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In this supplementary material, we provide additional
quantitative comparisons, qualitative visualizations and ab-
lation studies. Section A provides the comparison between
our SoCL-TransT and TransT [3] under the same annotation
time cost. Section B shows the comparison between our
SoCL-Siam and Box-Siam with the same annotation time
cost and same training videos. Section C contains the abla-
tion study on the usage of projection head in both Siamese
and correlation filter trackers. We then introduce the de-
tailed preprocessing step in Section D in order to obtain
smoother target objectness prior (TOP) maps for more ef-
fective representation learning. Finally, Section E shows
the qualitative visualization of the soft sample generation,
including both global soft template (GST) and soft negative
sample (SNS) generation.

A. Comparison with Same Annotation Time
Cost using TransT

In this section, we compare the proposed SoCL-TransT to
its fully supervised baseline (i.e.,TransT [3]) trained with
bounding boxes under the same time cost of annotation.
Note that SoCL-TransT is trained on the whole GOT-10k
dataset with point annotations, and its total annotation time
cost is about 1.2K hours. We randomly sample training
videos with bounding box annotations from GOT-10k to
meet the same annotation time requirement (1.2K hours),
and then use these videos to train TransT. As illustrated in
Table 1, our SoCL-TransT achieves better performance than
TransT in terms of all the metrics on the three large-scale
tracking datasets. For example, SoCL-TransT achieves fa-
vorable AUC, PNorm and P on the LaSOT dataset by re-
spectively improving 7.1%, 8.9% and 10.1% compared to
TransT, which demonstrates the effectiveness of the pro-
posed new annotation schema for training scale regression-
based trackers.

Table 1. Comparison of SoCL-TransT and TransT trained using the same
annotation time cost (i.e., 1.2K hours) on GOT-10k [5], TrackingNet [6]
and LaSOT [4]. The best results are highlighted.

Trackers GOT-10k TrackingNet LaSOT
AO SR0.5 SR0.75 AUC PNorm P AUC PNorm P

TransT [3] 59.1 68.0 51.9 72.4 76.4 67.1 48.9 50.1 46.8
SoCL-TransT 62.2 72.4 52.5 75.0 80.5 71.1 56.0 59.0 56.9

Table 2. Comparison of Box-Siam and SoCL-Siam trained using the same
annotation time costs (i.e., hours) and the same number of training videos
in terms of AUC on OTB-13. The best results are highlighted.

Annotation time cost 110h 220h 440h 880h
Box-Siam 52.2 54.3 58.1 58.8

SoCL-Siam 56.7 58.2 59.8 60.9

B. Comparison with Same Annotation Time
Cost and Same Training Videos

In Section 4.3 of the main paper, under the same anno-
tation time cost, the training sets for baselines or SoCL
are selected by sampling whole videos to ensure the same
time cost. However, this means that the baseline meth-
ods are trained on fewer videos (possibly seeing less back-
grounds and less objects) compared to SoCL. In this sec-
tion, we guarantee that SoCL-Siam and Box-Siam use the
same number of training videos and same annotation cost.
Specifically, for each video, SoCL-Siam uses all its video
frames while Box-Siam uses about 22.2% (i.e., 1/4.5) of
the frames. The comparison is shown in Table 2. We can
see that our SoCL-Siam still significantly outperforms Box-
Siam under various annotation time costs, which shows the
superiority of our SoCL and demonstrates that SoCL can
also learn effective temporal correspondences from soft rep-
resentations for visual tracking.

C. Ablation Study on Projection Head

The usage of a projection head has been well explored in
the contrastive learning community [2, 7]. Commonly, us-
ing a projection head for end-to-end contrastive learning can
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Figure 1. Qualitative visualization of global soft template (GST) and soft negative sample (SNS) generation in the proposed SoCL framework. (a) Input
search images that contain both target and background regions. (b) Score maps generated via proposal generation and objectness measurement [1]. (c) TOP
maps generated by applying the softmax function on the score maps. (d) the similarity map with target responses masked out using the background selection
function. (e) applying the softmax to (d) yields the hard negative map, which is used to select features for the SNS.

Table 3. Ablation study on projection heads: AUCs obtained by using
different trackers w/ and w/o projection heads on OTB-13. The best results
are highlighted.

w/ proj. head w/o proj. head
SoCL-Siam 49.5 60.9
SoCL-CF 69.6 68.8

learn better feature representations for some typical down-
stream tasks, e.g., image classification. However, there is
no empirical study to explore its usage on visual tracking,
i.e., whether it is beneficial for learning robust tracking rep-
resentations. Note that the projection head we use is im-
plemented as a three-layer perceptrons with a single hidden
layer of K units, where K is set to the dimension of fea-
tures extracted from the backbone. The output of the final
perceptron is a 64-dimensional vector.

We conduct this ablation study on two different types
of tracking frameworks: offline learning-based Siamese
and online learning-based correlation filter (CF) trackers.
Specifically, we put the projection head after the backbone
networks used in SoCL-Siam and SoCL-CF1 to further ex-
tract features for contrastive learning.

The results are presented in Table 3. SoCL-Siam with
the projection head degrades the performance, while SoCL-
CF with the projection head achieves better performance
than its variant without a projection head. The main rea-
son is that SoCL-Siam directly uses the extracted backbone
features for online tracking without further updating. The
learning of SoCL-Siam without the projection head is con-
sistent with its online tracking process, thus leading to bet-

1For the ResNet-18 backbone used in SoCL-CF, we remove its average
pooling and fully-connected layers, and modify its stride in Layer4 to 1, so
that the final output in the feature space can have a relatively large spatial
size, which is more beneficial for soft sample generation.



Table 4. AUCs obtained by using various η on OTB-13. The best results
are highlighted.

η 5% 10% 15% 20%
SoCL-Siam 60.0 60.9 59.5 59.1

ter performance. Moreover, SoCL-Siam with the projection
head treats the backbone network as the intermediate layers,
which facilitates the backbone to learn to encode more de-
tailed and rich information into features. These features are
not good for offline learning-based trackers without further
online updating. Compared with SoCL-Siam, SoCL-CF can
benefit from these features due to its powerful online updat-
ing mechanism.

D. Preprocessing of TOP Map
The target objectness prior (TOP) maps are generated by
applying the softmax function on the score maps, which are
calculated via the generated proposals (see Sec. 3.1 of the
main paper). In practical implementation, we find that the
TOP maps may have extremely large peaks on the annotated
locations, which makes the generation of GSTs excessively
focus on these locations. This is because there are large
peaks in the score maps, and the softmax function assigns
too much weights on these locations. To alleviate this prob-
lem, we use a simple max clip operation to clip maximum
values in score maps. Specifically, given a score map, we
firstly set an adaptive clip threshold η. Then we calculate
the mean score of the top-η scores in the score map. The
calculated mean score is used to perform the max clip in
the score map, so that the scores with large values will have
the same value, and thus more locations will be selected by
applying the softmax function.

Table 4 shows the performance obtained by using var-
ious η for the clip threshold. The optimal performance is
achieved by setting η = 10%. Setting η to larger values
(e.g., 15% and 20%) may cause the generated TOP maps
to excessively focus on background regions, thus degrading
the performance.

E. Qualitative Visualization
Fig. 1 shows the qualitative visualization of GST and SNS
generation. The generation of SNSs tends to aggregate
features from discriminative regions, e.g., target boundary
regions (see the third and fourth rows) and hard negative
counterparts (see the first, second and fifth rows). Note that
all the maps in Fig. 1 are interpolated to the input image size
for visualization.
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