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Abstract

Existing deep trackers are typically trained with large-
scale video frames with annotated bounding boxes. How-
ever, these bounding boxes are expensive and time-
consuming to annotate, in particular for large scale
datasets. In this paper, we propose to learn tracking repre-
sentations from single point annotations (i.e., 4.5× faster to
annotate than the traditional bounding box) in a weakly su-
pervised manner. Specifically, we propose a soft contrastive
learning (SoCL) framework that incorporates target object-
ness prior into end-to-end contrastive learning. Our SoCL
consists of adaptive positive and negative sample genera-
tion, which is memory-efficient and effective for learning
tracking representations. We apply the learned representa-
tion of SoCL to visual tracking and show that our method
can 1) achieve better performance than the fully supervised
baseline trained with box annotations under the same anno-
tation time cost; 2) achieve comparable performance of the
fully supervised baseline by using the same number of train-
ing frames and meanwhile reducing annotation time cost by
78% and total fees by 85%; 3) be robust to annotation noise.

1. Introduction

Visual object tracking is a basic computer vision task with
a long history spanning decades. In recent years, consider-
able progress [9, 26, 44] has been made in the tracking com-
munity with the development of deep learning techniques.
Deep trackers have achieved strong performance on existing
tracking benchmarks [17, 23, 32], and show great potential
in various applications.

Existing deep trackers are mainly trained with large-
scale datasets comprising bounding box annotations on
video frames. In order to obtain high-quality bounding box
annotations, one common practice is to employ large num-
bers of people on a crowd-sourcing platform (e.g., Amazon
Mechanical Turk) for annotating. Usually, there are two
typical steps to annotate a video frame: 1) draw a bounding
box that tightly includes the object, and 2) verify the an-
notated bounding box for quality control. These two steps

Figure 1. An illustration of video frame annotations using masks, bound-
ing boxes and center points. The time for humans to label point annotations
is 4.5× and 34.4× faster than the time for bounding boxes and mask an-
notations, respectively. In this paper, we propose a novel soft contrastive
learning framework to learn tracking representations from point annota-
tions in video frames so as to reduce annotation cost and total fees.

respectively take 10.2 and 5.7 seconds [37]. Considering
that existing tracking datasets consist of millions of anno-
tated bounding boxes, e.g., ILSVRC [36] (2.5M) and Got-
10K [23] (1.4M), a conservative estimate of the time cost
for annotating ILSVRC and Got-10K are 7,083 and 3,967
hours, even without accounting for the verification time. To
ease the annotation cost in visual tracking, recent progress
[42, 44] on unsupervised tracking generate pseudo labels
for representation learning. However, these works still lag
behind their fully supervised counterparts [9, 27, 55] due to
noise in the pseudo labels.

Different from previous trackers that use expensive
bounding box annotations for fully supervised training, in
this paper, we propose to learn tracking representations
from low-cost and efficient single point annotations (see
Fig. 1) in a weakly supervised manner. For point anno-
tations, annotators only need to click once at the object
center, which takes about 2.27 seconds per frame (refer to
Sec. 3.1 for more details) and is 4.5× faster than bounding
box annotation. Although point annotations have low time
cost, learning effective tracking representations from them
is challenging due to the following two reasons: 1) the point
annotations naturally lack target scale information, whereas
target scale is vital information needed for training tradi-
tional deep trackers; 2) the annotations may be noisy since
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Figure 2. Overview of (a) global soft template generation (GST); and (b) soft negative sample (SNS) generation in the proposed SoCL framework. (a) Given
two randomly selected frames Ii and Ij in a video, we firstly extract their context features f(Ii) and f(Ij), and then calculate GSTs zi and zj as the
weighted sum over the spatial locations on f(Ii) and f(Ij), where each location weight is from the corresponding location in the target objectness prior
(TOP) maps hi and hj . (b) During the mini-batch training, for a specific GST (e.g., zi), we obtain two similarity maps between zi and each location in
the context features by using a cross-correlation operation (denoted as ⊛). We next use a background selection function sb(·) to mask out target responses
and select background counterparts with high responses in the similarity maps to generate the SNSs ẑi and ẑj . The generation of both GST and SNS is
memory-efficient. ⊗ is element-wise multiplication, while ⊕ is a sum over spatial locations.

the annotated target center does not always perfectly match
the ground-truth target center.

To tackle the above problems and learn robust track-
ing representations from point annotations, we propose a
soft contrastive learning framework (SoCL) that generates
global and local soft templates (GSTs and LSTs) based on
a target objectness prior (TOP) map, and then optimizes
a pairwise contrastive loss between positive/negative soft
samples. The TOP map contains the pixel-wise probabili-
ties that each pixel location belongs to the target. The GSTs
are generated by aggregating each location in the feature
map based on the TOP maps (see Fig. 2). In order to facili-
tate discriminative feature learning and avoid large memory
cost, we propose a memory-efficient method to adaptively
generate soft negative samples using high-similarity regions
of the cross-correlation map between the GST and the fea-
ture map. In addition, we also sample LSTs, which simulate
partial occlusion or appearance variations, to augment the
positive set, further boosting the representation learning.

The learned representations of SoCL can be directly ap-
plied to both Siamese and correlation filter tracking frame-
works. In addition, we also successfully combine our
framework with additional sparse bounding box annotations
so as to generate pseudo bounding box labels, in order to
train state-of-the-art scale regression-based trackers (e.g.,
TransT [9]). In summary, our main contributions are:

• We propose a soft contrastive learning (SoCL) frame-
work, which incorporates a target objectiveness prior
into end-to-end contrastive learning, in order to learn
tracking representations from single point annotations.

• We propose a memory-efficient method for soft neg-

ative sample generation, which significantly increases
the number of negative samples with low memory cost.

• We propose to generate a local soft template for each
global soft template and facilitate the representation
learning via global-to-local contrastive learning.

• Experiment results show that our tracker learned from
single point annotations can: 1) achieve comparable
performance to the fully supervised baseline trained
with box annotations when using the same number of
training frames, while reducing the annotation time
cost by 78% and total fees by 85%; 2) obtain better
performance by using the same annotation time cost,
and 3) be robust to annotation noise.

2. Related Work

Deep Tracking Methods. Currently, visual tracking is
dominated by deep learning-based trackers that are trained
with large-scale annotated datasets. The deep CF trackers
[10–12, 28, 28–30, 45, 46] employ deep features for CF
tracking. SiamFC [4] and SINT [39] are two pioneering
Siamese trackers, which convert visual tracking to a tem-
plate matching problem. Follow-up works aim to more
accurately regress target scale via anchor free [53, 56] or
anchor based designs [16, 26, 27]. Although these meth-
ods can achieve favorable performance on several tracking
benchmarks, they are still inferior to the recent state-of-the-
art deep trackers, including online learning-based trackers
(e.g., ATOM [13], DiMP [5], PrDiMP [14]), and trans-
former trackers (e.g., TransT [9], STARK [52], OSTrack
[54] and DropTrack [47] ). However, these deep trackers
are trained with large-scale tracking datasets with expensive
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bounding box annotations, which lead to both large annota-
tion time and fee costs. To ease both of the costs, in this
paper, we propose to use low-cost point annotations to train
the above methods with the proposed SoCL framework.

Annotation Types. Various annotation types have been
explored in computer vision. Bounding box annotations
have been widely used in various tasks, e.g., object detec-
tion [35] and object tracking [23]. [37] shows that annotat-
ing a bounding box takes ∼10.2s. Mask annotations are also
used to perform more fine-grained tasks [43, 48], but takes
∼78s per instance [3]. To ease the annotation time, [3, 34]
propose to learn models from point annotations for object
detection and semantic segmentation. However, these meth-
ods are designed for static images, which are not applicable
for video representation learning. In contrast, our SoCL can
effectively learn temporal correspondences from point an-
notations in videos and be directly applied for online track-
ing.

Contrastive Learning. Contrastive learning methods
have achieved leading performance on unsupervised repre-
sentation learning. Commonly, a memory bank is needed
to store pre-computed image features for more efficient and
effective learning [19, 31, 40, 49, 57]. Recent works [7, 41]
propose to use a large batch size (e.g., 8192) to include
large numbers of negative samples in each mini-batch, or
even remove the negatives samples to only focus on target
prediction [8, 18, 33]. In addition, video frame-level con-
trastive learning is proposed in [50]. However, these meth-
ods are designed to learn from ImageNet [36] images or
Kinetics videos [22], which main contain target objects. In
our case, no explicit target bounding boxes are provided and
most of the video frames are noisy (i.e., containing cluttered
backgrounds and distractor objects), which makes existing
methods ineffective. To address these issues, we propose to
incorporate target objectness prior (TOP) maps into end-to-
end contrastive learning from noisy videos.

3. Proposed Method
Our goal is to learn effective visual tracking representations
from low-cost annotations, i.e., point annotations. More-
over, the learned representations should be generic and ef-
fective for various deep trackers, including both Siamese
[4, 55] and correlation filter [12, 21] trackers. An overview
of our proposed soft contrastive learning (SoCL) frame-
work is shown in Fig. 2. Previous tracking frameworks
[4, 21, 26, 27] are trained using bounding box annotations,
which contain scale information that defines the extent of
the tracked object on the feature map. However, in our
formulation, point-wise annotations do not provide explicit
scale information. Thus, we first generate a target object-
ness prior (TOP) for each image using its point annotation,
which estimates the likely extent of the target. To learn
more discriminative features, we propose multiple sample
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Figure 3. Target objectness prior (TOP) map generation for a given input
image, which consists of proposal generation (including both EdgeBox and
random proposal generation) and aggregation of objectness measurements.
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Figure 4. A plot of target recall at various numbers of kept proposals after
NMS. The evaluation uses an overlap threshold of 0.5.

generation methods based on the TOP map probabilities, in-
cluding global soft template generation (GST), soft negative
sample (SNS) generation and local soft template (LST) gen-
eration. The generated samples can be used to learn an ef-
fective tracking model via our soft contrastive learning loss.

3.1. Target Objectness Prior (TOP) Map

The TOP map contains the probability that each pixel be-
longs to the target object, and is computed by aggregating
over the objectness scores of many object proposal boxes
sampled over the annotated point (see Fig. 3). Specifically,
given video frame Ii and corresponding annotated target
center Pi, we generate 5000 random proposals centered at
Pi with various scales and aspect ratios. Using only pro-
posals centered on Pi may introduce a center bias to the
TOP maps, but the point Pi might have spatial annotation
noise (since it is difficult to click on the exact center of an
object). Thus, to alleviate this bias, we also generate pro-
posals using EdgeBox [58]. Specifically, for each frame,
we use EdgeBox to generate 1,000 proposals and keep the
proposals whose center locations are close to the annotated
location (i.e., within 30 pixels). These EdgeBox proposals
are then combined with the random proposals.

We evaluate the objectness scores for all generated pro-
posals using [2]. Note that we only use multi-scale saliency,
color contrast and edge density cues for the objectness mea-
surement, and exclude the superpixel cue used in [2]. This
variant runs 3.3× faster than the original method and also
achieves high recall in our case (see Fig. 4). Next, non-
maximum suppression (NMS) is applied with an overlap
threshold of 0.7 to keep the top-64 proposals for each frame,
and filter out redundant proposals.

Finally, to calculate the target objectness score at each
location in the frame, we sum over the scores of all the
bounding boxes that cover that location, yielding a score
map. The softmax function (over locations) is then applied
to the score map to obtain TOP map hi for the video frame
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Figure 5. Examples of target objectness prior (TOP) maps generated by
using the combination of random and EdgeBox proposal generation.

Ii. Fig. 5 shows examples of TOP maps. Each score in
h represents the probability that the corresponding location
belongs to the target. Generally, the peak score is located
near the annotated location, and the scores gradually de-
crease moving towards the background regions.

In our implementation, calculating the TOP map takes
about 0.4 seconds for one video frame (512 × 512), which
only needs to be performed once before the training. Since
the point annotation in each frame takes about 1.87 seconds
[34], the overall per-frame cost of the point annotation and
TOP map is 2.27 seconds, which is 4.5× faster than bound-
ing box annotation (10.2s).

3.2. Soft Contrastive Learning

We next introduce how to use the generated TOP maps for
soft contrastive learning. There are three types of soft sam-
ples generated in our SoCL framework, including global
and local soft templates (GST and LST) and soft negative
samples (SNS), which respectively aggregate global/local
target and hard negative counterparts in context features for
sample generation.

3.2.1 Global Soft Template (GST) Generation

The overall pipeline of global soft template (GST) genera-
tion is shown in Fig. 2a. Given a video frame image Ii and
its generated TOP map hi, the corresponding GST zi ∈ RC

is calculated as a weighted sum over the spatial locations,
with higher weight given to locations that are more likely to
be part of the object (according to the TOP map),

zi = f(Ii)Thi, f(Ii) ∈ RHW×C ,hi ∈ RHW×1, (1)

where f(·) is an embedding function (feature extractor),
which is implemented as a deep neural network. The above
generation is efficient since it only relies on a single matrix
multiplication operation between two HW -dim. vectors.

During the mini-batch training, for each training video,
we randomly select two frames (Ii, Ij) to construct a pair
of GSTs (zi, zj), which are a pair of positive samples (i.e.,
the same object). The GSTs in the other videos are consid-
ered as negative samples to (zi, zj). However, these nega-
tive samples are usually easy negatives (since that object is
completely different), and the number of negative samples

are also limited. In the next subsection, we introduce our
soft negative sample (SNS) generation for more effective
representation learning.

3.2.2 Soft Negative Sample (SNS) Generation

Previous works [24, 44] show that negative samples play an
essential role in contrastive representation learning. These
methods commonly use a large mini-batch size or specif-
ically design a hard negative selection strategy to include
more hard negatives in one mini-batch. However, larger
memory cost is also needed for additional negative samples.
In this work, we propose to fully leverage the pre-computed
context features for memory-efficient soft negative sample
(SNS) generation in the feature space.

In the sampled video, f(Ii) and f(Ij) are regarded as
two context feature vectors, which contain both target and
background information. The pipeline of SNS generation is
shown in Fig. 2b, and the goal is to aggregate hard negative
features in the feature map to generate the SNSs ẑi, ẑj ∈
RC . First, the similarity maps (gi,gj) between the GSTs
and each location in the feature maps are computed,

gi = f(Ii) ∗ zi, gj = f(Ij) ∗ zi, (2)

where gi,gj ∈ RHW , and ∗ is the convolution operation.
The similarity maps contain high responses for both the tar-
get and the hard negative background. Next, the high re-
sponses for the target are masked out using the TOP maps
(hi,hj), which yields the hard-negative maps

ĥi = σ(sb(gi,hi)), ĥj = σ(sb(gj ,hj)), (3)

where sb(·) is the background selection function (discussed
later), and σ(·) is the softmax function. Finally, the SNS
(ẑi, ẑj) are generated as a weighted sum of the feature maps
over spatial locations, weighted by the hard-negative maps,

ẑi = f(Ii)T ĥi, ẑj = f(Ij)T ĥj , (4)

Thus the generated SNS contain features from the back-
ground with high response to the GST, which helps con-
trastive learning to find background discriminative features.

Background selection function. The background selec-
tion function sb(·) masks out the target object locations in
the similarity map g using the TOP map h. First, the loca-
tions with high score in h are selected by thresholding its
cumulative sum. Specifically, elements in h are sorted in
descending order, yielding the sorted vector a and inverse
mapping ϕ(k) such that hϕ(k) = ak. Next, the first location
that gives a cumulative sum of at least θb is computed,

q∗ = min∑q
k=1 ak≥θb

q, (5)

where θb ∈ [0, 1] is a fixed threshold, and thus the dimen-
sions {1, · · · , q∗} in a correspond to the target locations
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Figure 6. Overview for generating local soft templates (LST) by sampling
high-score locations in the TOP map

with high score. Second, the corresponding locations in the
similarity map g are masked out,

sb(g,h) =
[{

−∞, i ∈ {ϕ(k)}q
∗

k=1,

gi, otherwise.

]
i

(6)

Note that θb controls the target location selection, and it
should be set to a relatively large value in order to include
most of the target locations. Otherwise, too many target
(positive) features are included in the generated SNS, which
degrades the learning. In our implementation, θb = 0.8.

3.2.3 Local Soft Template (LST) Generation

The TOP map gives the likely extent of the object, but there
could be some errors in the map. To further enrich posi-
tive views and to make the learning robust to these errors,
we propose to generate a LST z̄ for each GST z by aggre-
gating over a subset of target locations based on the TOP
map h (see Fig. 6). Similar to SNS, first the locations with
high score in the TOP map h are selected by finding the top
accumulated scores via the selection function

st(h) =
[{

hi, i ∈ {ϕ(k)}q
∗

k=1,

0, otherwise,

]
i
, (7)

where q∗ is computed as in (6) but using threshold θp. Sec-
ond, the LST is generated as a weighted sum over the fea-
ture map, aggregating features with high-probability to be
the object,

z̄ = f(I)Tψ(st(h)), (8)

where ψ(·) is a total sum normalization function.
Here θp controls how many high-scoring locations are

selected for the LST, with θp → 1 selecting more more
complete LSTs (θp = 1 is equivalent to the GST). In order
to make training robust, we randomly generate the LSTs
based on the TOP map probabilities, by sampling θp from
a uniform distribution over [bp, 1) each time we generate an
LST. In our implementation, hyperparameter bp = 0.6.

3.2.4 Soft Contrastive Learning Loss

Each mini-batch in our contrastive learning contains 2 sam-
pled frames from N sampled training videos, totaling 2N

frames. The GST, SNS, and LST are generated for each
frame in the mini-batch, and then collected to form the pos-
itive and negative sample sets for contrastive learning.

Negative Sample Set. For a GST pair (zi, zj) from the
same video, its negative samples come from three sources
in the mini-batch: 1) 2(N − 1) GSTs that are generated
from the otherN −1 videos; 2) 4N SNS generated from all
videos; 3) 2N additional hard negative samples created us-
ing a mix-up strategy [24]. Our mix-up strategy generates a
novel hard negative example ẑ′i for each zi by interpolating
its two hardest SNS (ẑ1, ẑ2), i.e., ẑ′i = λẑ1 + (1 − λ)ẑ2,
where λ ∈ (0.5, 1) is the interpolation factor.

In total there are 8N − 2 negative samples for each GST
pair (zi, zj), which is denoted as the negative sample set
Nij = {ẑk}8N−2

k=1 . Our negative sample set is 4× larger
than the baseline of only using the positive samples (the
2N − 2 GSTs) from the other videos. Meanwhile, the SNS
generated from the pre-computed context features have no
additional memory cost.

Global-to-global Contrastive Learning. Suppose that
we treat the global soft template zi as a query, based on its
global positive view zj and the negative sample set Nij , a
global-to-global contrastive learning loss is computed as

L(zi, zj ,Nij) = − log
exp(zT

i zj/τ)∑
ẑk∈Nij

exp(zT
i ẑk/τ)

, (9)

where τ is a temperature hyper-parameter.
Global-to-local Contrastive Learning. Global-to-local

contrastive learning is also conducted to make the learned
representations robust to scale variations and partial occlu-
sion. The global-to-local contrastive loss uses the LSTs z̄i
and z̄j in place of zj , which is given by L(zi, z̄j ,Nij) and
L(zi, z̄i,Nij).

Thus, the overall training loss is for (zi, zj) is the sum
of the global-to-global and global-to-local losses:

Lall = L(zi, zj ,Nij) + L(zi, z̄j ,Nij) + L(zi, z̄i,Nij). (10)

3.3. Tracking Applications

After training the model with the overall loss in (10), we
use the context feature extractor f(I) as the backbone M
for various tracking applications.

Siamese Tracking. We directly integrate the learned M
into a basic SiamFC [4] tracking framework without further
modifications. The online tracking steps are also same as
[4], where the template and search features are extracted
using our M and a cross-correlation operation is applied for
target localization. The obtained basic tracker is denoted as
“SoCL-SiamFC”, which can show the effectiveness of our
learned backbone M.

Correlation Filter Tracking. We also validate our
learned backbone M in an online updating-based correla-
tion filter (CF) tracking framework. CF trackers learn a tar-
get appearance model by solving a ridge regression problem
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in the frequency domain, and the appearance model is con-
tinuously updated during online tracking. ImageNet pre-
trained models (e.g., VGGNet [38]) are usually employed as
feature extractors by CF trackers, which can obtain strong
performance. Here we employ our learned M as the fea-
ture extractor for the efficient convolution operator-based
CF framework [12], and denote it as “SoCL-CF”.

Scale Regression-based Tracking. State-of-the-art
scale regression-based trackers [9, 26, 27] commonly use a
bounding box regression branch to estimate the target scale.
The training of this regression branch requires bounding
box annotations. Here, we propose to combine the point
annotations with a set of sparse box annotations, in order
to train these scale regression trackers with low annotation
cost. Specifically, bounding box annotations are provided in
every T frames, such that each training video is divided into
multiple short snippets with frame length of T . In each snip-
pet, a bounding box defines the tracked object in the first
frame and center point annotations are given in the follow-
ing frames. We then run our SoCL-CF to generate pseudo
bounding boxes for each snippet. Note that when the es-
timated target location by SoCL-CF is far away from the
corresponding annotated center point (i.e., > 20 pixels), we
treat it as a tracking failure and use the annotated point as
the estimated bounding box center. Meanwhile, the tracker
is also corrected to move to the annotated locations.

Our new annotation scheme is also quite efficient and the
breakdown of its overall per-frame annotation cost is as fol-
lows: 1) overall per-frame point annotation cost 2.27(1− 1

T )
(excluding the point annotation for the first frrame); 2) run-
ning speed of SoCL-CF (0.1s per frame); 3) sparse bound-
ing box annotation cost ( 10.2T per frame). We set T = 10, so
the overall per-frame annotation cost for this new scheme
is 3.16s, which is about 3.2× faster than dense bound-
ing box annotation. We use this new schema to generate
pseudo bounding boxes on GOT-10k, and then train a scale
regression-based tracker, TransT [9]). The obtained tracker
is denoted as “SoCL-TransT”. Note that we use the same
training configurations in [9].

4. Experiments
We present tracking experiments showing the efficacy of
our backbone learned from point annotations. We first
present ablation study, and then compare our method ver-
sus baselines at different operating points, such using the
same annotation cost and using the same training videos.

4.1. Implementation Details

For SiamFC[4], M is an AlexNet-like network that is ran-
domly initialized, while for SoCL-Siam and SoCL-CF, M
is ResNet-18 [20] pre-trained on ImageNet. For SoCL-
CF, we use the features extracted from Conv1 and Layer3
of ResNet-18. Different from [12], there are no color

Table 1. Consistent improvements of AUCs/EAOs (on OTB-13 and VOT-
16, respectively) achieved by using global soft template (GST) generation,
soft negative sample (SNS) generation, negative mixup and local soft tem-
plate (LST) generation.

GST Gen. SNS Gen. Neg. Mix. LST Gen. AUC / EAO
✓ 55.1 / 0.215
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Figure 7. Ablation study of θb and θp that control SNS and LST sample
generation respectively on OTB-13.

names features used in SoCL-CF, and the feature extractor
in SoCL-CF1 is ResNet-18 rather than VGG-M [38]. The
baseline of SoCL-CF is denoted as Res18-CF, which uses
the ImageNet pre-trained ResNet-18 as feature extractor.
We use mini-batches of 192, and Adam optimizer [25] with
learning rates of 3e-4 for training SoCL-Siam and SoCL-
CF. SoCL-Siam and SoCL-CF are trained for 1000 and 500
epochs with a learning rate decay of 0.1 at 500 and 50
epochs, respectively. In addition, τ = 0.5, and we experi-
mentally set θb = 0.8 and bp = 0.6 (see Sec. 4.2).

Point annotations in tracking datasets. For fair com-
parison with box annotations and to better validate the effec-
tiveness of our SoCL , we assume that the point annotation
noise is similar to the noise in box annotations. Based on
this assumption, we generate center point annotations from
the original box annotations in GOT-10k [23], and then train
SoCL-Siam and SoCL-CF.

4.2. Ablation Study

Positive/negative sample generation. In this experiment,
we show that there is consistent improvement for each mod-
ule that generates positive/negative samples for SoCL (see
AUC on OTB-13 and EAO on VOT-16 in Table 1). First,
we only use the GSTs for contrastive learning, where GSTs
from one video form the positive set, and those from other
videos form the negative set. The learned model is inte-
grated to SiamFC for evaluation, and its AUC is better than
the original method learned with a pixel-wise binary-cross
entropy (BCE) loss (see Fig. 8), which shows that our SoCL
can learn more effective representations from the generated
noisy TOP maps than the traditional learning.

Second, adding the SNS into the negative set for CL im-
proves AUC by 2.7% and EAO by 1.3% – the generated
negative samples are hard negative samples that are simi-
lar to the positive GSTs, which improves the discrimination
power of the tracking model. Moreover, the increased num-

1SoCL-CF is based on a 3rd party implementation of ECO: https:
//github.com/fengyang95/pyCFTrackers.git
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Figure 8. Comparison of SoCL-Siam, which is trained with contrastive
learning on point annotations, and BCE-Siam, which is trained with BCE
loss on pseudo bounding boxes. The pseudo bounding boxes are generated
from the TOP maps using threshold α.
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Figure 9. Comparison of Box-Siam and SoCL-Siam trained using the same
annotation time costs (AUC on OTB-13).

Table 2. Comparison of Box-Siam and SoCL-Siam trained using the same
annotation time costs (i.e., hours) in terms of AUC on OTB-15. The best
results are highlighted.

Annotation time cost 110h 220h 440h 880h
Box-Siam 51.7 54.0 55.2 57.0

SoCL-Siam 53.3 54.9 56.5 57.8

ber of negative samples also improves the lower bound (on
target mutual information), thus leading to better results.

Third, using negative mix-up to further augment the neg-
ative set slightly improves the AUC. Since we perform the
negative mix-up in the feature space, there is no additional
memory cost, and our SoCL can gain additional benefits.

Finally, augmenting the positive set using LSTs im-
proves the AUC by 2.8% to 60.9% and EAO by 1.3% to
0.244, showing that the sampled LSTs effectively mimic
targets with partial occlusion or large appearance variations.

Effect of θb and θp. The ablation study for the effect of
θb and θp is in Fig. 7. Using small values for θb degrades the
AUC, since the SNSs will contain too many target features.
Also, using small values of θp also degrades AUC, since the
LSTs will not encode enough target features

Learning from pseudo bounding boxes. An alterna-
tive training framework could use the TOP maps to generate
pseudo bounding boxes for standard BCE training. Specif-
ically, we use an adaptive threshold α on each frame to
generate a pseudo bounding box, and then follow previous
methods [4, 55] by training SiamFC with a BCE loss. The
results are shown in Fig. 8 using different thresholds (α).
Using the pseudo bounding boxes and standard BCE loss
has degraded performance compared to our SoCL, which is
due to the noise in the TOP maps being transferred to the
pseudo bounding boxes. In contrast, our soft representa-
tions are more robust to the noisy TOP maps.

4.3. Comparison with Same Annotation Time Cost

We next compare our SoCL to a fully-supervised baseline
trained with bounding-boxes (denoted as Box-Siam) under
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Figure 10. Comparison of Box-Siam and SoCL-Siam trained on the whole
GOT-10k dataset. The annotation time costs of Box-Siam and SoCL-Siam
are respectively 3,967 and 880 hours. The evaluation is conducted on
OTB13/15 (AUC) and VOT16/18 (Accuracy).

Table 3. Comparison of Res18-CF and SoCL-CF.

Method OTB13 OTB15 UAV123 VOT18 LaSOT
DPR/AUC DPR/AUC DPR/AUC EAO AUC

Res18-CF 91.3/68.5 87.8/65.9 70.1/51.8 0.207 31.0
SoCL-CF 92.7/69.6 89.7/67.1 72.3/52.6 0.216 32.2

Table 4. Comparison of total fees for BCE learning schema from box
annotations and the proposed SoCL schema w/ point annotations on GOT-
10k. Amounts are in US dollars.

Schema Anno. Fee Training Fee Total
BCE w/ Boxes $50,400 $7.2 $50,407.2
SoCL w/ Points $7,000 $21.6 $7,021.6

the same time cost of annotation. We randomly sample
videos from GOT-10k to meet a specific total annotation
time requirement for both Box-Siam and SoCL-Siam.

The results on OTB-13 and OTB-15 are presented in
Fig. 9 and Table 2. The proposed SoCL-Siam outperforms
Box-Siam by large margins for each annotation time cost on
OTB-13, indicating that our SoCL effectively learns track-
ing representations from low-cost point annotations. One
interesting phenomena is that the performance gap is larger
(56.7 vs. 52.0) for very limited annotation cost (e.g., 110
hours). This is mainly because: 1) SoCL learns features by
comparing objects from the same video and other videos,
while Box-Siam treats each video independently, thus Box-
Siam is more likely to overfit on small number of train-
ing videos; 2) relatively more video frames can be used by
SoCL due to the less per-frame annotation time cost, even
though the total annotation hours are limited. Our SoCL-
Siam also achieves better performance than Box-Siam un-
der each total annotation time costs on OTB-15 (Table 2).

We next compare SoCL-Siam and Box-Siam trained on
the whole GOT-10k. Note that the total annotation time cost
for Box-Siam is much larger than that of SoCL-Siam (3,967
versus 880 hours). Fig. 10 shows the performance on vari-
ous test datasets. Although SoCL-Siam only uses weak su-
pervision and much less total annotation time, SoCL-Siam
still achieves comparable results to Box-Siam, especially on
the OTB datasets. Despite the weak supervision of point
annotations that do not contain scale information, the pro-
posed SoCL effectively learns discriminative features by ex-
ploring the relationships between targets and hard negative
samples in each training mini-batch.

4.4. Improving correlation-filter trackers

We next show that our SoCL also improves online cor-

2612



Table 5. Comparison of our SoCL-TransT and state-of-the-art deep track-
ers on GOT-10k [23], TrackingNet [32] and LaSOT [17]. ATC denotes the
annotation time cost (hours) of the training set for the tracker.

Trackers ATC GOT-10k TrackingNet LaSOT
AO SR0.5 AUC PNorm AUC P

TransT-GOT [9] 4.0K 67.1 76.8 - - - -
KYS [6] 11.9K 63.6 75.1 74.0 80.0 55.4 -

Ocean [56] 34.6K 61.1 72.1 - - 56.0 56.5
SiamFC++ [51] 42.5K 59.5 69.5 75.4 80.0 54.4 54.7

SiamRPN++ [27] 30.6K 51.7 61.6 73.3 80.0 49.6 49.1
DiMP [5] 19.0K 61.1 71.7 74.0 80.1 56.9 56.7

ATOM [13] 15.0K 55.6 63.4 70.3 77.1 51.5 50.5
ROAM++ [53] 26.6K 46.5 53.2 67.0 75.4 44.7 44.5
CGACD [15] 34.6K - - 71.1 80.0 51.8 -

D3S [1] 4.3K 59.7 67.6 72.8 76.8 - -
SoCL-TransT 1.2K 62.2 72.4 75.0 80.5 56.0 56.9

relation filter trackers by learning better feature represen-
tations. We show the comparison between the proposed
SoCL-CF and the baseline Res18-CF in Table 3. SoCL-CF
achieves consistent improvements over Res18-CF on all the
five test datasets. This demonstrates that the proposed SoCL
are beneficial for both offline-learning Siamese and online-
learning CF trackers. In addition, the total annotation time
cost (880h) for gaining these improvements is acceptable.

4.5. Comparison of Total Fees

We compare the total fee (dollar cost) between the two
learning schemas: our SoCL using point annotations (SoCL
w/ Points) and traditional BCE using bounding box annota-
tions (BCE w/ Boxes) [4, 55]. Each bounding box anno-
tation costs $0.036 using Amazon Mechanical Turk, while
each center point annotation costs $0.005 [34]. Since GOT-
10k contains about 1.4M instances, the overall annotation
fees are $50,400 and $7,000 for BCE and SoCL. For train-
ing time, SiamFC takes about 8 hours for training on GOT-
10k with a single GPU card, while ours SoCL takes about
24 hours. A single V100 GPU (p2.xlarge) instance on Ama-
zon EC2 costs $0.90 per hour, thus yielding training costs
of $7.2 and $21.6 for BCE and SOCL. As shown in Table
4, despite having longer training times, our SoCL w/ Points
schema is over 7× less expensive than BCE w/ Boxes.

4.6. Comparison with State-of-the-art Trackers

We compare our SoCL-TransT with state-of-the-art deep
trackers on GOT-10k [23], TrackingNet [32] and LaSOT
[17] in Table 5. Our SoCL-TransT only requires 1.2K an-
notation hours on GOT-10k, which is significantly lower
than those of other trackers. Compared to the fully su-
pervised baseline TransT-GOT, our SoCL-TransT achieves
92.7% and 94.3% of the AO and SR0.5 performances of the
fully-supervised baseline, while reducing annotation cost
by 70%. In addition, SoCL-TransT performs favorably
against state-of-the-art deep trackers on LaSOT and Track-
ingNet, even thought it hass low annotation cost.

Table 6. Comparison of SoCL trained on a subset of GOT-10k w/ and w/o
added annotation noise.

Method OTB15 VOT16 VOT18 UAV123 GOT-10k val
AUC Acc Acc AUC AO

SoCL 53.8 51.5 46.8 45.0 47.2
SoCL w/ added noise 53.6 51.0 46.2 44.2 46.6

Difference 0.2 0.5 0.6 0.8 0.6

4.7. Learning from Noisy Point Annotations
In practice, the employed annotators may not be well
trained or careful enough during the annotation process,
which may lead to noisy point annotations. In [34], the aver-
age error of point annotations, i.e., the distance between the
annotated location and the GT, was found to be 19.5 pixels
for object detection tasks. In order to mimic such noisy an-
notations, we randomly pick 1000 videos from GOT-10K as
our dataset, and add a 20 pixel shift with random direction
to each point annotation. We use this noisy dataset to train
SoCL-Siam, and compare it with the model trained using
the dataset without adding noise.

Table 6 shows the results. The performance differences
between SoCL with and without annotation noise is not
large, with drops ranging from 0.2% to 0.8%. This indi-
cates that our SoCL can learn robust representations from
noisy annotations. Specifically, SoCL uses soft representa-
tions instead of performing strict pixel-wise matching (e.g.,
binary-cross entropy loss) like previous methods [4, 26, 27],
which enables SoCL to be more robust to noisy data.

Furthermore, the EdgeBox proposal generation also
makes SoCL robust to annotation noise. We calculate the
average error distance between the GT target center and the
mean of the generated proposals’ centers in each frame. The
average error distance is 14.1 pixels, which is less than the
original 20 pixels of the annotation noise. Thus the gener-
ated TOP maps are also robust to noisy annotations.

5. Conclusion
This paper proposes a novel soft contrastive learning
(SoCL) framework to learn tracking representations from
low-cost single point annotations. To facilitate the learn-
ing, we propose several memory-efficient sample genera-
tion strategies including the generation of global and lo-
cal soft templates and soft negative samples. Although a
large number of samples can be included in SoCL for one
mini-batch training, the whole training is memory-efficient
and can be conducted on a single GPU (e.g., RTX-3090).
We successfully apply the learned representations of SoCL
to both Siamese and correlation filter tracking frameworks.
Moreover, we design a new framework to train bounding
box regression-based trackers.
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