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1. Background: Manifold of Surface Shapes
A continuous surface can be described by a function

q : I → R3, where I is a two-dimensional space of
parameters (u, v) ∈ I that parameterize the 3D points
q(u, v) ∈ R3 on the surface. The space of surfaces is de-
noted M ⊂ C∞(I,R3). The space M is an infinite di-
mensional manifold immersed in the infinite dimensional
vector space C∞(I,R3). Recall that one surface shape
is represented by one point on the manifold of surface
shapes. Thus, the Riemannian metric we choose to equip
the manifold M with defines the distance between its points
q0, q1 ∈ M and also yields the notion of dissimilarity be-
tween the two surfaces q0, q1. We consider the second-order
Sobolev metric [2]:

Gq(h, k) =

∫
M

(
a0⟨h, k⟩+ a1g

−1
q (dhm, dkm)

+ b1g
−1
q (dh+, dk+) + c1g

−1
q (dh⊥, dk⊥)

+d1g
−1
q (dh0, dk0) + a2 ⟨∆qh,∆qk⟩

)
volq,

(1)

where h, k are tangent vectors at point q ∈ M; g−1
q

is the pullback metric from R3 that defines distances
on the surface q itself; ∆q is the Laplacian induced by
q; dhm, dh+, dh⊥, dh0 are orthogonal vector-valued one-
forms and volq is the surface area measure of q. The
scalars a0, a1, a2, b1, c1, d1 are weighting parameters that
define distance between two surfaces based on how they are
sheared, scaled, bent, or parameterized with respect to each
other. The second-order Sobolev metric cannot distinguish
between a surface and its translation, so it inherantly calcu-
lates distance without considering the position of the shape
in R3, ensuring that a difference in spatial translation would
not affect a distance computation between two shapes. Be-
cause of this invariance, mathematically, the space of sur-
faces is defined as the quotient space: I/(R3).

We can quotient by more actions to give an even more
well defined notion of “shape”. In the space of surfaces M
described above, two surfaces with the same shape but dif-
ferent orientations would correspond to different points. By
contrast, we introduce the space of surface shapes S where
two surfaces with the same shape correspond to the same
point, regardless of differences in their orientation. Mathe-
matically, the space of surface shapes is defined as the quo-
tient space: I/(Rot(R3)× R3) —see [2] for details.

In the shape space S, the distance between two surface
shapes q1 and q2 is given by:

dS(q1, q2) = infϕd(q1, q2 ◦ ϕ) = d(q1, q
′
2), (2)

where ϕ represents a choice in orientation. In Eq. (2), the
orientation of q2 is varied until the second-order Sobolev

distance d in Eq. (1) between q1 and q2 reaches an infimum.
This operation matches the orientation of q2 to the orienta-
tion of q1 so that any remaining discrepancy between them
is due to difference in shape.

2. Computation of the Riemannian Gradient
We consider the generative model with Euclidean Gaus-

sian noise, and its associated loss function for geodesic re-
gression. The gradient of the loss function associated with
this model can be computed as a Riemannian gradient or
as an extrinsic gradient. Here, we give the formula for the
Riemannian gradient.

Proposition 1. The Riemannian gradient is given by:

∇pl = −
n∑

i=1

dp Exp (p,Xiv)
†
ri,

∇vl = −
n∑

i=1

xidv Exp (p,Xiv)
†
ri,

where l is the loss function, ri = yi − Exp (p,Xiv) are the
residuals, dv and dp are derivatives, and † is the adjoint.
In other words, the Riemannian gradient has the same form
as in traditional geodesic regression, only the residuals are
given by ri = yi − Exp (p,Xiv).

Proof. Recall that the loss function l is given by:

l =

n∑
i=1

∥Yi − Ŷi∥2, (3)

where Ŷi = Exp (p,Xiv). Following the proof in [3], we
compute the gradient of l with two steps: (i) the derivative
of the squared Euclidean distance, and (ii) the derivative of
the exponential map.

Considering (i), the gradient of the squared Euclidean
distance function for a fixed Yi ∈ RD is:

∇Ŷi
∥Yi − Ŷi∥2 = −2(Yi − Ŷi). (4)

We note that the computation of the gradient is simplified
compared to the classic geodesic regression case, both in
terms of its equation but also in terms of computational
complexity.

Considering (ii), the gradient of the exponential map
w.r.t. p, v, for any u1, u2, is given by:

dp Exp(p,Xiv) · u1 = J1(1),

dv Exp(p,Xiv) · u2 = J2(1),
(5)

where J1, J2 are Jacobi fields along the geodesic γ(t) =
Exp(p, tv) associated with u1, u2 respectively, and defined



as follows. Specifically, J1, J2 are solutions to the second
order equation

D2

dt2
J(t) +R (J(t), γ′(t)) γ′(t) = 0,

where R is the Riemannian curvature tensor, with initial
conditions J1(0) = u1, J

′
1(0) = 0 and J2(0) = 0, J ′

2(0) =
u2, respectively [1].

We introduce the adjoint operators defined by, for all w:

< dpExp(p, v) · u1, w > =< u1, dpExp(p, v)†w >

< dvExp(p, v) · u2, w > =< u2, dvExp(p, v)†w > .

Using w = ri, we put (i) and (ii) together using the chain
rule, and we get:

∇pl = −
n∑

i=1

dp Exp (p,Xiv)
†
ri,

∇vl = −
n∑

i=1

xidv Exp (p,Xiv)
†
ri,

where now, ri = Yi − Exp (p,Xiv) .
We find the same formula as in [3], except the geodesic

residuals have been replaced by the linear residuals. This
concludes the proof.

3. Probability Density in Projected Gaussian
Euclidean Noise

For convenience of notations, we drop the subscripts i.
We compute the formula for the probability density func-

tion associated with the model with projected Euclidean
Gaussian noise, given by the following proposition.

Proposition 2. The probability density function associated
with the model with projected Euclidean noise is:

p(Yi | Xi; p, v) =
1

√
2πσ2

m exp

(
−∥P⊥

Y (Ỹ )− Ỹ ∥2

2σ2

)
,

where we introduce the projection P⊥
Y , different from P ,

that projects the noiseless data point Ỹ onto the subspace
TY M⊥.

Proof. The probability density before projection via P is:

p(Ȳ | X; p, v) =
1

C(σ)
exp

(
−∥Ȳ − Exp(p,Xv)∥2

2σ2

)
,

with C(σ) =
√

(2π)Dσ2D the normalization constant. We
emphasize that the notation Ȳ does not denote mean, but
rather the data point from the unprojected probability distri-
bution.

The probability density after projection is:

p(Y | X; p, v) =

∫
Ȳ ∈TY M⊥

p(Ȳ |X)dȲ , (6)

where we integrate over the values of Ȳ that will give the
same projection Y on M. We refer the reader to Figure 1
for the notations used in this proof.

Figure 1. Notations for the Projected Euclidean Noise. Ỹ : noise-
less data point, Ȳ : noisy data point before projection, Y : noisy
data point after projection via P⊥

Y on M. The pink circle repre-
sents a level set of the isotropic Gaussian noise in ambient space,
which has mean Ỹ . We have decomposed the ambient space RD

into TY M and its orthogonal TY M⊥ (dashed lines).

We have:

p(Y | X; p, v)

=

∫
Ȳ ∈TY M⊥

p(Ȳ |X)dȲ

=
1

C(σ)

∫
Ȳ ∈TY M⊥

exp

(
−∥Ȳ − Ỹ ∥2

2σ2

)
dȲ ,

where we use the notation Ỹ = Exp(p,Xv) (see Figure 1).

This equation shows the integral of a multivariate Gaus-
sian distribution in RD with mean Ỹ and isotropic variance
σ2I along a subspace V of RD. Here, V is the subspace
perpendicular to TY M at Y : V = TY M⊥. We denote
P⊥
Y (Ỹ ), the orthogonal projection of the mean Ỹ onto V .

We consider a change of variable Ȳ = P⊥
Y (Ỹ ) + u,

where u ∈ RD−m with m the dimension of M (see Fig-



ure 1). Pythagorean theorem in ambient space RD gives:

p(Y | X; p, v)

=
1

C(σ)

∫
Ȳ ∈TY M⊥

exp

(
−∥Ȳ − Ỹ ∥2

2σ2

)
dȲ

=
1

C(σ)

∫
u∈RD−m

exp

(
−∥P⊥

Y (Ỹ ) + u− Ỹ ∥2

2σ2

)
du

=
1

C(σ)

∫
u∈RD−m

exp

(
−∥P⊥

Y (Ỹ )− Ỹ ∥2 + ∥u∥2

2σ2

)
du

= J(σ)

∫
u∈RD−m

exp

(
−∥u∥2

2σ2

)
du,

where we put the terms that are independent of u outside
the integral and where we define:

J(σ) =
1

C(σ)
exp

(
−∥P⊥

Y (Ỹ )− Ỹ ∥2

2σ2
,

)
(7)

for convenience of notations. We extract the D − m coor-
dinates of u to get a first analytical expression for the prob-
ability density function of the generative model of geodesic
regression with projected Euclidean Gaussian noise:

p(Y | X; p, v) = J(σ)

(∫
u′∈R

exp

(
− u′2

2σ2

)
du′
)D−m

= J(σ)
√
2πσ2

D−m
,

using the formula for the Gaussian integral:∫
x
exp(−ax2)dx =

√
π
a with a = 1

2σ2 .
Putting these computations together, we get:

p(Y | X; p, v)

=
1

C(σ)
exp

(
−∥P⊥

Y (Ỹ )− Ỹ ∥2

2σ2

)
√
2πσ2

D−m

=

√
2πσ2

D−m

√
2πσ2

D
exp

(
−∥P⊥

Y (Ỹ )− Ỹ ∥2

2σ2

)

=
1

√
2πσ2

m exp

(
−∥P⊥

Y (Ỹ )− Ỹ ∥2

2σ2

)
,

where we note that the dependency in Y is within the pro-
jection P⊥ onto the subspace V = TY M, and the depen-
dency in X is within Ỹ = Exp(p,Xv).

4. Probability Density in Metric Deformed
Gaussian Euclidean Noise

We drop the subscripts i for convenience of notations.
We provide the probability density function associated

with the model with deformed Euclidean Gaussian noise in
the proposition below.

Proposition 3. The probability distribution associated with
the generative model with deformed Euclidean Gaussian
noise is:

p(Yi | Xi; p, v) =
1

C(σ)
√
detG(Yi)

exp

(
−∥Yi − Ỹi∥2

2σ2

)
,

where C(σ) =
√

(2π)Dσ2D is the normalization constant,
and G represents the matrix of the Riemannian metric of M
at Yi.

Note that this probability distribution differs from the
classical linear regression, through the term

√
detG(Yi).

We provide a proof below.

Proof. The probability density before deformation is:

p(Ȳ | X; p, v) =
1

C(σ)
exp

(
−∥Ȳ − Exp(p,Xv)∥2

2σ2

)
,

with C(σ) =
√
(2π)Dσ2D the normalization constant.

The “deformation” amounts to considering a different
metric on the manifold M in which Y takes values. This
implies that we consider a different measure on the man-
ifold M. The measure associated with Euclidean metric,
used to write the Gaussian distribution above is dY . By
definition, the measure associated with a Riemannian met-
ric is then:

√
det(G(Y )) where G is the matrix of the inner-

product of the Riemannian metric at point Y .
With respect to this new measure, the probability density

function is therefore:

p(Yi | Xi; p, v) =
1

C(σ)
√
detG(Yi)

exp

(
−∥Yi − Ỹi∥2

2σ2

)
.

5. Why don’t we test geodesic noise, Euclidean
noise, and projected Euclidean noise gener-
ative models on mesh data?

We do not test the geodesic noise model on mesh data
because as described in the introduction, geodesic noise is
never added to mesh data.

We cannot test the Euclidean noise model on mesh data
because the curvature of the manifold of surface shapes is
introduced by the second-order Sobolev metric [2], which
quotients by translation. A distance between two meshes
on the manifold is measured by disregarding the positions
of their barycenters. Therefore, any computation done on
this manifold using the second-order Sobolev metric would
implicitly submerse linear noise to the manifold, and we
would actually be testing Submersed Euclidean Noise.

We cannot test projected Euclidean noise on mesh data
because as mentioned above, meshes are brought to the



manifold by disregarding the positions of their barycenters,
so bringing any mesh to the manifold of surface shapes ac-
tually entails a manifold submersion, which is not the same
as a “projection”, which for example brings a point in em-
bedding space to the surface of a hypersphere.
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