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Overview
This is Supplementary Material for the paper ‘Human-in-
the-Loop Segmentation of Multi-species Coral Imagery’.
First, we extend two ablation studies in the main paper (Sec-
tion 1): we investigate the impact of the value of k in the
KNN classifier used for clustering deep pixel embeddings
for different quantities of point labels, and we evaluate ad-
ditional variations of the DINOv2 feature extractor used in
our approach. Section 2 then outlines the process used for
cleaning the UCSD Mosaics dataset. Finally, we include
supplementary qualitative results in Section 3 and provide
additional discussion of the results presented.

1. Extended Ablation Studies
This section outlines extensions of two of the ablation stud-
ies in the main paper: the value of k used by the K-Nearest
Neighbor algorithm for clustering deep pixel features (Sec-
tion 1.1), and the DINOv2 feature extractor used for gener-
ating per-pixel deep embeddings (Section 1.2).

1.1. Effect of k in KNN

In Fig. 5 of the main paper, we evaluate the impact of k in
the KNN algorithm used for clustering pixels in the deep
embedding space. We demonstrate that the best perfor-
mance for 25 point labels is when k = 1. In this section, we
perform a more comprehensive evaluation of values of k as
the quantity of point labels is also varied (5, 10, 25, 100 and
300 point labels). Fig. 1 shows the results of this ablation.

For all values of point labels, the best performance is
achieved when k = 1, i.e. when a nearest neighbor classi-
fier is used. The effect is particularly pronounced for small
values of point labels because there are fewer examples for
the clustering algorithm, i.e. for 5 point labels in an image,
it is likely that there is only one labeled point per class in the
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Figure 1. Effect of increasing the value of k on the pixel accuracy
of point label propagation. For all quantities of point labels, the
best pixel accuracy is achieved when k = 1, i.e. a nearest neighbor
classifier is used for clustering deep pixel features.

set. This means there is no benefit from taking the majority
of three or five neighbors, as only one of the neighbors will
be the correct class label.

1.2. DINOv2 Variations

In Section 5.2.1 of our main paper, we evaluate the impact
of using the denoised version of DINOv2 described in [8],
and establish that denoising the feature embeddings leads
to an improvement in clustering pixel features. In this sec-
tion, we also compare the variation of DINOv2 trained with
registers [3], and the denoised version of DINOv2 trained
with registers [3, 8]. The features are visualised by reducing
the dimensions with Principal Components Analysis (PCA)
into the RGB colour space in Fig. 2. This figure shows that
training DINOv2 with registers reduces some of the feature
artefacts, but the effect is not as pronounced as for the de-
noised features [8]. The features obtained through training
DINOv2 with registers [3] as well as denoising the features
[8] are not as clean as for the denoised features from the
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Figure 2. Comparison of Point Label Aware Superpixels [7] features, DINOv2 raw features [5], DINOv2 trained with registers features
[3], denoised DINOv2 features [8], and denoised DINOv2 features trained with registers [3, 8] for UCSD Mosaics coral images. For the
transformer approaches, features for every 14x14 pixel patch in the original image have been upsampled with bilinear interpolation. All
features are reduced to RGB for visualisation with Principal Components Analysis (PCA). Pixels with similar RGB colors are similar in
the deep embedding space. The CNN features used by Point Label Aware Superpixels (PLAS) [7] do not effectively group pixels into
meaningful segments. The denoising model clearly reduces the position embedding artefacts, resulting in smoother, cleaner features and
therefore improved clustering performance.

original DINOv2. This is reflected in the quantitative re-
sults for this ablation, shown in Table 1, which shows that
the highest performance across the three metrics is for the
denoised DINOv2 model.

2. Dataset Details

In Section 4.2 of the main paper, we describe the UCSD
Mosaics dataset, which is used for development and evalua-
tion of the point label propagation approach. This dataset is
the only multi-species coral image dataset where the im-
ages are accompanied by pixel-wise ground truth masks.
It was originally collected and contributed by [4], and has
been used extensively in the coral segmentation literature
[1, 2, 6, 7]. We noticed a small number of ground truth
masks in the dataset are corrupted, so we excluded these
from the dataset. Fig. 3 demonstrates the issue with the
ground truth masks. The dataset was carefully inspected
and 219 images were removed from the training set, result-
ing in 3,974 images and another 32 were removed from the
test split, yielding 696 images. Although it is unlikely that
this small quantity of images would significantly impact the
reported results, we re-ran the comparison approaches [6, 7]
on the cleaned version of the dataset for accurate evaluation.

The specific details for the images in the cleaned version
of the dataset can be found at https://github.com/
sgraine/HIL-coral-segmentation.

3. Additional Qualitative Results

In Fig. 6 of the main paper, we show a selection of ex-
ample images and compare our point propagation approach
which leverages DINOv2, KNN and our smart point selec-
tion regime with prior approaches Fast Multi-level Super-
pixel Segmentation [6] and Point Label Aware Superpixels
[7]. In this section, we provide a more comprehensive ver-
sion of the figure, which shows the augmented ground truth
masks from each of the approaches and each of the four ex-
ample images (Fig. 4).

This figure highlights that grid-based sparse labels im-
prove the coverage over randomly placed sparse labels.
Row 6 shows that for the Fast MSS approach [6], one of the
beige segments is entirely missed by the randomly placed
points but captured by the grid points.

The modes of failure for Fast MSS and the Point Label
Aware Superpixel approach in the 5 pixel case can be ob-
served in Fig. 4. Fast MSS fails to produce useful segments
because only segments containing a point label are used in

https://github.com/sgraine/HIL-coral-segmentation
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Table 1. Effect of DINOv2 Feature Extractor Variations (Refer to Section 4.3 of the Main Paper for Metric Definitions)

PA mPA mIoU
Method 5 / 10 / 25 / 300 5 / 10 / 25 / 300 5 / 10 / 25 / 300
DINOv2 [5] 68.58 / 73.32 / 76.94 / 88.10 60.23 / 68.04 / 70.97 / 85.58 50.28 / 55.76 / 61.61 / 83.79
DINOv2 with Registers [3, 5] 68.49 / 73.12 / 76.65 / 87.41 59.79 / 67.48 / 72.44 / 84.84 49.80 / 55.96 / 61.46 / 82.68
Denoised DINOv2 [5, 8] 71.57 / 76.38 / 80.71 / 89.61 61.46 / 69.87 / 75.91 / 86.45 52.60 / 59.48 / 67.97 / 85.00
Denoised DINOv2 with Registers [3, 5, 8] 70.15 / 75.41 / 78.88 / 88.16 61.85 / 70.75 / 75.81 / 85.42 52.36 / 59.47 / 67.28 / 83.68

Figure 3. Some of the ground truth masks in the UCSD Mosaics
dataset exhibited corruption, as seen at the top of these examples.

the augmented ground truth mask. In the case that segments
do not contain any points (which occurs frequently in this
setting), the unknown/unlabeled class is used, meaning that
the majority of the mask is this class. In the case of the Point
Label Aware Superpixel approach, any superpixel segment
that does not contain a point label is labeled based on feature
similarity with the segments which do have an associated
label. This results in significant over-prediction of classes.
In addition, the point label aware superpixel approach relies
on sufficient points for the conflict loss function to force the
boundaries of superpixels to neatly conform to species [7].

Our DINOv2 and KNN approach effectively produces
augmented ground truth masks, even in the extremely
sparse label setting. However, one limitation of our ap-
proach is that spatially small species segments can be
missed when there are very few point labels available (as
seen in row 1 of Fig. 4, the orange segment is not included
in the augmented ground truth). One avenue for future work
would be to incorporate mechanisms which place more em-
phasis on species which are spatially small and prevent
model bias towards species with larger instances.
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Figure 4. Additional Qualitative Results. Comparison between the Fast MSS approach [6], the point label aware superpixel approach [7]
and our approach, based on denoised DINOv2 features [8], K-Nearest Neighbors and our Human-in-the-Loop labeling regime. The same
four examples are shown for all approaches. The top section shows point propagation for 5 labels, and the bottom section demonstrates
point propagation when there are 300 labels available. The pixels used in the point label propagation are shown as black circles within the
output augmented ground truth masks.
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