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Supplementary Material

In this appendix, we present the following details, which we
could not include in the main paper due to space constraints.
• Theoretical discussion of our method, as presented in § S1
• Further investigation on the nature of samples in our

informative subsets, as presented in § S2, and Fig-
ures S3, S4, and S5

• Further details on the experimental setup for all our ex-
periments in Sec. 4, as presented in § S3

• Experimental results using additional baselines, alternate
model architectures, correlation metrics, and experimen-
tal parameters and settings, as presented in § S4

• Additional ablation studies for other key components of
ACT, as presented in § S5

S1. Theoretical Properties
Here, we show that ACT-augmented metrics inherit the the-
oretical properties of their baseline metric. Note that show-
ing theoretical bounds for all transferability metrics is out-
side the scope of this work. Hence, we take one represen-
tative metric (LEEP) and show that ACT-LEEP retains its
theoretical properties.
Preliminaries on Probability Estimations. Let fs

✓ (xi) de-
note the output softmax scores of the source model over
the source dataset label space Z for an instance xi. We
construct a “source label distribution” of the target dataset
over the source label space Z by passing them through
f
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Average Log-Likelihood. We fix the source model weights
✓ and re-train the classification model using maximum like-
lihood and Dtrain

t to obtain a new classifier f⇤
✓ , i.e.,

f
⇤
✓ = argmax

k2K
l(✓, k), (17)

where l(✓, k) is the average likelihood for the weights ✓ and
k on the target dataset Dtrain

t , and k is selected from a space
of classifiers K.

Lemma 1. ACT-LEEP is a lower bound of the optimal av-
erage log-likelihood for the informative subset.

T (fs
✓ ,D

inf
t )  l(w, k⇤)inf  l(w, k⇤) (18)

Proof. This proof is true by definition as Dinf
t ⇢Dtrain

t rep-
resents the informative subset of the target dataset. Note
that l(w, k⇤) is the maximal average log-likelihood over
k 2 K, and T (fs

✓ ,Dtrain
t ) is the average log-likelihood in

K. From [44] we know T (fs
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t )  l(w, k⇤) and by
definition of Dinf

t , T (fs
✓ ,Dinf

t )  l(w, k⇤). In addition, the
model struggles to learn the samples in the informative sub-
set, and hence l(w, k⇤)inf  l(w, k⇤)

Lemma 2. ACT-LEEP is an upper bound of the NCE mea-
sure plus the average log-likelihood of the source label dis-
tribution, computed over the informative subset, i.e.,
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Proof Sketch. Let zi be the dummy labels obtained when
computing NCE and yi be the true labels.
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Empirical Analysis. We analytically evaluated the upper
and lower bounds for ACT-LEEP by computing the RHS of
Equations 18-19. In Figure S1, our results show ACT-LEEP
and its corresponding theoretical upper and lower bounds,
confirming that, across seven source model architectures,
none of our theoretical bounds are violated. In addition,
we empirically demonstrate that our bounds are tighter than
LEEP.
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Figure S1. Empirically calculated ACT-LEEP (in blue), our theoretical upper (in purple) and lower (in green) bounds from Eqns. 18-19
across seven source model architectures trained on the ImageNet dataset, where RN=ResNet, MN=MobileNet, DN=DenseNet. Empirical
results on the StanfordDogs target dataset show no violations of our theoretical bounds.

S2. Entropy of Samples in Informative Subsets
The improved performance of our proposed ACT augmenta-
tion lies in the usefulness of the samples in the informative
subsets. The significant improvements observed in a vari-
ety of experimental settings, across multiple source archi-
tectures and datasets confirms this hypothesis. We further
investigate this as follows: We sort the target dataset using
either of our information scores defined in 3, and divide it
into 5 uniform bins. For each bin, the average entropy of the
samples in the bin. The entropy for a single target sample is
calculated using the standard formula, utilizing the softmax
output of the source model in the source dataset label space
as the probability distribution for that sample. The results
shown in Figure S2 show that the samples assigned higher
information scores by our proposed method have a higher
entropy on average than the samples with lower informa-
tion scores. In addition, the samples in the most informa-
tive subset have a higher average entropy than the average
entropy of the entire dataset.

Algorithm 1 ACT

Require: Source model f
s
✓ , Source dataset Ds, Target

dataset Dt, Informative subset selection variant iv , Trans-
ferability Metric T
k  number of samples in the subset
if iv=‘CAW’ then

Collect target dataset activations El(xt
j)

for class c 2 Dt do
Compute µc, ⌃c . Eqns. 5, 6

end for
Compute I(fs

✓ ,x
t
j)CAW . Eqn. 7

else if iv=‘CAG’ then
Collect source dataset activations El(xs

i )
Collect target dataset activations El(xt

j)
Compute similarity scores (̧xs

i ,x
t
j) . Eqn. 9

Compute I(fs
✓ ,Ds,xt

j)CAG . Eqn. 10
end if
Dinf

t  {k most informative samples ordered by I(·)}
return T (fs

✓ ,Dinf
t )

Figure S2. Average Entropy of samples in bins of decreasing in-
formation scores. More informative bins (subsets) have a higher
average entropy, and vice-versa. The most informative bins also
have a higher average entropy than the overall dataset. Results use
an Imagenet Resnet50 source model, with StanfordDogs as the tar-
get dataset.

S3. Experimental Setup

Compute details. All experiments were run using the Py-
Torch library [52] with Nvidia A-100/V-100 GPUs.
Model Architectures. We use a variety of model architec-
tures (VGG, ResNet, DenseNet), trained on different source
datasets across our experiments. For each model architec-
ture, we utilize embeddings from the pre-final layer for the
class-aware method (Eq. 5). For the class-agnostic method,
we utilize embeddings from intermediate layers for the sim-
ilarity computation (Eq. 9). Particularly, we utilize the em-
beddings from the final layer of each block of convolutions
(e.g.. output of each residual block in ResNet). We only
include 3/4 layers for any architecture and do not consider
embeddings from the first block.
Similarity Computation for Large Source Datasets. For
the experiments with models pre-trained on ImageNet as
the source, when using the class-agnostic method, it is in-



LEAST INFORMATIVE MOST INFORMATIVE

Figure S3. The 5⇥ 5 grid shows the top-25 images from the least
informative (left) and most informative (right) subset of the tar-
get dataset using the class-agnostic technique for the ImageNet-
StanfordDogs source-target pair. Images with higher informa-
tion scores tend to feature cluttered images with atypical van-
tage points, whereas images with lower information scores mostly
comprise dogs in an uncluttered background.
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Figure S4. The 5⇥ 5 grid shows the top-25 images from the least
(left) and most (right) informative subset of the target dataset us-
ing the class-agnostic technique for the ImageNet-OxfordIIIT Pets
source-target pair. Images with higher information scores tend to
feature cluttered images with atypical vantage points, whereas im-
ages with lower information scores mostly comprise dogs and cats
in an uncluttered background.

feasible to use the entire ImageNet dataset for the similarity
comparison to generate the similarity matrix (using Eqn. 9).
Instead, we use a random 10% subset of the ImageNet
dataset, uniformly sampled from each class, as the source
dataset to compute the similarity matrix. We do not observe
any performance drop due to this sub-sampling, and this can
be extended to other datasets as well, for further computa-
tional speedup. Additionally, we do not re-do the similarity
computation for each source architecture. Instead, we only
compute the similarity matrix using the ResNet-50 model
and use the informative subset obtained from this to com-
pute ACT-augmented transferability metrics for all model
architectures pre-trained on ImageNet. We repeat this in
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Figure S5. The 5⇥ 5 grid shows the top-25 images from the least
(left) and most (right) informative subset of the target dataset using
the class-aware technique for the ImageNet-Caltech101 source-
target pair. Images with higher information scores tend to fea-
ture classes that are typically harder to classify (since they might
have very less distinguishing features), whereas images with lower
information scores mostly comprise classes that are easily distin-
guishable.

the model ensemble setting, utilizing a single similarity ma-
trix for all model architectures trained on the same source
dataset.
GBC Implementation. In all experiments, for computing
GBC and ACT-GBC, we use a spherical covariance matrix,
as we found this to yield better results for the base GBC
score.
Size of Informative Subset. The size of the informative
subset is a hyperparameter that can be tuned. Due to vari-
ations in dataset sizes, the exact value differs significantly.
Instead of fixing a size, we set the size of the informative
subset Ns to be a fraction of the size of the target dataset.
In general, we found a value of 10%-25% to work well.
Models used in Ensemble Selection. We use the follow-
ing pool of source models for ensemble selection experi-
ment described in Section 4.4: i) DenseNet-201, ResNet-
101, MobileNetv2 trained on on Imagenet, ii) DenseNet-
201, ResNet-18, VGG-19 trained on Stanford Dogs, iii)
DenseNet-201, ResNet-101 trained on Oxford IIIT Pets,
iv) DenseNet-201, ResNet-101 trained on Flowers102, v)
ResNet-18, VGG-19 trained on CUB200, and vi) ResNet-
34 trained on Caltech101.

S4. Additional Results
We include the following additional results: i) Compari-
son with H-Score, TransRate, E-Train, SFDA, and PARC
on Source Architecture Selection (Table S1), ii) Additional
baselines on Target Dataset Selection (Table S2), iii) Lan-
guage Models (Table S3); iv) Target Dataset Selection re-
sults with CUB20 source models (Table S7); v) Ensem-
ble Selection results with K = 3 (Table S4), vi) Results



with Kendall Tau (Table S8) and Weighted Kendall Tau
(Table S9), and vii) Results in a noisy dataset setting (Ta-
ble S10).

S5. Additional Ablations
We include ablation studies on a few more key components
of ACT: i) The architecture of the model used to compute
information scores (Section S5.1), and ii) The selection of
the optimal subset after computing information scores (Sec-
tion S5.2), and iii) The size of the informative subset (Sec-
tion S5.3)

S5.1. Architecture used to compute Information
Score

ACT aims to achieve better transferability estimates irre-
spective of the source of the information scores, i.e., the
source architecture we use to calculate informative sub-
sets in Class-Agnostic way or Class-Aware way. We fol-
low the experimental setup from the target task selec-
tion (Section 4.2) experiments. We calculate ACT-LEEP
scores on informative subsets identified using i) ResNet18
and VGG19 trained on CUB200, and ii) ResNet50 trained
on ImageNet. Results show that ACT-LEEP outperforms
LEEP (baseline calculated using the entire dataset) across
all three architectures (Table S5).

S5.2. Less Informative Samples added with
Stochasticity

It is important to understand whether one can completely
neglect the least informative samples for transferability es-
timation. We conduct an experiment where we add the least
informative samples stochastically to our most informative
subsets and then compute the respective metric correlation
score. We follow the experiment setting of Table 1 and
obtain results by iterating the addition of least informative
samples 10 times, followed by taking the mean. We observe
that addition of less informative samples do not improve the
results. In fact, the results come out to be worse than when
using only the most informative samples. Results for the
same are shown in Table S6.

S5.3. Size of the informative subset (Ns)
The size of the informative subset is a key component of our
propose ACT approach. We find an optimal subset size of
⇡25% of the original target dataset works across all exper-
iments. We observe that setting Ns too low does not leave
enough samples for the transferability estimation, and set-
ting Ns too high includes many samples, taking us away
from informative subsets and closer to the baseline metrics
themselves. This is observed in our results in Fig. S6, where
we measure the performance of ACT-LEEP with different
sizes of the informative subset.

Figure S6. Correlation scores of ACT-LEEP on varying the size
of the informative subset. Experiment was performed using a
ResNet-50 model trained on ImageNet as the source model, and
Oxford-IIIT Pets as the target dataset.



Table S1. Results on source architecture selection task with additional baselines. Shown are correlation scores (higher the better) computed
across all source architectures trained on ImageNet. Results where ACT metrics perform better are in bold.

Target (Dt) H-Score ACT-H-Score TransRate ACT-TransRate PARC ACT-PARC SFDA ACT-SFDA E-Tran ACT-E-Tran
CAG CAW CAG CAW CAG CAW CAG CAW CAG CAW

CUB200 0.421 0.417 0.323 -0.367 -0.254 -0.266 0.692 0.840 0.873 0.47 0.920 0.623 -0.238 0.821 0.764
StanfordDogs 0.910 0.924 0.892 0.885 0.892 0.856 0.927 0.945 0.937 0.939 0.939 0.940 0.125 0.944 0.881
Flowers102 0.038 0.238 0.192 0.604 0.662 0.641 -0.399 0.698 0.185 0.606 0.583 0.581 0.490 0.604 0.409
OxfordPets 0.862 0.940 0.714 -0.025 0.361 0.492 0.773 0.836 0.817 0.753 0.829 0.888 -0.271 0.924 0.427
Imagenette 0.953 0.954 0.938 -0.898 -0.880 -0.315 0.782 0.903 0.804 0.919 0.926 0.935 0.724 0.931 0.800

Table S2. Results on target dataset selection task for Caltech101
source models with additional baselines. Shown are correlation
scores (higher the better) computed across all target datasets. Re-
sults where ACT metrics perform better are in bold.

Target (Dt) H-Score ACT-H-Score TransRate ACT-TransRate
CAG CAW CAG CAW

CUB200 -0.45 -0.24 0.300 -0.662 -0.58 0.197
StanfordDogs -0.131 -0.112 0.388 -0.49 -0.385 0.321
Flowers102 -0.689 -0.584 -0.341 -0.457 -0.392 -0.13
OxfordPets -0.695 -0.707 -0.291 -0.429 -0.372 -0.237
PACS-Sketch -0.543 -0.554 -0.55 -0.149 -0.179 0.05

Table S3. Results on target task selection for sentiment classifi-
cation using additional baselines. Shown are correlation scores
(higher the better) computed across all target candidates. Results
where ACT metrics perform better than their counterparts are in
bold.

Target (Dt) H-Score ACT-H-Score TransRate ACT-TransRate
CAG CAW CAG CAW

Emotion-IMDB -0.296 0.214 -0.040 0.015 0.210 0.145
Emotion-Tweets -0.138 -0.046 0.358 0.095 0.227 0.602
News-Tweets -0.527 -0.606 -0.227 -0.638 -0.071 0.381

Table S4. Results on the ensemble model selection task for
K = 3. Shown are correlation scores (higher the better) com-
puted across all ensemble candidates. Results where ACT metrics
outperform their baselines are bolded.

Target (Dt) MS-LEEP ACT-MS-LEEP E-LEEP ACT-E-LEEP

Flowers102 -0.288 -0.376 -0.323 -0.319
Stanford Dogs 0.390 0.264 0.477 0.494
CUB200 0.345 0.391 0.405 0.405
Oxford-IIIT 0.115 0.189 0.253 0.343
Caltech101 0.430 0.479 0.480 0.478

Table S5. Results on target task selection task different source
model architectures. Shown are correlation scores (higher the bet-
ter) computed across the target dataset using ACT-LEEP. Irrespec-
tive of the architecture used for finding the most informative sub-
set, ACT-LEEP outperforms the baseline LEEP score.

Information Score Source Model Caltech101 Oxford-IIIT Pets
CAG CAW CAG CAW

ResNet18 0.360 0.014 0.896 0.901
VGG19 0.200 0.267 0.881 0.894
ResNet50 0.630 0.196 0.896 0.898

Baseline (LEEP Score) -0.03 0.863

Table S6. Results using subsets obtained by stochastically adding
the least informative samples to the most informative subset.
Shown are correlation scores (higher the better) computed across
all source architectures trained on ImageNet. Results where ACT-
augmented metrics outperform their baselines are in bold.

Target (Dt) LEEP ACT-LEEP Stochasticity %
CAG CAW 1% 3% 5% 10%

Caltech101 0.416 0.439 0.475 0.474 0.472 0.472 0.458
Flowers102 0.534 0.405 0.626 0.616 0.579 0.575 0.539
CUB200 0.504 0.508 0.723 0.719 0.714 0.728 0.679

Table S7. Results on target task selection using the fine-tuning
method for CUB200 source models. Shown are correlation scores
(higher the better) computed across all target datasets. Results
where ACT metrics outperform are bolded.

Target (Dt) LEEP ACT-LEEP NCE ACT-NCE GBC ACT-GBC
CAG CAW CAG CAW CAG CAW

Caltech101 -0.035 0.709 0.098 0.081 0.742 0.249 0.507 0.562 0.516
Flowers102 0.612 0.617 0.613 0.593 0.579 0.618 0.535 0.526 0.568
StanfordDogs 0.929 0.936 0.929 0.928 0.927 0.929 0.909 0.914 0.913
Oxford-IIIT 0.863 0.871 0.860 0.812 0.826 0.814 0.859 0.860 0.872
PACS-Sketch 0.947 0.965 0.960 0.949 0.958 0.950 0.819 0.909 0.883

Table S8. Results on source architecture selection. Shown are
Kendall Tau correlation scores (higher the better) computed across
all source architectures trained on ImageNet. Results where
ACT metrics outperform their baselines are in bold.

Target (DT ) LEEP ACT-LEEP NCE ACT-NCE GBC ACT-GBC
CAG CAW CAG CAW CAG CAW

CUB200 0.238 0.142 0.714 0.142 0.238 0.619 0.619 0.619 0.714
StanfordDogs 0.809 0.809 0.809 0.809 0.714 0.809 0.619 0.904 0.714
Flowers102 0.333 0.619 0.523 0.238 0.428 0.238 0.047 0.047 0.238
Oxford-IIIT 0.904 1.000 0.904 0.523 0.619 0.714 0.523 0.523 0.523
Caltech101 0.390 0.390 0.390 0.097 0.292 0.195 0.683 0.683 0.683
Imagenette 0.714 0.714 1.000 0.619 0.714 0.683 0.619 0.619 0.714
PACS-Sketch 0.000 0.097 0.097 0.000 0.097 0.195 0.487 0.487 0.585



Table S9. Results on source architecture selection task. Shown are
Weighted Kendall Tau correlation scores (higher the better) com-
puted across all source architectures trained on ImageNet. Results
where ACT metrics outperform their baselines are in bold.

Target (DT ) LEEP ACT-LEEP NCE ACT-NCE GBC ACT-GBC
CAG CAW CAG CAW CAG CAW

CUB200 0.258 0.108 0.638 0.113 0.247 0.659 0.591 0.591 0.805
StanfordDogs 0.865 0.865 0.865 0.865 0.672 0.865 0.746 0.952 0.805
Flowers102 0.376 0.705 0.644 0.389 0.611 0.400 -0.119 -0.119 0.031
Oxford-IIIT 0.925 1.000 0.925 0.587 0.678 0.721 0.692 0.530 0.530
Caltech101 0.535 0.535 0.535 0.345 0.482 0.238 0.723 0.723 0.723
Imagenette 0.672 0.672 1.000 0.558 0.758 0.693 0.799 0.808 0.851
PACS-Sketch -0.145 0.026 0.095 -0.063 0.044 0.232 0.567 0.406 0.651

LEEP ACT-LEEP NCE ACT-NCE
20% Subset 25% Subset 20% Subset 25% Subset

0.91 0.89 0.93 0.91 0.94 0.95

Table S10. To test the performance of ACT in a noisy dataset
setting, we test our approach using ImageNet source models, and
Noisy ImageNette (target; w/ 20% Gaussian noised data) and find
that ACT still improves the transferability estimation. This shows
that ACT is able to correctly identify the correct samples to esti-
mate transferability in this setting, even in the extreme case where
the size of the informative subset is the same as the fraction of
noised samples. The most informative subset may also include
these noised samples, as they significantly affect the learning pro-
cess, and thereby the finetuned model.
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