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Abstract

Learning robust and effective representations of visual
data is a fundamental task in computer vision. Tradition-
ally, this is achieved by training models with labeled data
which can be expensive to obtain. Self-supervised learn-
ing attempts to circumvent the requirement for labeled data
by learning representations from raw unlabeled visual data
alone. However, unlike humans who obtain rich 3D in-
formation from their binocular vision and through motion,
the majority of current self-supervised methods are tasked
with learning from monocular 2D image collections. This is
noteworthy as it has been demonstrated that shape-centric
visual processing is more robust compared to texture-biased
automated methods. Inspired by this, we propose a new
approach for strengthening existing self-supervised meth-
ods by explicitly enforcing a strong 3D structural prior di-
rectly into the model during training. Through experiments,
across a range of datasets, we demonstrate that our 3D
aware representations are more robust compared to con-
ventional self-supervised baselines.

1. Introduction
The visual stimuli processed by a binocular, actively mov-
ing, human observer provides direct information about the
3D world around them [21]. As a result, humans have a re-
markable ability to perceive useful 3D shape cues, enabling
them to interact and navigate adeptly in complex environ-
ments. Most impressively, the power of the human visual
system is not understood to be a resulting property of su-
pervised learning, i.e., it has developed thanks largely to
‘self-supervision’ [62].

While great advances have been made in the past decade
in developing computer vision systems, their success can
be mostly attributed to large-scale supervised representation
learning. Moreover, current artificial vision systems are not
yet nearly as robust as the human equivalent [19]. For ex-
ample, existing commonly used architectures are known to
heavily rely on texture cues, which results in sub-optimal
generalization performance [19, 46]. Encouragingly, neural
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Figure 1. Humans have no difficulty in recognizing the categories
depicted in the above images, even though the texture of the ob-
jects has been perturbed. This is thought to be in large part due
to our reliance on shape, as opposed to texture, cues [19, 42, 64].
However, an automated recognition system built on top of a state-
of-the-art self-supervised representation learning approach (i.e.,
DINOv2 [50]) classifies these examples as dog, chair, and knife
respectively, as the texture of the images resembles those object
classes. We introduce a new approach to improve the robust-
ness of self-supervised methods using a proxy 3D reconstruction
task which encourages representations that emphasize shape cues
more. As a result, our approach correctly predicted these exam-
ples as bear, car, and elephant.

networks that also make use of more shape cues have also
been observed to be more robust to different types of image
distortions [19].

These observations point to two important questions
that are potentially hindering our artificial vision systems:
(i) how do we reduce the over-reliance on supervised la-
beled data and (ii) how do we encourage models to make
greater use of shape information to improve their robust-
ness? Thankfully, great progress has been made on the
first question as we now have methods for obtaining effec-
tive visual representations through self-supervision alone,
e.g., [2, 8, 31, 50, 70]. While methods exist for extract-
ing shape-adjacent information in the form of depth us-
ing self-supervision from collections of image pairs [23]
or video sequences [77], these approaches tend to require
strong assumptions about the scenes they are trained on
(e.g., smooth camera motion, static scenes, limited visual
diversity, etc.). As a result, the current most effective ap-
proaches for predicting depth require explicit depth super-
vision during training [56]. Moreover, even when depth su-
pervision is available, it is not trivial to use it to improve the
performance on other tasks [65, 73].
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In this work, we attempt to address these combined chal-
lenges by proposing a new method to improve existing self-
supervised representation learning approaches by enforc-
ing these models to reason about object/scene shape dur-
ing training. We build on recent advances in 3D genera-
tive modeling [6, 61] to develop a self-supervised recon-
struction method that generates a 3D representation of the
input image. Our model is trained with a self-supervised
reconstruction objective, starting from an already trained
self-supervised network (e.g., [50]). Given an input image,
we first extract a global feature representation using a pre-
trained backbone network and then predict a 3D representa-
tion of the scene depicted in the image. Then we reconstruct
appearance and depth maps using volume rendering from
the predicted 3D representation. We use the difference be-
tween the reconstructed image and the original input image,
and the difference between the predicted depth map and its
pseudo ground truth as our training objectives. We do not
utilize any manual labels during training as we only require
an unordered (i.e., not from videos or stereo pairs) collec-
tion of monocular images and their corresponding estimated
depth from a previously trained depth prediction model [4]
as input. To minimize the training loss, the learned image
representation needs to capture details about the shapes of
the objects depicted in the input scenes.

While conceptually simple, the advantage of our ap-
proach is that it works with monocular image collections
and does not make strong assumptions about the types of
images it is trained on. As a result, we can train it us-
ing standard representation learning datasets such as Im-
ageNet [57]. Quantitative and qualitative results illustrate
that our shape-aware representations are more robust com-
pared to variants that are not shape aware on a variety of
downstream tasks. See Figure 1 for a qualitative example.

In summary, we make the following contributions: (i)
We explore the role of 3D information when perform-
ing self-supervised learning on unordered monocular im-
age collections. (ii) We propose a new method that en-
hances self-supervised learned representations via a proxy
task that explicitly encodes 3D knowledge during training.
(iii) When applied to a range of robustness tasks, our ap-
proach obtains superior performance compared to baselines
that do not make use of 3D information at training time.

2. Related work
In this section, we discuss related work in self-supervised
learning, monocular shape understanding, and the role of
shape in visual recognition.
Self-supervised learning. Recent approaches for deep
learning-based self-supervised learning (SSL) in computer
vision can be categorized into two groups: (i) predictive
methods, where the learning objective depends solely on the
input image, and (ii) discriminative approaches, which use

additional images as inputs.
Predictive tasks include context prediction (e.g., patch

or pixel prediction from a masked input image) [2, 7, 13,
31, 76], colorization of grayscale input images [75], in-
painting of randomly selected areas [52], predicting image
rotation [22], or object counting in the input image [48]. In
contrast, discriminative approaches aim to learn representa-
tions that make the input image, and an augmented version
of it, more similar to each other compared to other randomly
selected images [8, 14, 26, 29, 49, 50, 70, 74]. Regulariza-
tion to prevent trivial solutions [26, 50, 74] and selecting
challenging negative examples [9, 30] are important con-
siderations for these methods. It is worth noting that some
of the above methods make use of both types of losses. For
a more comprehensive overview of SSL approaches, we di-
rect the reader to [27, 37].

One limitation of the above approaches is that their fo-
cus is on 2D representation learning. In this work, we
aim to enhance the robustness of self-supervised networks
by utilizing a 3D proxy task during training. Recently,
[72] introduced a new dataset consisting of common ev-
eryday objects containing multiple images, from different
camera viewpoints, for each object instance. Their dataset
is significantly larger than existing comparable multi-view
datasets (e.g., [34]). They use this data to perform view-
consistent self-supervised fine-tuning and show that this
pseudo-3D supervision results in better downstream image
classification performance on their dataset. However, multi-
view data of this form is still very cumbersome and time-
consuming to collect and thus current datasets are still lim-
ited in their scope.

Recently, a new synthetic dataset named Photorealistic
Unreal Graphics (PUG) [5] was introduced. It could be used
as a source of multi-view data as the images are rendered
using 3D assets. However, the images lack realism and the
diversity of objects is still not on par with large scale 2D im-
age collections. In this work, we show that it is possible to
inject 3D information into a self-supervised model by train-
ing on single-view (i.e., not multi-view) image collections
alone.
Single-view 3D understanding. Our approach uses a
proxy monocular 3D reconstruction task during training to
enhance SSL performance. There is also a body of work
that aims to estimate 3D shape from monocular images
where their focus is on generation and not representation
learning.

Example existing works estimate partial 3D shape in the
form of depth maps, i.e., per-pixel continuous depth predic-
tions. These methods either use pseudo ground truth depth
supervision during training [4, 56] or are trained without
depth supervision via image reconstruction losses [18, 23,
24, 77]. Another line of work attempts to estimate the full
3D geometry of objects using 3D category priors using ex-
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plicit representations like meshes [38], implicit representa-
tions like surface maps [28], or with skeletons [69]. The
disadvantage of these methods is that they require strong
category shape priors (e.g., a 3D deformable model of a hu-
man). More recently, there have been some category-centric
works that attempt to relax the need for strong shape pri-
ors [1, 44]. However, these are still category focused and
are thus limited to specific classes of objects that have well-
defined shapes (e.g., animals or humans).

The specific choice of 3D representation (e.g., volume,
mesh, or points) used by these methods can have a big im-
pact on the quality of the 3D generated outputs and the
computation required to train the model. In the last few
years, implicit 3D representations parameterized via neu-
ral networks have become widely adopted for a range of
3D tasks [43, 47, 71]. However, conventional implicit net-
works can be very slow to train, which hinders their appli-
cability to large-scale SSL. To address this, in this work,
we make use of efficient implicit representations popular-
ized by methods that perform 3D generative modeling from
single image collections [6, 61].

Shape and semantics. Finally, we review work that uti-
lizes shape information for visual recognition. It is well
established, especially in the early years of cognitive de-
velopment, that infants more heavily rely on shape cues
compared to other cues such as texture during early cate-
gory learning [42, 63, 64]. However, computational meth-
ods like CNNs [19] and Vision Transformers [20, 46] do the
opposite. With more data, and bigger models, there is some
evidence to suggest that this over reliance on texture may
decrease [12], but it still does not fully disappear.

Prior to the wide adoption of deep-learning methods
in computer vision, there were a large number of works
that utilized (2D) shape information for recognition tasks.
Examples include seminal works such as pictorial struc-
tures [17] and deformable templates [11, 16, 36, 53]. Sub-
sequently, end-to-end trained approaches that did not use
any structure or shape overtook these methods. However,
recently a new set of methods have been developed that il-
lustrate the benefit of using explicit shape information when
combined with end-to-end learning methods for tasks like
tracking [54] and action recognition [55].

Furthermore, recent studies have employed alternative
forms of training data, such as styled images [19] and edge
maps [45], to enhance shape awareness, albeit in a super-
vised context. In this work, we take inspiration from human
cognition to add more shape information into our models by
developing a proxy 3D reconstruction task to enhance SSL.
To solve the resulting 3D reconstruction task, our model
needs to learn more about the shape, and not just the tex-
ture, of objects during training.

3. Method

The aim of visual representation learning is to learn a func-
tion that can map an input image into a representation. This
is achieved by optimizing an objective function on a set of
training data. For self-supervised learning (SSL), the ob-
jective function is optimized without using human-provided
supervision [2, 8, 31, 50, 70]. However, given the lack
of large-scale and semantically diverse datasets containing
3D information, current self-supervised methods are typi-
cally limited to using 2D unordered image collection during
training. As a result, the learned representations that emerge
from models trained on 2D images are not necessarily fully
capable of capturing all the properties of the 3D world [20].
In this work, we aim to improve these learned representa-
tions by using an additional proxy 3D task during training.
Our aim is not to learn a new function from scratch, but to
instead improve an existing pre-trained one.

3.1. Background

Our goal is to learn a representation function f(.), repre-
sented as a neural network, that can map an input image I
into a representation h = f(I), where h ∈ Rd. This will
be achieved by optimizing an objective function L on a set
of training data, without using any manually labeled data.
We want to improve networks that are trained without su-
pervision, since it has been shown in [25] that SSL-based
backbones like DINOv2 [50] outperform supervised coun-
terparts as a global image representation.

There are a large number of publicly available self-
supervised models that can extract useful representations
from 2D images. Therefore, instead of learning a new repre-
sentation function from scratch, we utilize a backbone that
is already pre-trained with 2D self-supervised methods such
as DINOv2 [50], and improve it by training it on a new
proxy 3D task.

3.2. 3D aware robust representation learning

We use 3D reconstruction as our proxy 3D task, i.e., given
an input monocular image, at training time, the network is
tasked with reconstructing the 3D scene/objects depicted in
the image. The intuition behind this is that for the network
to successfully perform reconstruction, it must also learn
3D aware features from the input images. As we want the
network to learn image representations that transfer well to
a large variety of scenes, the input images should be visually
diverse and the 3D representation should be able to model
complex scenes with multiple objects and diverse back-
grounds. Moreover, the reconstruction task should be rel-
atively computationally efficient to enable large-scale train-
ing. While there are alternative approaches for generating
3D predictions from 2D images [33, 51], motivated by the
need for efficiency we opted to use triplanes [6] as our 3D
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Figure 2. Overview of our self-supervised single-view 3D reconstruction approach. Given an input image, I , we first extract a represen-
tation of the image using an encoder network, h = f(I). Then using a decoder network, Φ, we generate triplane features [6, 61]. Using
volume rendering [43], conditioned on a fixed camera location, we reconstruct the input image, Irec, and its depth Drec. We optimize all
networks using a combination of reconstruction losses on the input image, Lrgb, and estimated depth, Ldepth, along with a distillation loss,
Ldist, from a frozen 2D self-supervised learning model to prevent the forgetting of already learned informative representations.

representation. Triplanes explicitly encode latent network
features on axis-aligned planes. These features can then be
aggregated via lightweight implicit feature decoders to per-
form efficient volume rendering for 3D reconstruction. Re-
cently, [61] showed that triplanes can be used to generate
3D depictions of images for various types of scenes from
visually diverse datasets such as ImageNet [57].

Formally, given an input image I , we first extract a
global image representation h = f(I) using a backbone
feature extractor network f(.). This backbone can be pre-
trained using a 2D self-supervised method. Then we use a
decoder Φ(.) to generate triplane features from the repre-
sentations of the input image. Note that we only require the
decoder and triplane at training time and they can be dis-
carded at inference as we only need to retain the backbone.

This decoder takes the backbone features as input and
produces triplane features φ = Φ(h), φ ∈ RH×W×C×3.
The decoder consists of two components, a set of learn-
able triplane embeddings ξ ∈ R(h·w·3)×D and upsampling
blocks. As done in [58], we first apply cross-attention
between the triplane embeddings and the image represen-
tation to obtain low resolution triplane features, φ′ =
cross(ξ, h), φ′ ∈ Rh×w×C×3. Then we apply upsampling
layers, which consist of bilinear upsampling and convolu-
tion operations, to obtain full resolution triplane features
φ = upsample(φ′). Different than [58], we do not em-
ploy any quantization or style mapping [40] as our goal is
not to learn an unconditional generator, but to estimate 3D
representation from the input image.

To perform volume rendering, we compute the radiance
field using a simple two-layer MLP similar to [6, 61] us-
ing features from the triplane at specified 3D points. Note
that as [6] and [61] are generative methods, and not repre-
sentation learning approaches, they generate triplanes from
random codes. In contrast, our approach generates triplanes
conditioned on the input image’s representation h which is
obtained from the backbone network. Using volume render-
ing from the triplane features, we produce the reconstructed
image, Irec, and its corresponding depth map, Drec,

Irec, Drec = Π(Γ(φ, π)), (1)

where Γ is the function that queries the radiance fields from
triplanes conditioned on camera pose π which contains ex-
trinsic and intrinsic parameters, and Π is volume a rendering
operation [43]. We use a fixed camera pose in our experi-
ments since we want to learn a viewer-centered 3D repre-
sentation, which is shown to be more generalizable com-
pared to object-centric representations [59, 66]. Moreover,
as we reconstruct the whole scene with potentially multiple
objects, the canonical pose is ambiguous.

Given that 3D reconstruction from a 2D image is an ill-
posed problem, like 3DGP [61], we make use of 2D depth
information to produce plausible 3D predictions. As ground
truth depth maps are not available for large-scale, in-the-
wild, datasets like ImageNet [57], we use pseudo ground
truth depth maps obtained from off-the-shelf monocular
depth methods such as ZoeDepth [4]. Different from
3DGP [61], we do not modify the depth reconstruction with
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an adapter, but use it as it is for computing a depth recon-
struction loss.

Given the input image Ii and its pseudo depth Di, we
simply train the decoder such that it generates a plausible
3D prediction that is capable of reconstructing them both
using the following losses

Lrgb =
1

B

B∑
i=1

||Ii − Iirec||2, (2)

Ldepth =
1

B

B∑
i=1

||Di −Di
rec||2, (3)

where B is the batch size. Here, Lrgb and Ldepth represent
mean squared error losses, that depend on the input image
and its depth. An illustration of our overall pipeline is de-
picted in Figure 2. In addition to the reconstruction losses,
we apply a L1 normalization loss for the density values the
radiance fields, Lnorm =

∑B
i=1 ||∆i||1, where ∆i is the

set of density values that calculated for all the queried 3D
points for the image Ii.

3.3. Preventing forgetting

The benefit of our approach is that we can apply it to any
self-supervised network that has already been pre-trained
using 2D objectives. However, our 3D reconstruction ob-
jective might inadvertently bias the model towards the 3D
task and force it to ‘forget’ the useful representation that it
has already encoded. To prevent this, we add a knowledge
distillation loss [35],

Ldist =
1

B

B∑
i=1

||f(Ii)− fteach(I
i)||2. (4)

Here, f(.) is the representation function that we are op-
timizing and fteach is a frozen backbone that is already
trained using a 2D self-supervised objective.

Our final overall training objective consists of a combi-
nation of four losses

L = λrgbLrgb + λdepthLdepth + λdistLdist + λnormLnorm,
(5)

where the λ values are weights for each of the respective
loss terms.

3.4. Implementation details

Backbone: We implement our approach using different
variants of standard Vision Transformers (ViTs) [15]. Un-
less otherwise stated, for each experiment we start with a
backbone network that has been pre-trained with the state-
of-the-art SSL DINOv2 [50] method. We first extract class
and patch tokens from the last four layers of the backbone
networks, and concatenate these features to obtain a global

image representation which is of size 16 × 16 × D, where
D depends on the backbone architecture.
Decoder: To generate the triplane features, we combine
self-attention with learnable embeddings and 2D upsam-
pling convolution layers similar to [58]. We learn 16×16×
3×D triplane embeddings, and by applying cross attention
and upsampling blocks we obtain our final triplane features
that are of size 128 × 128 × 3 × D. Finally, we recon-
struct the image and depth map using volume rendering [3],
which results in an output resolution of 256× 256× 3 and
256 × 256, for the reconstructed image and depth respec-
tively. For volume rendering, for each pixel we first sam-
ple a ray that passes through pixel location and sample 16
points along the ray to obtain 3D points that we want to es-
timate the radiance field. Similar to previous works [3, 61],
we utilize importance sampling. Then, we bilinearly sam-
ple the feature of each 3D points from the triplane, and cal-
culate the radiance field (occupancy and rgb color) using a
two layer MLP and pass these values to the final rendering
operation to obtain the final reconstruction.
Training: For our training dataset, we use ImageNet-
1k [57] which contains approximately 1.2 million images
depicting 1,000 object classes. We extract pseudo depth
maps for all training images using ZoeDepth [4] with the
DPT backbone. We optimize all of the components of
the reconstruction network (e.g., backbone, decoder, and
triplane embeddings) in an end-to-end manner using the
Adam [41] optimizer for 10 epochs with a fixed learning
rate of 1e−4. We set λrgb = 0.1, λdepth = 1, λdist = 1 and
λnorm = 1e−3 in all of our experiments. During training,
we only use basic random crops and horizontal flip aug-
mentations. We provide more details about our model and
training in the supplementary document.

4. Experiments
The main goal of our proposed method is to enhance the ro-
bustness of existing representation learning methods. We
first show how our method results in improved perfor-
mance on several robustness benchmarks such as ImageNet-
Rendition (Im-R) [32], ImageNet-Sketch (Im-Sketch) [68],
and Photorealistic Unreal Graphics (PUG) [5]. We also per-
form experiments on conventional tasks like image recogni-
tion [57], fine-grained image classification [67], and depth
estimation [60]. This is to illustrate that our approach does
not decrease performance for other tasks at the expense of
improving robustness.

After training the network with the proxy 3D task, we
discard the 3D estimation components of the network and
use the backbone representation function to extract global
image representation from images h = f(I). For evalua-
tion, we train per-task decoder networks using a fixed rep-
resentation function y = ψ(h), where the form of y and
ψ(h) depends on the specific downstream task. In each ex-
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perimental section, we provide details about the decoding
function and training details. In all of our experiments, the
representation functions are frozen, unless stated otherwise.

4.1. Robustness

Datasets. We present experimental results on benchmarks
that are designed to test the robustness of methods in
the face of various appearance related shifts. ImageNet-
Rendition (Im-R) [32] contains 30,000 images of art, car-
toon, graffiti, etc. from 200 ImageNet classes. ImageNet-
Sketch (Im-Sketch) [68] contains 50 sketch images for each
of the 1000 original ImageNet classes. These two datasets
contain examples where the texture of the objects is signif-
icantly different compared to real in-the-wild photographs,
which leads to a significant drop in performance for previ-
ous SSL methods [50].

Photorealistic Unreal Graphics (PUG) [5] is a dataset
that is designed to evaluate the robustness of visual recog-
nition models. It contains synthetically generated examples
from 3D assets by controlling for factors like object tex-
ture, background, lighting etc. It has been demonstrated that
state-of-the-art visual recognition models obtain inadequate
performance on this dataset due to changes in appearance
factors like object texture and size [5]. We report perfor-
mance on these two main factors in our experiments.

The 3D Common Corruptions (ImageNet-3DCC) [39]
dataset was created with synthetic corruptions with varying
levels of difficulty using ImageNet validation images. Com-
pared to previous datasets, it was constructed with synthetic
augmentations, but it contains real images and realistic cor-
ruptions such as low lighting, flash, and motion blur which
reflect real-world challenges for visual recognition models.
Protocol. All of the experiments that we present here are
designed to measure the robustness of classifiers that are
trained on ImageNet [57] classification data. Given this, we
first train a linear classifier on top of various frozen back-
bones from DINOv2 [50] that are either enhanced via our
method (denoted as ‘+ 3D-Prior’) or not, using 1k ImageNet
classes from the original training set. We then test the re-
spective linear classifiers on various robustness datasets.
Results. In Table 1, we observe that our proposed method
(‘3D-Prior’) improves the robustness of SSL methods on all
robustness benchmarks tested, irrespective of architecture
type. For instance, we improve the performance for the dif-
ferent backbone architectures on both ImageNet-Rendition
and ImageNet-Sketch datasets, which contain highly chal-
lenging out-of-distribution examples. In particular, the per-
formance of DINOv2 [50] using the ViTB/14 architecture is
improved by 2% on both benchmarks. Furthermore, for the
PUG benchmark, our method improved the performance of
the models for object size and texture variation in all cases.

We also present results on ImageNet-3DCC dataset for
various synthetic corruption types in Table 2. For each

Method Im-R Im-Sketch PUG-Texture PUG-Size

ViT-S/14 53.7 41.2 20.7 26.8
ViT-S/14 + 3D-Prior 54.6 41.8 21.2 26.9

ViT-B/14 63.3 50.6 25.3 32.2
ViT-B/14 + 3D-Prior 65.9 52.4 26.2 33.4

ViT-L/14 74.4 59.3 34.5 42.7
ViT-L/14 + 3D-Prior 75.9 59.5 36.4 43.2

Table 1. Robustness evaluation using frozen backbone features
from DINOv2 [50] and their enhanced versions from our method
(‘+ 3D-Prior’). Here we report top-1 accuracy for all benchmarks.
Irrespective of backbone architecture type, our 3D-Prior method
improves performance on across all datasets. For the PUG experi-
ments we re-run the DINOv2 baselines with our evaluation setting.

level, there is 5 different corruption levels, for simplicity
we report averaged the top-1 accuracy for each corruption
type. We observe slight improvement for corruption types
like far focus, xy motion blur and z motion blurs. How-
ever, for other factors like low light, iso noise, we achieve
performance that is comparable to the baselines.

We also present qualitative results in Figure 3. We illus-
trate some top-5 predictions from linear classifiers that were
trained on top of representations from DINOv2, either with
or without our method. For instance, the top left example
is misclassified as a ‘starfish’ by the DINOv2-based clas-
sifier due to the color of the input image while our shape-
aware approach correctly identifies the images as contain-
ing a ‘goldfish’ due to improved shape-bias.

4.2. Downstream tasks

Tasks and datasets. We present results on additional down-
stream tasks to show that our method does not lead to worse
performance for other tasks at the expense of improved ro-
bustness. We report results for visual recognition on Ima-
geNet [57], fine-grained classification using the iNaturalist
2021 [67] and depth estimation on NYU-DepthV2 [60].
Protocol. We follow the same evaluation protocol as in DI-
NOv2 [50]. For ImageNet and iNat21 experiments we froze
the backbone, and trained a single-layer classifier using the
respective training sets and reported the top-1 validation ac-
curacy. For depth estimation on NYU-DepthV2, we trained
two different decoders on top of frozen backbone features,
a single linear layer and a more complex DPT [56] decoder
and followed the same training recipe from DINOv2 [50].
We also compare to the non-3D baseline numbers from [50].
Results. Results are presented in Table 3. For the visual
recognition task on ImageNet-1k, we observe that linear
classification performance is slightly improved for all the
backbone architectures evaluated and the performance of
the models on fine-grained classification for iNat21 is main-
tained. Furthermore, the performance on depth estimation
is improved compared to the baselines, especially when we
use a high-resolution DPT decoder on top of our learned
representation.
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Method color quant far focus flash fog 3d iso noise low light near focus xy motion blur z motion blur

ViT-B/14 72.5 71.6 60.8 62.5 63.9 72.3 75.5 58.5 58.3
ViT-B/14 + 3D-Prior 72.6 72.0 60.7 62.7 63.3 72.3 75.8 59.0 58.7

Table 2. Robustness evaluation using frozen backbone features from DINOv2 [50] and their enhanced versions from our method on the
ImageNet-3DCC dataset [39] using a ViT-B/14-based architecture. While our method improves robustness for corruptions such as ‘motion
blur’ and ‘far focus’, there are cases such as ‘flash’ where we are slightly worse.
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Figure 3. Here we compare top-5 predictions from linear classifiers that are trained on original DINOv2 [50] backbone features (shown
in red) and our 3D enhanced approach (shown in blue) on various challenging examples from ImageNet-Rendition [32] and ImageNet-
Sketch [68]. Our method results in more shape information being encoded in the representation and hence leads to classifiers that are more
robust for these challenging out-of-distribution examples.

Method ImageNet-1k iNat21 NYU-DepthV2 ↓
linear DPT

ViT-S/14 81.1 74.2 0.499 0.356
ViT-S/14 + 3D-Prior 81.4 73.6 0.438 0.346

ViT-B/14 84.5 81.1 0.399 0.317
ViT-B/14 + 3D-Prior 85.1 82.0 0.398 0.300

ViT-L/14 86.3 85.1 0.384 0.293
ViT-L/14 + 3D-Prior 86.5 85.2 0.389 0.286

Table 3. Downstream task evaluation using frozen backbone fea-
tures on various tasks using DINOv2 [50] with and without our
3D-Prior method. We report top-1 accuracy for the ImageNet-
1k [57] and iNat21 [67] datasets (higher is better), and RMSE for
NYU-DepthV2 [60] dataset (lower is better). Our method leads
to improvements in visual recognition performance on ImageNet
and for depth estimation on NYU-DepthV2, and does not nega-
tively impact performance on the fine-grained iNat21 dataset.

4.3. Shape bias

Similar to humans, we want our visual recognition mod-
els to pay more attention to shape cues compared to texture.
As our proxy 3D task requires learning more shape-oriented
representations, our hypothesis is that it should lead to rep-
resentations that have more shape bias. We use the same
experimental protocol and dataset from [19] to measure the
shape bias of different models. The dataset contains various
synthetically generated examples, where the shape of the
object comes from one class and the texture of the object
comes from another.

We measure the shape bias of representations from DI-
NOv2 [50] before and after it is trained with our proxy 3D
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Figure 4. Quantification of the shape bias of different DI-
NOv2 [50] representations with and without our 3D-Prior method.
We calculate the shape bias using the data and protocol from [19].
Our approach increases the shape bias of visual recognition mod-
els and we observe that with larger backbones, the difference
grows.

objective. The results are visualized in Figure 4. We ob-
serve that our method improves the shape bias of the orig-
inal representations, which is the objective of our shape-
centric 3D reconstruction task. Qualitative examples, where
we compare predictions of models with and without our
method, can be seen in Figure 1.

These results, combined with the robustness experi-
ments, show that the hypothesis of improving shape bias
to obtain more robust representations is valid. Furthermore,
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Method Im-1k Im-R Im-Sketch PUG-Texture PUG-Size

DinoV2 84.5 63.3 50.6 25.3 32.2

Ours 85.1 65.9 52.4 26.2 33.4
Ours w/o triplane 84.3 63.1 50.7 24.9 31.1
Ours w/o Ldist 70.7 34.2 22.9 12.1 16.4
Ours from scratch 14.4 8.5 7.4 0.2 0.1

Table 4. Ablation experiments on various robustness benchmarks
using a DinoV2 ViT-B/14 model. We investigate the importance
of using an explicit 3D representation during training (i.e., w/o
triplane), disabling our distillation loss (i.e., w/o Ldist), and we
evaluate if we can learn reasonable representations when training
from scratch without using a pre-trained backbone or distillation
loss (i.e., from scratch).

these results may further encourage future lines of work in
SSL to develop methods that are designed to explicitly con-
sider 3D representations during training.

4.4. Ablations

To quantify the importance of individual components of our
model, we present ablation experiments on the robustness
tasks in Table 4.
Removing the triplane. First we investigate if using an 3D
representation in the form of a triplane with volume render-
ing is necessary or if training a basic depth and image de-
coder network on top of representations is sufficient. Here,
we added a decoder which consists of multiple upsampling
and convolution layers to predict depth and images. We ob-
serve a drop in performance on all benchmarks, but with a
smaller drop on ImageNet. This experiment indicates that
using an explicit 3D representation is crucial to improve the
robustness of the learned representations.
Removing distillation. Next, we try to understand what
happens if we do not employ a distillation loss. Without
distillation, the model is free to forget useful representation
that are already encoded in the 2D SSL backbone. To test
this, we simply trained a separate model without the distilla-
tion loss. Removing distillation leads to a significant drop in
performance across all benchmarks. This experiment shows
that preventing the forgetting of already learned useful rep-
resentations is essential.
Training from scratch. We also investigate if we can learn
a global image representation using only the proxy 3D task.
Here, we initialized the backbone network randomly (i.e.,
they are no longer pre-trained) and trained the network us-
ing only the image and depth reconstruction losses. The
experimental results show that the learned representation is
not meaningful and, by itself, the 3D reconstruction task is
not a sufficient way to learn a global image representation.
Amount of data. Finally, we explore the impact of varying
the size of the training dataset that is used for the 3D proxy
task. [10] showed that 2D-based SSL methods benefit from
being trained on larger unlabeled datasets, but that there are
diminishing returns after a certain amount for the methods
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Figure 5. We compare the performance of our approach using dif-
ferent amounts of training data from that same source for the 3D
proxy task with DinoV2 ViT-B/14 backbones. Surprisingly, we
observe that more data does not change the performance drasti-
cally, which shows that our method is data efficient.

they tested. Similarly, we quantify how efficient our method
is in terms of the training data size. For this experiment,
we randomly selected 100k and 500k images from the Im-
ageNet training set, and trained different instances of our
model on these subsets using the same number of iterations
as the full model. We report the results in Figure 5. In-
terestingly, compared to 2D self-supervised methods [10],
the performance of our 3D enhanced models are not signif-
icantly impacted by the reduction in training data.

4.5. Limitations

One of the restrictions of our approach is the requirement
for pseudo depth maps for each input image during training.
Existing pre-trained monocular depth estimation models are
used, e.g., [4, 56], and these pre-trained depth models only
provide depth supervision and do not provide any semantic
signal. Hence, these depth maps are free and easy to obtain
for large-scale 2D image collections in an automatic way.
More importantly, these types of depth estimation models
have been demonstrated to be robust and generalizable to
various settings.

5. Conclusion
We presented a new approach to enhance the robustness
of visual representations from 2D self-supervised networks.
Our method utilizes a conceptually simple single-view 3D
reconstruction task to encourage learning more shape-aware
3D centric representations. One of the distinct advantages
of our approach is that it can be applied to unordered single
image collections as it does not impose any stringent as-
sumptions on the types of images it is trained on. We show
that incorporating shape-aware knowledge into the repre-
sentation learning process enhances robustness when com-
pared to alternatives that are not shape aware across a range
of visual understanding benchmarks. We hope that our re-
sults will encourage a new line of self-supervised works that
are designed to consider 3D representations during training.
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