image. On the UCSD Mosaics dataset we see
improvements of 3.5% for pixel accuracy and 5.7% for
mIoU when 5 points are labeled; and 3.3% in pixel ac-
curacy and 10.2% in mIoU for 10 points.

4. We perform thorough experiments to determine the ef-
fect of the number of point labels and the point labeling
style on the point propagation task, and provide mean-
ingful recommendations for efficient annotation.

We make our code1 and video2 available to foster future
research.

2. Related Work

Broad-scale marine survey technologies such as au-
tonomous underwater and surface vehicles enable the col-
lection of large quantities of imagery [9, 16, 25, 27]. Au-
tomating the analysis of this imagery requires solutions
which combine computer vision, deep learning and domain-
specific expertise in marine biology [14, 37]. This section
discusses approaches for semantic segmentation of under-
water imagery and weakly supervised methods for point la-
bel propagation, recent advances in foundation models, and
human-in-the-loop principles.

2.1. Segmentation of Underwater Imagery

Semantic segmentation of underwater imagery is compli-
cated by a range of factors including the visual traits of coral
species, which can appear similar between different species,
and which are often intricate and highly textured [4, 15].
The image quality and clarity can also be affected by turbid-
ity, scattering and attenuation of sunlight, blur and changes
in coloration due to depth [20, 36]. These image character-
istics, combined with the lack of semantic “objectness” of
coral instances, makes semantic segmentation of underwa-
ter imagery a unique and challenging problem in computer
vision.

There have been numerous approaches for fully su-
pervised segmentation of corals in underwater imagery
[11, 18, 35, 35, 41, 42, 44, 45], where the model is trained
on pairs of images and densely labeled, pixel-wise ground
truth masks. The TagLab annotation tool [30] makes dense
pixel-wise annotation of large orthoimages faster, but relies
on a model trained on 15,000 densely labeled coral images.

There are fewer approaches for weakly supervised seg-
mentation of corals [1, 2, 31, 32, 39, 40]. These approaches
are based on custom-designed superpixel methods which

1https : / / github . com / sgraine / HIL - coral -
segmentation

2https://youtu.be/YBTUCECu3OM
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Figure 2. Proposed Algorithm Schematic. Our smart labeling scheme combines domain expert knowledge and our model’s internal
uncertainty to optimize point label selection in a human-in-the-loop framework. Our method starts by taking a coral image as input and
requesting the domain expert to label up to 10 points centrally in the largest instances. Then a feature similarity map is generated by
calculating the cosine similarities between the labeled points and every other pixel. We encourage exploration by incorporating a distance
map and then combine both maps to obtain an overall probability mask for pixel selection. The selected pixel is fed back to the domain
expert for labeling, and then the KNN is updated. Once the maximum points have been labeled, the augmented ground truth mask is
generated and can be later used for training a model to perform semantic segmentation.

generate dense ground truth masks from sparse point la-
bels. The multi-level superpixel method [1, 2, 31] gener-
ates superpixels from color features at many spatial scales,
and then propagates point labels within each segment be-
fore joining together the different “levels” of superpixels.
The most recent approach, Point Label Aware Superpixels
[32] describes a novel superpixel algorithm which uses the
point labels directly in generating the superpixel segments.

These prior superpixel approaches rely on having suf-
ficient points available, and experience degraded perfor-
mance in the very sparse setting. There is an opportunity
to generalize and simplify these approaches by leveraging
the recent advances in general foundation models.

2.2. Foundation Models

Recent works developed foundation models for learning
robust pre-trained feature representations that are task-
agnostic [23, 28, 46]. Foundation models are trained on
large-scale datasets and are designed to learn highly gener-
alized representations which allow the model to transfer to
tasks and data outside of the training distribution [23].

Some works aim to personalize foundation models for
specific visual concepts, e.g. the user’s pet, as in [43],
or adapt the model by training a task-specific decoder or
adapter [5]. For leaf counting, instance segmentation, and
disease classification for plant phenotyping, the adapted
general foundation models did not outperform the task-
specific methods [5]. In medical image analysis, [3] demon-
strate the cross-task generalizability of DINOv2 and re-

port competitive performance when the features are used
with KNN for disease classification. Other works have
performed self-supervised object localization without labels
[34], however they do not perform segmentation of the en-
tire image.

Although some research has investigated the application
of the DINOv2 foundation model for specialized problems
[3, 5, 17], the performance of DINOv2 for underwater coral
segmentation has not been studied. As described in Sec-
tion 2.1, underwater images have unique visual characteris-
tics, including abstract textures, fractal-like boundaries, and
overlapping instances [4, 32]. It is unknown whether foun-
dation models trained on general images are able to produce
meaningful feature embeddings for coral imagery.

2.3. Human-in-the-Loop

Human-in-the-Loop describes machine learning which in-
volves interaction between humans and the algorithm [26].
Specifically, the Human-in-the-Loop sub-field of Interac-
tive Machine Learning describes a framework in which con-
trol is shared between the human and the model: the human
supplies information to the model in a focused, frequent and
interactive way [19, 26].

While using models to predict labels on new data has
been performed in the ecology domain previously [6, 22],
the use of foundation models as part of an interactive la-
beling framework has not been implemented for coral point
label propagation.

To our knowledge, an approach for multi-species coral
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segmentation which combines the general knowledge of
foundation models with sparse domain-specific labeling has
not been proposed in the literature. This is an opportunity to
decrease the associated time and cost of manually labeling
domain-specific imagery, while improving the accuracy of
propagated ground truth masks when few labels are avail-
able.

3. Method
3.1. Method Overview

Our proposed point label propagation approach leverages
the denoised DINOv2 foundation model [38], based on
[28]. We generated the augmented ground truth mask by
clustering pixels in the deep feature space with K-Nearest
Neighbors.

Our approach takes a photo-quadrat coral image and a
set of sparse point labels as input, and outputs a dense pixel-
wise augmented ground truth mask. The sparse point labels
are either randomly distributed in the image, spaced evenly
as a grid3, or selected using our proposed Human-in-the-
Loop smart labeling regime (Section 3.2).

We take our image as input and obtain a set of feature
vectors of length 768 from the denoised DINOv2 feature
extractor [38]. This feature extractor is based on a trans-
former architecture [28], which outputs a deep feature for
every 14x14 pixel patch in the input image. The feature
extractor also outputs a ‘CLS’ token for the whole image,
which we do not use. We spatially upsample the feature
vectors with bilinear interpolation, such that we obtain one
deep feature vector for each pixel in the input image. The
per-pixel feature vectors are then L2 normalized.

We take our set of L sparse labeled pixels and store the
normalized feature embeddings {v1, . . . , vl, . . . , vL} for
these pixels. We also store X = {(x1, y1), . . . , (xL, yL)}
where (xl, yl) are the pixel coordinates of vl. We calculate
the cosine similarity between the feature embedding vl for
l ∈ {1, . . . , L} and the feature embedding vp for every other
pixel p in the image:

sim(vp, vl) = vp · vl. (1)

We determine the augmented ground truth mask by per-
forming K-Nearest Neighbors with k = 1. Note that we
trialed different values for k and did not see any improve-
ment for k > 1, as seen in Fig. 5 and discussed further in
the Supplementary Material.

3.2. Human-in-the-Loop Pixel Selection

To further improve our performance in the extremely sparse
case, we propose a novel labeling regime (Fig. 2). In con-

3In the case that grid-spaced points are used and the number of points
cannot be equally distributed into rows and columns, the nearest quantity
is used e.g. for 5 point labels, a grid of 2x2 points is used.

trast to prior approaches, which have leveraged randomly
distributed or grid-spaced sparse point labels, we consider
the point labeling problem as a human-in-the-loop task. To
this end, we assume that we have a domain expert available
to collaboratively label a certain number of points, which
are then used in our KNN and DINOv2 point label propa-
gation approach.

To select informative points that we want the human to
label, we consider the cosine similarity between labeled and
unlabeled pixel features in the DINOv2 deep feature space.
We start by asking the domain expert to label up to 10 pixels
in the middle of the largest instances they can see in the
image. For more than 10 point labels, the smart pixel regime
iteratively proposes one point at a time for labeling based
on which parts of the image have the most uncertainty. This
uncertainty is modeled as the cosine similarity to the closest
labeled pixel.

To do this, we first follow the method described in Sec-
tion 3.1 to obtain, upsample and normalize the per-pixel fea-
ture embeddings and we find a cosine similarity map (Eq. 1)
between the starting labeled pixels and every other pixel in
the image. We invert this map such that pixel locations
which have a low cosine similarity to the closest labeled
pixel have a higher probability of selection:

C(x, y) = 1− max
l∈{1,...,L}

sim(vq, vl), (2)

where vq is the feature vector at location (x, y).
We encourage exploration across the whole image by

creating a probabilistic distance map for the labeled pixels.
We first compute the Euclidean distance transform on a bi-
nary mask denoting the location of our set of labeled pixels,
where initially L = 10:

D(x, y) = min
(x′,y′)∈X

√
(x− x′)2 + (y − y′)2. (3)

We then perform Gaussian smoothing over the distance
transform and tune the smoothing parameter σ in the abla-
tion study in Section 5.2:

Dsmooth(x, y) = 1− exp
(
− D(x, y)2

2σ2

)
. (4)

We combine the probabilistic cosine similarity map with
the distance map, and weight the two terms with λ = 2.2
(see hyperparameter tuning in Section 5.2):

M(x, y) =
Dsmooth(x, y) + λ sim(vx, v̄l)

λ+ 1
. (5)

After combining the distance map, we select the
next pixel for labeling by taking the location (x̂, ŷ) =
argmax(x,y) M(x, y) corresponding to the highest selec-
tion probability in M.
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Figure 3. Point Label Propagation Pixel Accuracy and Mean IoU: our KNN and DINOv2 approach is shown in orange for random and
grid labeling, and the red line depicts performance of the KNN and DINOv2 approach with the Human-in-the-Loop collaborative labeling
scheme. Our approach significantly outperforms prior works when there are very sparse point labels available, i.e. 5-25 points. When a
larger quantity of points are used (300 points), the performance of the different approaches converges.

Table 1. Performance of Point Label Propagation Approaches (Refer to Section 4.3 for Metric Definitions), for 5 / 10 / 25 / 300 Point
Labels. ‘F-MSS’ is Fast MSS [31], ‘PLAS’ is Point Label Aware Superpixels [32], and ‘D+NN’ is KNN with Denoised DINOv2 [38]
(Ours).

Label PA mPA mIoU Time per Image (s)
Method Style 5 / 10 / 25 / 300 5 / 10 / 25 / 300 5 / 10 / 25 / 300 5 / 10 / 25 / 300

F-MSS Rand. 7.29 / 13.49 / 30.09 / 86.81 6.60 / 12.34 / 29.26 / 82.70 6.55 / 12.11 / 28.53 / 80.12 2.14 / 2.19 / 2.21 / 2.76
F-MSS Grid 6.36 / 13.94 / 39.18 / 89.98 5.95 / 13.01 / 36.72 / 88.17 5.93 / 12.83 / 35.51 / 86.44 2.43 / 2.45 / 2.36 / 2.96
PLAS - Single Rand. 48.45 / 55.26 / 65.16 / 86.68 32.03 / 41.44 / 57.65 / 81.74 23.86 / 32.22 / 47.76 / 77.56 1.71 / 2.00 / 2.17 / 1.93
PLAS - Single Grid 51.88 / 58.11 / 72.96 / 89.28 38.24 / 46.30 / 64.91 / 86.16 28.93 / 36.94 / 58.00 / 82.73 1.55 / 1.80 / 2.06 / 1.81
PLAS - Ens. Rand. 52.73 / 62.00 / 71.11 / 92.47 36.48 / 49.04 / 63.21 / 89.93 25.91 / 35.6 / 50.46 / 85.45 4.27 / 4.55 / 5.02 / 5.35
PLAS - Ens. Grid 54.23 / 65.76 / 76.31 / 94.60 40.08 / 53.20 / 69.13 / 92.49 30.00 / 40.34 / 59.82 / 89.38 4.06 / 4.25 / 5.15 / 5.28
D+NN (Ours) Rand. 55.72 / 64.51 / 75.07 / 88.77 39.94 / 50.91 / 65.80 / 83.84 32.09 / 42.79 / 58.04 / 81.75 4.88 / 4.55 / 4.74 / 4.90
D+NN (Ours) Grid 57.73 / 69.07 / 78.74 / 89.86 44.40 / 58.08 / 70.05 / 87.41 35.74 / 50.58 / 64.40 / 85.77 4.78 / 4.70 / 4.79 / 4.69
D+NN (Ours) Smart 71.56 / 76.38 / 81.27 / 89.61 61.46 / 69.87 / 75.91 / 86.45 52.60 / 59.48 / 67.97 / 85.00 4.74 / 4.98 / 20.0 / 273.08

4. Experimental Setup
This section describes the implementation details (Sec-
tion 4.1), evaluation datasets (Section 4.2), and evaluation
metrics (Section 4.3).

4.1. Implementation

All experiments are conducted with a Quadro RTX 6000,
and inference times are with respect to this GPU. Our ap-
proach is implemented using Python and PyTorch [29]. We
use the Faiss module to enable fast K-Nearest Neighbors on
GPU [21]. We use the denoised DINOv2 model and imple-
mentation from [38].

4.2. Datasets

The UCSD Mosaics dataset is a multi-species coral dataset
labeled with dense ground truth masks [2, 10]. We use the

version of the dataset provided by [2], but we notice some
ground truth masks are corrupted so we exclude these (we
remove 219 from the training split, yielding 3,974 images
and 32 from the test split, resulting in 696 images; further
details can be found in the Supplementary Material). Each
image is 512 by 512 pixels and the dataset contains 33 types
of corals and an ‘unknown’ or ‘unlabeled’ class. For con-
sistency with [2, 32], we ignore this class during evalua-
tion. To simulate the domain expert in our human-in-the-
loop smart labeling regime, we take the point label from the
ground truth mask at the location proposed, or in the case of
the first 10 pixels, we select the middle pixel of the largest
instances in the mask.

4.3. Evaluation Metrics

We use three frequently used metrics [2, 12, 32] to establish
and compare the performance of our approach with prior
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Table 2. Effect of Denoising on Point Propagation (Refer to Sec-
tion 4.3 for Metric Definitions). ‘Raw’ refers to the original DI-
NOv2 [28] and ‘Denoise’ refers to the Denoising ViT implemen-
tation [38].

PA mPA mIoU
Labels Raw / Denoise Raw / Denoise Raw / Denoise
5 68.58 / 71.57 60.23 / 61.46 50.28 / 52.60
10 73.32 / 76.38 68.04 / 69.87 55.76 / 59.48
25 76.94 / 81.27 70.97 / 75.91 61.61 / 67.97
50 79.71 / 82.80 76.68 / 77.52 68.43 / 72.96
100 82.87 / 85.60 79.45 / 81.82 74.92 / 78.77
200 86.14 / 88.06 84.20 / 84.83 81.44 / 82.75
300 88.10 / 89.61 85.58 / 86.45 83.79 / 85.00

Ground DINOv2 Denoise
Input Truth PLAS [32] [28] [38]

Figure 4. Comparison of Point Label Aware Superpixels (PLAS)
[32] features, DINOv2 features [28], and denoised DINOv2 fea-
tures [38]. For the transformer approaches, features for every
14x14 patch in the original image have been upsampled with bilin-
ear interpolation. All features are reduced to RGB for visualisation
with Principal Components Analysis (PCA). Pixels with similar
RGB colors are similar in the deep feature space. The CNN fea-
tures used by PLAS do not effectively group pixels into meaning-
ful segments. The denoising model clearly reduces the artefacts,
resulting in smoother, cleaner features and improved clustering.

methods: 1) Pixel Accuracy (PA) is the sum of correctly
classified pixels divided by the predicted pixels; 2) The
mean pixel accuracy (mPA) is the pixel accuracy averaged
over the classes; and 3) The mean intersection over union
(mIoU) denotes the average of the per-class IoU scores. A
higher score indicates better performance for all metrics.

5. Results
We first compare our method to the state-of-the-art for point
label propagation in Section 5.1 and then provide ablation
studies in Section 5.2.

5.1. Comparison to State-of-the-art Methods

We compare the performance of our novel method to state-
of-the-art approaches, namely Fast Multi-level Superpixel

Segmentation (Fast MSS) [31], a faster implementation of
CoralSeg [2], and Point Label Aware Superpixels, for which
we compare against both the single method (Single) and en-
semble of three Point Label Aware algorithms (Ensemble),
as described in [32].

As shown in Table 1, leveraging K-Nearest Neighbors
with features extracted by the denoised DINOv2 foundation
model [38] for point label propagation outperforms prior
approaches for small numbers of point labels (5, 10 and
25 per image). The absolute increase in mIoU is 46.1%
and 22.6% when compared to Fast MSS and Point Label
Aware Superpixels respectively for five point labels and our
human-in-the-loop labeling regime (Fig. 3); and we im-
prove by 64.3% and 17.3% for pixel accuracy (Fig. 3). If
the human-in-the-loop labeling regime is not used, we still
outperform the state-of-the-art by 3.5% for pixel accuracy
and 5.7% for mIoU (for 5 grid points). Even in the setting
that we do not target in this paper, i.e. if there are as many
as 300 point labels available, our approach exhibits com-
parable performance to the single classifier methods but is
outperformed by the ensemble of three Point Label Aware
Superpixel classifiers (Table 1).

Our approach, which leverages DINOv2 and our smart
labeling regime, exhibits similar computation times per im-
age as the ensemble for the Point Label Aware Superpixel
method for small quantities of point labels (Table 1). How-
ever, when smart labeling is used for large quantities of
points i.e. 300 points, the computation time is prohibitively
high as clustering in the deep feature space occurs every it-
eration to generate the feature similarity map (Eq. 2). For
large quantities of points, the grid-spaced version should be
used instead. It is important to note that the intended use
case for smart labeling is to improve performance in the ex-
tremely sparse (5-25 points) setting.

Fig. 6 presents qualitative results demonstrating that our
method generates a dense augmented ground truth mask
which closely matches the ground truth provided, even for
very sparsely labeled images.

5.2. Ablation Study

5.2.1 Denoising DINOv2 Features

We use the denoised feature extractor for DINOv2 de-
scribed in [38] and demonstrate the utility of this method
by results as seen in Table 2. Fig. 4 compares the origi-
nal [28] and denoised [38] DINOv2 deep feature embed-
dings. We provide an additional ablation in the Supplemen-
tary Material which also evaluates the performance when
DINOv2 is trained with registers [7], both with and with-
out denoising [38], although we did not see an improve-
ment with this approach. Fig. 4 compares the deep features
to the ground truth for each of the images, as well as the
deep CNN features used in the Point Label Aware Super-
pixel method [32]. We show that the raw DINOv2 features
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Figure 5. Pixel accuracy of label propagation for 25 point labels.
Our human-in-the-loop smart pixel selection regime is robust to
changes in hyperparameter values. (a) If the feature similarity map
is weighted more highly, there is a small improvement (we choose
λ = 2.2). (b) The pixel accuracy is highest when the distance map
Gaussian smoothness is set to σ = 50. (c) Clustering with KNN
results in higher performance when k = 1.

exhibit artefacts caused by the position embeddings used
during training. These artefacts are unhelpful during clus-
tering because coral instances of the same class can appear
in different areas of the same image. The denoising model
effectively removes these artefacts, resulting in cleaner fea-
tures and improved point propagation (Table 2).

5.2.2 Weighting the Probability Maps (λ)

We evaluate the impact of weighting term λ which balances
the importance of the cosine similarity map (Eq. 2) and the
distance map (Eq. 3). As seen in Fig. 5, we find that a value
of λ = 2.2 results in the best pixel accuracy, although our
approach is not sensitive to the exact value of λ.

5.2.3 Exclusion Distance

Our human-in-the-loop labeling regime considers the dis-
tance between each pixel selected for labeling by incorpo-
rating a Gaussian-smoothed distance mask between all pix-
els and the previously labeled pixels. The Gaussian smooth-
ing introduces the σ hyperparameter which controls how
closely pixels can be selected to previously labeled pixels.
We demonstrate the impact of this hyperparameter on the
point label propagation task through the ablation study re-
sults in Fig. 5, and find that our approach is robust to differ-
ent values.

5.3. Effect of Point Label Quantity

Greater quantities of point labels resulted in improved per-
formance for the point label propagation task (Fig. 3). Hav-
ing a sufficient number of points is especially critical for
the Fast MSS [31] approach. For grid-spaced point labels,
the Fast MSS approach improves from 5.9% to 86.4% mIoU
when increasing from 5 to 300 labels, a difference of 80.5%,

whereas the equivalent difference in mIoU is 59.4% and
50.0% for the Point Label Aware Superpixels [32] and our
DINOv2 and KNN approach, respectively (Table 1). We in-
clude the results for all values of point labels (5, 10, 25, 50,
100, 200, 300) in the Supplementary Material.

Although the point label propagation improves for all
methods as the quantity is increased, there is a decrease in
the rate of improvement as the number of labels is increased
from 100 to 300 points. When the quantity of grid labels is
increased from 100 to 300 points per image, the Fast MSS
[31] approach improves by 11.7% for mIoU, as compared to
an improvement of 68.9% for mIoU when increasing from
5 to 100 points. For the Point Label Aware Superpixels, the
mIoU improves by 49.9% when increasing from 5 to 100
grid points, and by 9.5% when increasing from 100 to 300
points. For our denoised DINOv2 and KNN approach, the
mIoU improves by 26.2% when increasing from 5 to 100
smart points, and by 6.2% when increasing from 100 to 300
smart points.

5.4. Effect of Point Label Placement Style

All of the approaches evaluated benefit from grid place-
ment of point labels over randomly placed point labels
(Fig. 3). The effect is particularly pronounced for the multi-
level superpixels (Fast MSS) [31], which exhibits absolute
improvements for mIoU when using grid-spaced pixels of
13.3%, 9.9%, 6.8% and 6.3% for label quantities of 50, 100,
200 and 300 points respectively. The Point Label Superpix-
els also benefit from grid-spaced points, with improvements
of 8.4%, 4.8%, 4.4% and 3.9% also for 50, 100, 200 and
300 points respectively. Grid-spaced labels ensure consis-
tent coverage of the whole image and make effective use of
every point label. As seen in Fig. 6, randomly placed point
labels can often be placed very close together, reducing the
information gained.

Fig. 6 demonstrates that for very small numbers of point
labels, e.g. 5 points per image, a significant benefit is gained
from leveraging the knowledge of the domain expert in se-
lecting points in the center of instances for up to 10 points,
and then iteratively selecting further pixels with the point
propagation model, as described in Section 3. The aug-
mented ground truth masks obtained by our proposed ap-
proach (top two rows of Fig. 6) are significantly closer to
the ground truth than the prior approaches. We note that our
smart label regime could be applied to the other techniques
as well, and we will investigate this in future work.

When few labels are available, the multi-level superpixel
methods [2, 31] suffer as the method relies on layering la-
beled regions from different scales. The point label super-
pixel method suffers in the sparse label case as the bound-
aries of the superpixels are not forced to conform to the
instance boundaries by conflicting point labels [32]. Our
method performs well in the sparse label cases because pix-
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Figure 6. Qualitative comparison between the Fast MSS approach [31], the Point Label Aware Superpixel approach [32] and our approach,
based on denoised DINOv2 features [38], K-Nearest Neighbors and our Human-in-the-Loop labeling regime. The top two rows show point
propagation for 5 labels, and the bottom two rows demonstrate point propagation when there are 300 labels available. The pixels used in
the point label propagation are shown as black circles within the output augmented ground truth masks. Additional qualitative results are
in the Supplementary Material.

els can be assigned as the correct class even if spatially
far away from labeled points, because the clustering occurs
only in the deep feature space.

6. Conclusion

This work has demonstrated that the DINOv2 foundation
model can be used without any fine-tuning to perform point
label propagation in underwater imagery. Our approach
uses denoised DINOv2 features and the simple KNN algo-
rithm to generate augmented ground truth masks. When
used with our proposed human-in-the-loop labeling regime,
we improve by 22.6%, 19.1% and 8.2% mIoU for 5, 10 and
25 point labels as compared to the prior state-of-the-art, sig-
nificantly improving label efficiency. Even if the DINOv2
features and KNN is used for grid-spaced point labels, we
outperform prior approaches on the UCSD dataset by 5.7%,
10.2% and 4.6% mIoU for 5, 10 and 25 point labels respec-
tively.

We also perform comprehensive studies on the effect of
the number of point labels and the point label placement

style on the accuracy of the point propagation task, and rec-
ommend that grid labels improve point label propagation
performance over random labels for all approaches. For
greater than 100 points per image, the improvement in point
label propagation is marginal if using the Point Aware Su-
perpixels [32] method or the DINOv2 and KNN method
presented in this paper. For very few points per image, it
is beneficial to incorporate domain expert knowledge in se-
lecting which pixels to label. This work has demonstrated
the relevance of general foundation models for complex do-
main specific tasks, and has significantly improved perfor-
mance and annotation efficiency of point label propagation
in the extremely sparse label setting.
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Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez,
Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al.
DINOv2: Learning robust visual features without supervi-
sion. arXiv preprint arXiv:2304.07193, 2023. 2, 3, 4, 6

[29] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. Pro-
ceedings of the Advances in Neural Information Processing
Systems, 32, 2019. 5

[30] Gaia Pavoni, Massimiliano Corsini, Federico Ponchio,
Alessandro Muntoni, Clinton Edwards, Nicole Pedersen,
Stuart Sandin, and Paolo Cignoni. TagLab: AI-assisted an-
notation for the fast and accurate semantic segmentation of
coral reef orthoimages. Journal of Field Robotics, 39(3):
246–262, 2022. 2

[31] Jordan P Pierce, Yuri Rzhanov, Kim Lowell, and Jennifer A
Dijkstra. Reducing annotation times: Semantic segmentation
of coral reef survey images. In Global Oceans, pages 1–9,
2020. 2, 3, 5, 6, 7, 8

[32] Scarlett Raine, Ross Marchant, Brano Kusy, Frederic Maire,
and Tobias Fischer. Point label aware superpixels for multi-
species segmentation of underwater imagery. IEEE Robotics
and Automation Letters, 7(3):8291–8298, 2022. 2, 3, 5, 6, 7,
8

[33] Hugh Runyan, Vid Petrovic, Clinton B Edwards, Nicole
Pedersen, Esmeralda Alcantar, Falko Kuester, and Stuart A
Sandin. Automated 2D, 2.5D, and 3D segmentation of coral
reef pointclouds and orthoprojections. Frontiers in Robotics
and AI, 9:884317, 2022. 1
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