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Abstract

Generalized Few-shot Semantic Segmentation (GFSS)
aims to use a few novel-class samples to enable the model
trained on base classes to have the ability to segment for all
classes (including base and novel classes). We analyze the
three main reasons for the model’s limited performance on
GFSS: the lack of adaptability to learn novel classes, the
instability that causes the catastrophic forgetting of base
classes, and the biased prediction of imbalanced classes.
To handle these issues, we design an auxiliary network (Dy-
namic Knowledge Adapter, DKA) for the GFSS task. Firstly,
DKA handles the adaptability problem by selecting only ef-
ficient parameters for finetuning. Secondly, DKA addresses
the stability problem by relabelling part of the training sam-
ples for iterative training, which alleviates the conflict be-
tween base and novel classes. Thirdly, it involves a prob-
abilistic calibration module to help the model rectify the
prediction bias caused by imbalanced data. Experimental
results show that these designs can help the model to take
into account the segmentation performance of base classes,
novel classes, and the background class, that is, to perform
well in all-class segmentation.

1. Introduction
Semantic segmentation is a typical computer vision prob-
lem that involves taking images as input and transforming
them into masks with highlighted regions of interest, where
each pixel in the image is assigned a category based on the
highlighted regions [22]. With the development of deep
learning techniques, there are more and more excellent so-
lutions for semantic segmentation tasks [1, 25, 30], both
CNN-based models and transformer-based models. How-
ever, traditional semantic segmentation tasks often require a
large number of pixel-level annotation samples, which may
not be satisfied in practical applications, such as tasks on
remote sensing satellite images [10] and medical images of
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Figure 1. We design the Dynamic Knowledge Adapter (DKA)
with probabilistic calibration for the generalized few-shot segmen-
tation task, which addresses the GFSS challenge by efficient fine-
tuning and relabelling. In the training phase (a), the model learns
the segmentation of base classes according to the labeled training
sample. In the inference stage (b), we fine-tune the DKA and the
novel-class classifier with support samples of novel classes, allow-
ing the DKA to acquire information about novel categories. Next,
we integrate base and novel-class classifiers, relabeling a train-
ing image subset through probabilistic calibration. Finally, we use
the DKA and classifier, both updated with appropriate weights, to
make predictions via probabilistic calibration.

rare diseases [26]. Therefore, Few-shot Semantic Segmen-
tation (FSS) has received wide attention [12], i.e., learning
novel categories with only a few labeled training samples
(a.k.a. support set), with knowledge transferred from non-
overlapping base classes where sufficient data is available
for pretraining.

FSS defaults that the test images (a.k.a. query set) con-
tain only categories from the support. However, a more
practical setting is to consider both the support-set classes
(i.e., novel classes) and the base classes, which gives rise to
the Generalized Few-shot Semantic Segmentation (GFSS)
[12] task. Specifically, GFSS requires segmenting out all
categories in images during the inference stage, including
base classes and novel classes, as shown in Fig.1. This
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Figure 2. Proportion of all categories (including background
classes) in the training stage. There is an imbalance between cat-
egories, especially the proportion of the background class is much
higher than other categories.

task is even more challenging due to both the limited novel-
class training samples and the catastrophic forgetting of
base classes.

To handle these challenges, a baseline model [11] has
been proposed to consist of a pair of encoder-decoder and a
classifier that learns to classify the base classes (including
the background) during training. To make the model have
the ability to segment novel classes, it uses the support set
to fine-tune a classifier for novel classes in the inference
stage. Finally, the two classifiers are concatenated together
to segment full classes in the query set images: the base
classes (including the background) and the novel classes.

However, the performance of this baseline model on
GFSS tasks often falls short, primarily due to three reasons:
Firstly, due to the ineffectiveness of finetuned parameters, it
lacks the adaptability to efficiently learn from novel classes
with scarce data. Secondly, due to the conflict between base
and novel classes, it lacks the stability to maintain knowl-
edge of base classes, leading to the catastrophic forgetting
problem. Thirdly, we summarize the number of samples in
each category (including background class) in the training
stage, as shown in Fig.2 where class 0 indicates the back-
ground class. We find (1) there is an imbalance between the
categories, and (2) the proportion of the background class is
much larger than other classes. These will cause the model
to be biased towards more frequent classes, resulting in pre-
diction bias. (3) The novel classes in the inference stage
appear in the background class in the training stage, and the
model will mistakenly classify some of the novel classes
into the background class, which is called the overconfi-
dence of the model. We refer to the above three phenomena
as the probabilistic bias of the model.

To address the first problem, we design an auxiliary net-
work (Dynamic Knowledge Adapter, DKA) between the
decoder and the classifier to help the model better adapt to

novel classes. In the inference fine-tuning phase, only pa-
rameters in this network are finetuned based on support set
samples. For the second problem, to help the model main-
tain performance on the base class and mitigate catastrophic
forgetting, we randomly sample some training images and
relabel them: the base-class (including background class)
classifier and the novel-class classifier are connected to ob-
tain the full-class classifier, and the full-class segmentation
is performed on the training images. In this process, the
DKA and classifier are updated to alleviate the conflict be-
tween base and novel classes. For the third problem, to rec-
tify the prediction bias caused by the imbalanced training
data, we design a probabilistic calibration module in the in-
ference stage to scale the prediction of infrequent classes.

In summary, our contribution is as follows:

• We design a Dynamic Knowledge Adapter (DKA) be-
tween the decoder and classifier to enhance the model’s
adaptability to learning novel classes.

• We use partial training samples to relabel and fine-tune
the DKA and the full-class classifier to improve the
model’s stability to mitigate catastrophic forgetting of
base classes.

• We design a probabilistic calibration module to alleviate
the probabilistic bias of the model and further improve
the segmentation accuracy of all classes.

2. Related Works

2.1. Semantic Segmentation

Semantic segmentation is a challenging task that involves
accurately assigning labels to each pixel. The first frame-
work developed for semantic segmentation was FCN [22],
which replaces the last fully connected layer of a classifi-
cation network with convolution layers. Encoder-decoder
style approaches [1, 25, 30] have been adopted to refine
the output in multiple steps and achieve per-pixel predic-
tions. To improve the performance of semantic segmen-
tation, techniques such as dilated convolution [4, 50] have
been introduced to increase the receptive field. Context
modeling architectures, including global pooling [20] and
pyramid pooling [4, 48, 54, 55], have also played a crucial
role in incorporating context information. Attention mod-
els [14, 25, 35, 42, 51, 53, 56] have shown effectiveness in
capturing long-range relations within scenes. Recently, the
effectiveness of vision transformers for semantic segmen-
tation has also been demonstrated [6, 34, 46]. However,
despite the success of these advanced segmentation frame-
works, they face challenges when it comes to adapting to
unseen classes without sufficient annotated data and require
fine-tuning.
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2.2. Few-Shot Learning

Few-shot learning is a machine learning approach that aims
to recognize new classes with only a few labeled sam-
ples [24]. Existing few-shot learning methods can be
categorized into three main groups, as described in [18]:
finetuning-based, meta-based, and metric-based methods.
Finetuning-based strategies [5, 7, 23, 28, 39, 49] involve
a transfer learning process where the model is pre-trained
on base classes and then fine-tuned on novel classes. Meta-
based approaches [3, 9, 27, 29, 31, 36, 37] adopt a meta-
learning paradigm to learn cross-task knowledge by opti-
mizing the interaction between a meta-learner and base-
learner. This enables the model to quickly adapt to novel
datasets. Metric-based techniques [2, 17, 33, 38, 41, 52]
focus on learning transferable representations and making
predictions based on the distance between feature represen-
tations. This approach eliminates the need for fine-tuning
during test time.

While the combination of a supervised model (for base
classes) and a prototype-based approach (for novel classes)
has been explored in low-shot visual recognition [10, 26],
it is important to note that dense pixel labeling in semantic
segmentation is distinct from image-level classification. In
image-level classification, contextual information for each
target is not taken into account.

2.3. Few-Shot Segmentation

Few-shot semantic segmentation (FSS) [32] aims to per-
form pixel-wise labeling for new classes with only a lim-
ited number of support examples. It primarily focuses on
the 1-way scenario, where binary maps are generated for
query images to identify the pixels belonging to the class
labeled in the support images. Approaches such as [8, 43]
adapt prototype learning for FSS by calculating cosine simi-
larities between pixels and prototypes derived from the sup-
port images. ASR [19] learns multiple orthogonal proto-
types on the base data to represent novel categories. Fur-
thermore, assigning multiple prototypes to each class has
shown promise in improving FSS models [16, 21, 44, 47].

2.4. Generalized Few-shot Semantic Segmentation

To address some of the limitations in few-shot semantic seg-
mentation (FSS), a recent extension called generalized few-
shot semantic segmentation (GFSS) was introduced [40].
GFSS approaches are designed to handle a single support
set that contains images for each novel class, and they
should be able to predict both base and novel classes in
query images. Unlike standard FSS methods, GFSS models
have no prior knowledge of the novel classes present in a
query image. To tackle this challenge, CAPL [40] proposed
a framework with two modules that dynamically adapt both
base and novel prototypes. However, the presented results

in CAPL are biased towards base classes, and this solution
requires labeled base classes in the support samples.

Another model evaluated in the GFSS setting is the BAM
model [15], initially proposed for FSS. The BAM model
consists of two steps. First, a base learner is trained on base
classes using the standard supervised learning paradigm,
employing cross-entropy loss on the base training set. Then,
a second meta-learning step is introduced, optimizing both
the base-learner and a new meta-learner through episodic
training. During inference, the output of the meta-learner
is combined with the base-learner’s output to make pre-
dictions on base classes and a single novel class. How-
ever, the limitation of the meta-learner being capable of dis-
tinguishing only background-foreground categories makes
this method unsuitable for direct application to multi-class
GFSS scenarios.

3. Backgroud

3.1. Notations

In the context of generalized few-shot semantic segmenta-
tion, we have a plentiful amount of annotated images for
M base classes, denoted as Cb = {c1, · · · , cM}, and only
K labeled images per class for N novel classes, denoted as
Cn = {cM+1, · · · , cM+N}. Additionally, there is a back-
ground category, c0, which represents pixels that do not be-
long to any target class. The objective of this task is to si-
multaneously differentiate between base and novel classes,
as well as the background, resulting in a total of M +N +1
classes. In our paradigm, the training process consists of
two phases. In the training phase, we utilize the images
belonging to the base classes Cb to train our model. Sub-
sequently, in the evaluation phase, we construct a support
set S comprising N classes, where each class consists of
K labeled images. We then fine-tune the model using the
images from the support set S. Finally, we create a query
set Q consisting of M + N + 1 classes, where images are
randomly selected from within these classes. We evaluate
and test the performance of our model on this query set Q.

3.2. DIaM

Our method is modified from the baseline framework of
GFSS proposed in [11]. We introduce DIaM first in this
section. During the training stage, a segmentation model
with an encoder fϕ and a classifier fθb is trained on base
classes Cb. At this stage, the model only can predict M+1
classes, i.e., the base classes and background. At the infer-
ence stage, the encoder is fixed, and the pre-trained clas-
sifier θb ∈ R(M+1)×d is augmented with novel prototypes
θn ∈ R(N)×d. The concatenation of θ = θn + θb forms the
final classifier. We optimize the classifier θ for GFSS tasks.
Note that d is the size of the feature space. The optimization
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Figure 3. Our method framework: Our method builds upon the two-stage training paradigm (training-inference) to enhance the learning
of novel classes. We introduce a Dynamic Knowledge Adapter (DKA) to the existing segmentation model. Initially, utilizing the base
class training set, we train an encoder, decoder, DKA, and base-class classifier using cross-entropy loss. Then, fine-tuning of the DKA is
performed based on the support set of novel classes, concurrently training a proficient novel-classes classifier. Concatenating the novel-
classes and base-classes classifiers initializes a full-classes classifier. Subsequently, we randomly sample and relabel base class training
samples, followed by another round of fine-tuning for both DKA and the full-classes classifier. Finally, leveraging support and query
samples within the DIAM framework, we perform the final adjustments to the full-classes classifier. Throughout the fine-tuning process,
we introduced a Probabilistic Calibration (PC) module to alleviate the probabilistic bias caused by data imbalance.

objective is based on the InfoMax framework:

max
θ

I(X;P ) = H(P )−H(P |X), (1)

where X and P are random variables respectively associ-
ated with the pixel distribution and model’s predictions.

The DIaM baseline is composed of three loss terms:
Lcond−ent, Lmarg−ent, and LKD. The conditional entropy
term reads as:

Lcond−ent = α

|S|∑
i=1

H(yi;πS(pi)) +H(p|S|+1), (2)

where α controls the reliance on the labeled support set.
To account for the misalignment between predictions p

and labels y the model’s predictions are projected as below,
the j denotes the pixel index:

πS(pi)(j) =

[
M∑
k=0

pk, 0, . . . , 0, pM+1, . . . , pM+N

]T

(3)

The marginal entropy term is calculated as:

Lmarg−ent = H(P ; Π) = Cste−KL(p̂||Π), (4)

where KL(·||·) denotes the Kullback-Leibler divergence. Π
is estimated from the model’s initial marginal distribution
and re-updated during optimization.

The knowledge-distillation term is expressed as:

LKD = KL(πnew2old(p|S|+1)||pold|S|+1), (5)

where the predictions p is projected as:

πnew2old(p)(j) =

[
p0 +

N∑
i=1

pM+i, p1, p2, . . . , pM

]T

(6)
The final objective of DIaM is represented as:

min
θ

LDIaM = Lcond−ent − Lmarg−ent + βLKD (7)

4. Method
To address the challenges presented by the Generalized
Few-shot Semantic Segmentation (GFSS) task, our primary
focus is on refining the inference stage within the exist-
ing two-stage training paradigm (training-inference). The
overview of our framework is shown in Fig.3. Specifically,
to better capture the distinctive features of novel classes
with limited samples, we introduce a Dynamic Knowledge
Adapter (DKA) module. During the inference stage, we
fine-tune this module using samples from the support set
of novel classes, while simultaneously training to obtain a
robust classifier for novel classes.
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Figure 4. The structure of Dynamic Knowledge Adapter (DKA).

Subsequently, to mitigate catastrophic forgetting and
rectify misclassifications of novel classes as background
during training, we randomly selected a subset of train-
ing samples from the base classes and re-labeled them.
The objective was to identify and correct instances where
novel classes were erroneously labeled as background dur-
ing training. This process facilitated fine-tuning of both the
DKA and the full-class classifier.

Finally, to address the phenomenon of probabilistic bias
occurring in the model’s predictions, we integrate a Prob-
abilistic Calibration (PC) module. This module serves to
refine both the DKA and the full-class classifier while si-
multaneously adjusting prediction outcomes.

4.1. Training

Traditional segmentation models can be divided into base
model fϕ (i.e. encoder-decoder) and a linear classifier θb ∈
R(M+1)×d . During the training process of GFSS, the model
is trained using conventional cross-entropy loss based on
training samples from the base categories. At this stage, the
classifier can only predict one class among 1 +M classes,
namely the background class and the base classes.

The existing segmentation models demonstrate profi-
ciency in tasks involving base class segmentation. How-
ever, their applicability to Generalized Few-shot Semantic
Segmentation (GFSS) tasks is limited. On one hand, di-
rectly fine-tuning the model with a small subset of samples
from novel classes often leads to catastrophic forgetting.
Conversely, keeping the model fixed without fine-tuning re-
stricts its performance on novel classes. To address these
challenges inherent in both generalization settings, we pro-
pose integrating a Dynamic Knowledge Adapter (DKA) to
facilitate fine-tuning on novel classes, thereby enhancing
the model’s capacity for learning novel classes while main-
taining proficiency in base class segmentation.

Taking inspiration from the LoRA [13] architecture, we
formulate the DKA fDKA as a composite structure com-
prising a fully connected layer Win ∈ RC×r, a convolu-
tional layer Wtran ∈ Rr×r×1×1, and a fully connected layer

Wout ∈ Rr×C , as shown in Fig. 4. Here, C represents
the number of feature channels, and r is the low-rank used
for dimension reduction. The rationale behind the design of
this structure is to compress essential information through
dimension reduction, then apply 1 × 1 convolutions to as-
sign different weights to this compressed information, and
finally restore the original dimensions. This approach steers
the model to focus on features with higher discriminative
capability. This DKA module is positioned between the de-
coder and the classifier, engaging in the training phase for
image segmentation of the base classes.

4.2. Inference

During the inference phase, we choose DIaM as our base-
line. Firstly, to mitigate catastrophic forgetting and retain
the model’s ability to recognize base classes, we initially
freeze the encoder-decoder fϕ and base-classes classifier
θb. Subsequently, to enhance the model’s capability to learn
novel classes, we fine-tune the DKA using only the sup-
port set containing samples from the novel classes, simulta-
neously obtaining a classifier tailored to the novel classes
θn ∈ Rd×N . Next, to prevent the model from forget-
ting base classes while rectifying the misclassification of
novel classes as background during training, we sample a
portion of training samples from the base classes and rela-
bel them for fine-tuning DKA and the full-classes classifier
θfull ∈ Rd×M+N+1. Finally, we further fine-tune the full-
classes classifiers θfull using the DIaM framework, leverag-
ing the support set of labeled data for the novel classes and
unlabeled query set. During the fine-tuning process, to alle-
viate the probabilistic bias of the model, we propose a prob-
abilistic calibration module to assist the model in achieving
better generalization, thereby improving its ability to distin-
guish among base, novel, and background classes.

4.2.1 Finetuning DKA

Firstly, we fine-tune DKA using samples from the novel
classes in the Support set, thereby obtaining a classifier θn
specialized in classifying the novel classes. Specifically, as
we focus on enhancing the model’s ability to learn novel
classes at this stage, we initially process the novel-class
samples from the support set. We mark their backgrounds as
”ignore” and obtain a new label ynew ∈ [0, 1]N×(H×W ), en-
suring that the classifier only needs to distinguish among the
novel classes. Next, we compute the prototypes for novel
classes to initialize the novel-classes classifier θn. Finally,
we use Eq. 8 to calculate the loss for fine-tuning DKA fDKA
and the novel-classes classifier θn.

Lnovel ft = CE(P, ynew), (8)

Here, CE(·) denotes the cross-entropy loss function for
segmentation tasks, where P ∈ RN×H×W represents the
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predicted values outputted by the model and can be calcu-
lated using the following equation:

P = softmax(fDKA(fϕ(X))θn) (9)

Where X represents samples from the support set.

4.2.2 Relabling Training Samples

After fine-tuning DKA with the support set containing novel
classes, there is a risk of the model being biased toward
the novel classes, potentially harming the performance of
the base classes. Simultaneously, the labels in the train-
ing set might mark potential novel classes as background,
leading to the possibility that new classes are mistakenly
identified as background during final predictions. Hence,
we employ a relabeling strategy that not only recovers some
segmentation ability for the base class but also alleviates the
situation where novel classes are mistakenly recognized as
background. Specifically, we sample k × 10 images from
the training set (where k is the total number of categories)
and have the model predict their masks to serve as pseudo
masks. Then iteratively optimize DKA and the classifier
through n iterations.

4.3. Results

Specifically, we first randomly sample a training subset
Dsub

train containing N samples belonging to the base classes
Cb from the training dataset Dtrain. Next, we concatenate
the classifiers θb obtained during the training phase with the
fine-tuned classifier θn, resulting in the initialization of a
full-classes classifier θfull. Next, we treat the samples from
Dsub

train as unlabeled query samples Then based on the DIaM
framework, we utilize Eq.7 to calculate the loss for both the
support set S and the training subset Dsub

train and then fine-
tune DKA and the full-classes classifier θfull accordingly.
Finally, we further fine-tune the full-classes classifier θfull
based on the DIaM framework, using the support set S and
the actual query set Q.

4.3.1 Calibrating Probabilistic

To address the probabilistic bias introduced by the task
setup, we introduce a probabilistic calibration module. This
module consists of three parts, each designed to address one
of the three reasons leading to the probabilistic bias.

Firstly, to alleviate the probabilistic bias caused by the
imbalance of samples between classes, we introduce a tem-
perature coefficient during the fine-tuning process. Specifi-
cally, as shown in Eq, we manipulate the logit values of the
model output to ensure a smoother probability distribution.

P = softmax(τfDKA(fϕ(X))θn) (10)

where τ is a hyper-parameter.

Table 1. MIoU compared to baseline methods. We have signifi-
cant advantages in both base classes, novel classes, and the final
weighted result.

Method Base Novel Weighted average
Baseline 29.89401 3.15314 13.84949

Ours 42.00045 20.51581 29.10967

Furthermore, to mitigate the model’s bias towards the
background, we propose utilizing the model’s predictions
of the background during fine-tuning to identify regions
where the model is prone to misclassification and force the
model to focus on these error-prone regions. Specifically,
we first set a threshold β to locate the areas where the model
makes classification errors. Then, by calculating the proba-
bility of each pixel being classified as background by the
model and comparing it with the threshold, we obtain a
mask M ∈ [0, 1]H×W representing the regions where the
model is prone to misclassification. Subsequently, we set
the classification probabilities of all classes in these error-
prone regions to the same value γ, thereby compelling the
model to focus on these areas. β and γ are hyperparameters.
The calculation process can be represented as:

Pnew = (1−M)⊙ P + γM (11)

Finally, during the training phase, backgrounds may in-
clude new classes, leading the model to mistakenly clas-
sify new classes as background during the inference phase.
Based on this, we propose a post-processing method for the
prediction of query samples. Specifically, we argue that due
to the model’s bias towards the background, the model’s
prediction of a pixel as background is unreliable. Thus, we
introduce a threshold α to filter out low-confidence back-
ground predictions using mask Mp ∈ [0, 1]H×W . This im-
plies that if the model is not confident in predicting a pixel
as background, we manually set its probability of being pre-
dicted as background to a small fixed value η. α and η are
hyperparameters.

5. Experiments
5.1. Datasets

The OpenEarthMap few-shot learning challenge dataset
is derived from the original OpenEarthMap benchmark
dataset[45] for remote sensing image semantic segmen-
tation. This challenge dataset comprises only 408 sam-
ples, which is a subset of the larger benchmark dataset.
The challenge dataset expands the original 8 semantic
classes of OpenEarthMap to 15 classes. It is divided into
three disjointed sets: train base class, val novel class, and
test novel class, with a split ratio of 7:4:4, respectively. Out
of the 408 samples, 258 are allocated for the trainset, 50 for
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Figure 5. Visual experiments show that our method effectively distinguishes between base classes, novel classes, and backgrounds.

Figure 6. Miou of each class. Our method performs better on
almost every class.

the valset, and 100 for the testset. The trainset is intended
for pre-training a backbone network and contains only the
images and labels from the train base class split. Both the
valset and the testset are composed of a support set and a
query set. The valset includes images and labels from the
val novel class split, while the testset includes images and
labels from the test novel class split.

5.2. Comparison With Baseline.

As described in Section 4, our final scheme includes
fine-tuning the Dynamic Knowledge Adapter (DKA), rela-
belling training samples, and calibration probabilities. The
final performance is shown in Tab.1. Compared with the
baseline method, we can see that we have improved the
segmentation performance of all classes, that is, on both
base classes and novel classes. Specifically, Fig.6 shows the
respective performance of eleven classes, and our method
helps to segment better on almost all classes.

5.3. Visualization.

As shown in Fig.5, we visualize the predicted results of
query samples. It can be observed that our approach not

only improves the learning of both base and novel classes
but also effectively alleviates the phenomenon of misclassi-
fying other semantic categories as background.

5.4. Ablation Study.

As shown in Tab.2, we empirically demonstrated the effec-
tiveness of the three modules through ablation experiments.
Firstly, compared to the baseline method, introducing fine-
tuning of Dynamic Knowledge Adapter (DKA) improves
the model’s ability to learn new classes. Next, using the re-
labeling strategy can restore the model’s ability to learn base
classes while enhancing the model’s ability to distinguish
between novel, base, and background classes. Finally, the
probabilistic calibration module effectively alleviates prob-
ability bias, thereby improving the model’s ability to learn
both new and base classes.

Table 2. Ablation Study. Our method’s three modules are designed
to effectively enhance the model’s ability to learn both novel and
base classes.

DKA Relabeling
Probabilistic
Calibration base novel

Weighted
Average

x x x 29.89 3.15 13.85
y x x 37.20 8.49 19.97
y y x 37.93 10.93 21.73
y y y 42.00 20.52 29.11

5.5. Sensitivity Analysis

We have modified the threshold β and set it to range from
0 to 1 with a step size of 0.1. The mIoU (mean Intersection
over Union) values for both base classes and novel classes
at different threshold values are shown in 7. From the trend
observed, we can see that after a threshold value of 0.2, the
mIoU values start to decrease. Therefore, we have chosen a
threshold value of 0.15 as the final value.
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Figure 7. mIoU under different thresholds.

6. Conclusion
To handle the challenging GFSS problem, we design the
Dynamic Knowledge Adapter (DKA), which handles the
adaptability by finetuning efficient parameters, addresses
the instability problem by sample relabeling, and rectifies
the biased prediction by probabilistic calibration. Extensive
experiments validate the rationale and effectiveness of our
methods.
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