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Abstract

Many approaches in Generalized Zero-Shot Learning
(GZSL) are built upon base models which consider only a
single class attribute vector representation over the entire
image. This is an oversimplification of the process of novel
category recognition, where different regions of the image
may have properties from different seen classes and thus
have different predominant attributes. With this in mind,
we take a fundamentally different approach: a pre-trained
Vision-Language detector (VINVL) sensitive to attribute in-
formation is employed to efficiently obtain region features. A
learned function maps the region features to region-specific
attribute attention used to construct class part prototypes.
We conduct experiments on a popular GZSL benchmark con-
sisting of the CUB, SUN, and AWA2 datasets where our
proposed Part Prototype Network (PPN) achieves promis-
ing results when compared with other popular base models.
Corresponding ablation studies and analysis show that our
approach is highly practical and has a distinct advantage
over global attribute attention when localized proposals are
available.

1. Introduction

Generalized Zero-Shot Learning (GZSL) has become a popu-
lar research topic with a wide variety of different approaches
[28]. As benchmarks have become more competitive, many
researchers have begun to develop increasingly sophisticated
models requiring a large amount hyperparameter tuning and
multiple stages of computationally expensive training. This
hinders progress and introduces a need for potentially pro-
hibitively expensive model reconfiguration and computa-
tional overhead in a field originally motivated by the expense
of human annotation. As such, we explore the potential of
using a general pre-trained Vision-Language (VL) detector
model combined with a specialized base model that can per-
form well out-of-the-box and be trained in a single stage to
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Figure 1. A comparison between the proposed Prototype Proposal
Network (PPN) approach and existing approaches which utilize
global attribute attention like the base model DAZLE [13].

potentially serve as an improved foundation for more sophis-
ticated enhancements like generative models [25] and graph
networks [33].

Localization has been shown to be a key step in many
Vision-Language (VL) tasks, especially detail-oriented tasks
like fine-grained Zero-Shot Learning [11, 13, 14, 19, 40, 43].
In current approaches, all attribute-specific localization is
performed by the GZSL model after either extracting learned
features or utilizing popular visual features pre-trained using
image classification on ImageNet [38]. To perform this local-
ization, GZL models must correlate global representations
of attributes and regions. However, we argue that localized
and attribute-specific features can be obtained from VL pre-
trained detectors like VINVL and GZSL performance can
be improved by instead constructing region-specific attribute
representations using part prototypes. This is a natural ex-
tension of two commonly used base models: SJE [2] which
utilizes global joint embeddings of visual features and at-
tributes and DAZLE [13] which employs visual and attribute
attention to generate global representations compared with
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similarity scoring. These two base models are selected for
comparison and enhancement due to their simplicity in terms
of both computational complexity and hyperparameter tun-
ing. Further motivation for part-based representations can
be found in recent GZSL works which seek to learn more
discriminative attribute localizations [36] based on part struc-
tures [44]. Figure 1 shows an example where a model must
generalize to the unseen class, zebra. While prior approaches
are limited to estimating the likelihood that an attribute (e.g.
stripes) is present in the entire image, our approach can de-
duce that the shape of a zebra’s legs resemble those of a
horse, while the color and patterns of its hair is similar to
that of a skunk.

We evaluate our approach using the popular GZSL bench-
mark provided by [38] which utilizes the AWA2 [38], CUB
[37], and SUN [27] datasets. Ablation studies of different
region localization sources, two proposed regularizers, and
a proposed post-processing based calibration technique are
performed in support of our framework. We observe that
the performance of PPN greatly improves when utilizing
pre-trained visual feature extractors with more localized in-
formation, resulting in very promising performance against
comparable base models.
Contributions. We demonstrate the potential using a pre-
trained VL detector for GZSL and propose a novel base
model, PPN, designed to better leverage the localized region
proposals to achieve promising results on popular GZSL
benchmarks.

2. Related Work
Pre-Trained Localization with object detectors for GZSL
has been previously been attempted with dataset-specific
detectors [42], yielding sub-optimal results when compared
against dataset-specific attention mechanisms [13, 40]. This
performance gap when using an object detector may be due
to a reliance on dataset-specific part annotations, which is
both impractical and biased compared to general vision-
language detector pre-training. Furthermore, pre-trained
Vision-Language models trained to provide global represen-
tations [7] have shown promising results in certain GZSL set-
tings [23, 24] when combined with sophisticated transformer-
based architectures and retrieved class information. While
there is evidence to suggest that the performance of pre-
trained localization methods may suffer when applied to
unaligned tasks [5, 9], pre-trained models have shown sur-
prising resilience in generalization tasks like zero-shot clas-
sification [30] and out-of-distribution detection [4, 10]. We
postulate that the object and attribute pre-training utilized
by VINVL [43] can potentially serve as a strong foundation
for localization in GZSL and allow for methods to explore
improvements in other components of the inference process,
like attribute representation.
Specialized GZSL Localization is usually a computation-

ally expensive process for competitive methods [29], with
popular approaches often utilizing Generative Adversar-
ial Networks [25, 39, 45] and Variational Auto-Encoders
[20, 21, 31]. These methods require dataset-specific effort
like precise hyperparameter tuning and multiple-stages of
training.
Structural Misalignment between seen and unseen data
continues to be a major bottleneck for GZSL performance
[35]. Prior works have attempted to address these issues
with image domain transformations [6, 35], part-object rela-
tions [18], and attribute attention [13, 14]. Our work further
extends attribute attention by associating attributes with part
prototypes which aim to describe the typical [8, 26] charac-
teristics of a class and can potentially serve as more robust
primitives than less localized image information.

3. Preliminaries
3.1. (Generalized) Zero-Shot Learning

The (Generalized) Zero-Shot Learning (GZSL) task evalu-
ates model performance under label shift. The training set is
defined as {(xn, yn)|xn ∈ Xs, yn ∈ Y s}Ns

n=1 where images
xn and their corresponding labels yn are sampled from seen
classes Y s exclusively. In the Zero-Shot Learning (ZSL)
setting, models predict on new examples such that X → Yu

where Yu refers to unseen classes not used for training. In
the generalized setting, models predict on examples from
both the seen and unseen classes X → Yu∪Ys. ZSL differs
from other label shift generalization benchmarks in that for
each class label y ∈ Yu ∪ Ys, attribute information ϕ(y) is
available for use at both train and test time.

3.2. Existing Approaches in GZSL

For classification, prior Zero-Shot Learning methods rely
on a compatibility function ψc [1, 2] between image fea-
tures θ(x) and class attribute vectors ϕc(y) to estimate the
likelihood of y being class c for c ∈ C

P (y = c) = ψc(x, y) = θ(x)⊗ ϕ(yc). (1)

Regularization of the image feature representation has been
the primary focus of GZSL research [25, 39], while more
recent methods have begun to apply grid cell [13] attention
and pixel-level [40] attention to the image representation
Θ(x) → ΘR(x).

3.3. Vision-Language Detectors

Vision-Language (VL) Detectors [3, 43] differ from general
object detectors in that they are designed to provide detailed
labels and features for both objects and their corresponding
attributes. This makes them uniquely suited for common
Vision-Language tasks like image captioning, VQA, and
text-to-image/image-to-text retrieval. The VINVL [43] de-
tector is extensively pre-trained across Open Images [16],
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Figure 2. A visualization of the proposed Part Proposal Network (PPN) methodology. α, W , and β represent learned parameters and
correspond to the part prototypes, regional embedding, and the mapping function for regional attention, respectively.

Objects375 [32], COCO [17], Visual Genome [15] with stan-
dard object annotations before being fine-tuned on Visual
Genome with both an object detection and attribute classifi-
cation loss has demonstrated State-of-the-Art results across a
wide variety of Vision-Language tasks. The region-specific
features provided by VINVL set serve as a flexible image-
region feature extraction method, providing regional features
θr for all proposed regions of interest, r = {1, ..., R}, as
shown for an image x

{θr}Rr=1 = VINVL(x). (2)

4. VL Detector based ZSL Architectures

Encoder-decoder architectures, where a general encoder is
trained across a large and diverse set of data and a special-
ized decoder is fine-tuned on a small dataset, dominate the
current Machine Learning landscape. We theorize that a
similar paradigm should be employed to ZSL, where data
scarcity makes fine-grained classification tasks exceptionally
challenging. To this end, our work establishes that VL de-
tectors can serve as an encoder for the ZSL tasks, effectively
replacing the visual attention and feature regularization ap-
proaches of prior works with object and attribute localization
and classification for pre-training. Thus, our work places
greater emphasis on compatible decoders to create modular
ZSL architectures.

With its use of grid-cells as input, DAZLE [13] serves as
the only VINVL compatible decoder in existing ZSL archi-
tectures. In an ablation study in Section 6.2, we show that
simply substituting the ImageNet classify grid-cell features
with the regional features provided by VINVL provides a
significant boost to the achievable performance of DAZLE.
However, the immediate aggregation of VINVL region pro-
posals performed by DAZLE in this architecture removes the
regional information provided by VINVL before measuring

the compatibility between visual and attribute features. Thus,
we explore the use of regional information in compatibility
measures with our proposed network.

5. Part Prototype Network

5.1. Proposed Architecture

Priors of each attribute for a given class ϕa in space RC×A

are provided by human annotation by ZSL datasets where
a ∈ A represent the human selected attributes. Using the
names provides for each attribute, a semantic representa-
tion of embedding length K can be constructed for each
attribute ϕk in RA×K using word2vec [13, 22]. We proceed
to combine these two information sources by expanding the
attribute priors along the semantic embedding dimension and
the semantic embeddings of the attributes along the class
dimension and performing a hadamard product which yields
a semantic class attribute tensor ϕak in the space RC×A×K .

Visual features are provided by VINVL [43] for each
proposed region of interest. These are used for both region-
specific class semantic representation frc extracted from the
semantic class attribute tensor using attribute attention and a
visual semantic embedding which is compared against the
corresponding class semantic embedding for that region as
shown in Figure 2.

frc = g(x, yc) =

A∑
a=1

[α(θr(x))]a × ϕ(yc)
a
k, (3)

where a linear combination in the word2vec semantic space
of allA attribute embeddings is taken for each class c ∈ C us-
ing learned class part prototype α. α serves as a part-specific
extension from the global attribute attention utilized in DA-
ZLE [13] and is intended to extract attribute information
relevant to the parts present in the input region. Note that α
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Zero-Shot Learning Generalized Zero-Shot Learning
Visual AWA2 CUB SUN AWA2 CUB SUN
Features ZSL Model T1 T1 T1 u s H u s H u s H
ResNet101
[12]

SJE [2] 61.9 53.9 52.7 8.0 73.9 14.4 23.5 59.2 33.6 14.4 29.7 19.4
DAZLE [13] 66.2 66.0 60.3 57.5 76.2 65.5 56.8 59.7 58.2 48.4 26.4 34.1
PPN (Ours) 58.6 55.8 54.1 51.4 70.4 59.4 46.2 50.5 48.3 21.7 24.8 23.2

APN(feats)
[40]

SJE [2] (APN-base) 68.4 72.0 61.6 56.5 78.0 65.5 65.3 69.3 67.2 41.9 34.0 37.6
DAZLE [13] - 52.9 - - - - 42.7 57.8 49.1 - - -
PPN (Ours) - 64.8 - - - - 50.2 66.8 57.3 - - -

VINVL
[43]

DAZLE [13] 63.2 74.8 66.0 54.7 70.4 61.6 66.9 63.1 64.9 53.8 33.1 41.0
PPN (Ours) base 54.7 64.8 62.9 30.4 85.8 44.9 50.2 66.8 57.3 45.2 34.7 39.3

↰

Lvis 63.9 65.9 65.1 40.3 82.6 54.2 54.9 65.5 59.7 50.6 33.5 40.3

↰

Lattr 70.4 72.1 63.5 60.1 62.8 61.4 61.9 65.0 63.4 48.6 31.2 38.0

↰

Lattr+Lvis 70.4 76.0 65.0 59.2 75.9 66.6 65.8 67.8 66.8 48.6 32.5 39.0

Table 1. A comparison of the performance of PPN and popular base models when utlizing different visual feature extractors in the
human-annotated attribute ZSL and GZSL setting with the proposed split from [38]. For GZL, accuracy per unseen class (u), accuracy per
seen class (s), and their harmonic mean (H) are all reported. Visual feature extractors lower in the table provide more localized feature
information. Parameters are set at λ1 = 0.1, λ2 = 0.1, and z = 108 (multiplicative calibrated stacking) for all PPN variants. Word2vec
embeddings [22] are used for the attribute representations of all reported results to ensure a fair comparison. The best results are highlighted
in blue (best) and red (second best) for each evaluation with the combination of VINVL and PPN utilizing both regularizers consistently
achieving either the best or second best results when compared with other approaches.

shares the same parameters for all attention mappings. Ex-
tending from the global compatibility functions proposed in
prior ZSL works [1, 2], we aggregate the compatibility com-
puted for each region and class into an overall compatibility
function for each class as shown

ψc(x, yc) =

R∑
r=1

[θr(x)]
T Wfrcβ(θr(x)), (4)

where W is the trained regional embedding which maps the
region proposals from VINVL into the word2vec semantic
space and β is a learned function which maps a region pro-
posal to the attention for its compatibility function. Like α,
parameters of function W and β are also shared across all
regions such that a universal mapping between the image
and semantic space is learned. Applying a softmax across
each compatibility function of each class

ŷc =
exp{ψc(x, yc)}∑
i exp{ψc(x, yi)}

, (5)

results in probability mass function ŷ which estimates the
likelihood that the image example belongs to any given class.

5.2. Loss and Regularization

The cross-entropy between the probability mass functions
of our model’s prediction and the one-hot ground-truth class
label

Lce({ŷc}c∈C) = −
∑
c

yclog(ŷc), (6)

serves as the primary task for our optimization.

For our regularization terms, we construct a penalty func-
tion to ensure our attribute and visual representations of the
image are relevant to unseen class attributes based on the
average of the unseen attribute priors ϕa(y ∈ Yu) provided
by human annotation

H(ϕa) = 1− 1

|Yu|
∑
y∈Yu

ϕa(y). (7)

Penalties for each attribute vary in the range of 0 to 1, with a
lower value indicating that the attribute in question occurs
more frequently in unseen classes. For attributes, this penalty
is multiplied by the square of the attribute attention. Squaring
the attention weight ensures outliers incur a greater penalty.
This scaled penalty is then summed over all attributes and
averaged over all regions as shown

Lattr(ϕ
a, x) =

1

R

R∑
r=1

A∑
a=1

H(ϕa)[α(θr(x))]
2
a. (8)

For visual semantic features, the penalty is projected
into the w2v space using the w2v embeddings of the
attribute classes ϕk and a cosine embedding loss is
used to contrast the attention-weighted aggregation of the
VINVL region proposals projected into the word2vec space∑R

r=1[θr(x)]
T Wβ(θr(x)) with the penalty with the pro-
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jected penalty

Lvis = max(0, cos(

R∑
r=1

[θr(x)]
T Wβ(θr(x)),

A∑
a=1

H(ϕa)ϕk)).

(9)
The cross-entropy, prior confidence, and self-calibration

loss functions are combined to form the training objective

min
W,α,β

Lce + λ1Lattr + λ2Lvis, (10)

which optimizes the joint embedding and attention parame-
ters.

5.3. Pre/Post-Processing

L2 normalization is performed across the attribute dimension
A for our attribute input tensor RC×A×K as described in
[34] and the feature dimension for region proposals. Because
ZSL models are only exposed to seen classes at training time,
their confidence is typically biased towards predicting seen
classes. Calibrated stacking is a standard post-processing
approach for adjusting confidence bias of seen classes [40].
Since part prototypes in PPN are constructed based on seen
classes, the prediction confidence of PPN is significantly
higher for seen classes, even when compared against prior
methods. For example, APN [40] report using additive cal-
ibrated stacking value of 0.8 for CUB while our method
would require a value of 0.9995 to achieve its best validation
set performance. To address this phenomenon, we propose
multiplicative calibrated stacking as a means of adjusting
confidence bias where prediction confidences corresponding
to a seen class are adjusted by dividing by a constant z as
shown

ŷ =

{
ŷc

z if y ∈ Ys,

ŷc otherwise.
(11)

With addition, all predictions experience the same adjust-
ment while multiplication applies less and potentially no
adjustment to predictions with little or no confidence, respec-
tively. This allows us to apply more significant confidence
adjustments without impacting false positive rate of unseen
selections as significantly.

6. Experiments
6.1. Experimental Setup

We perform our experiments using the three widely adopted
ZSL and GZSL benchmark datasets provided by [38]. CUB
[37] is a fine-grained bird species classification dataset with
150 seen and 50 unseen classes. With 312 human-annotated
attributes, it is the most heavily annotated of the 3 bench-
marked datasets and provides 7,057 training examples and
4,731 testing examples. SUN [27] is a scene classification
dataset with 645 seen and 72 unseen classes. Only 10,320
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Figure 3. An ablation study of the GZSL harmonic mean perfor-
mance of DAZLE (with VINVL features) and RAJE when using
addition and multiplication for calibrated stacking. The same ver-
tical axes are used when plotting the multiplicative and additive
performance in each dataset. Our proposed multiplicative approach
for calibration exhibits greater performance over a larger portion
of the graph while the previous additive approach has reduced per-
formance and a sharp dip after its peak. Furthermore, additive
calibration has the potential to sharply dip as it approaches 1 since
it will begin classifying all examples as unseen.

training samples and 4,020 testing samples are provided
along with 102 human-annotated attributes, meaning SUN
has the least images per class of the 3 benchmarked datasets.
AWA2 [38] is an animal species classification dataset and is
relatively coarse when compared to CUB and SUN. 23,527
training images, 13,795 test images, and 85 human-annotated
attributes are provided. The traditional ZSL setting bench-
mark uses the top-1 accuracy (T1) performance on unseen
class test set. The GZSL setting challenges models to classify
both unseen and seen images in a single test set, such that
unseen images may be misclassified as being from a seen cat-
egory and vise versa. The harmonic mean (H) measures the
trade-off between unseen and seen test set performance and
serves as the primary metric for GZSL, with the unseen (u)
and seen (s) accuracy included for additional transparency.
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In our implementations, visual features from 3 sources
are tested: ResNet101 pre-trained on ImageNet [12, 38]
providing the most least localized information, 2048x7x7
grid features (R=49) of ResNet101 fine-tuned using APN
(model weights are only available for CUB) providing more
localized information, and the top 30 (R=30) most confident
proposals provided by VINVL [43] of dimension 2048 pro-
viding the most localized information. Combinations of the
aforementioned visual features with 3 different base models
are tested: SJE [2], DAZLE [13], and our proposed PPN. La-
bel attributes are sourced from human annotations provided
by [38]. As done in DAZLE [13], we semantically embed
the human annotated attributes using word2vec [22]. The
optimization procedure for PPN utilizes the Adam optimizer
with a learning rate of 0.001 following the procedure from
[41]. The proposed hyperparameters obtain their highest val-
idation set performance at 0.1 across all tested benchmarks.
Thus, all tested base models are out-of-the-box, meaning no
dataset-specific hyperparameter settings are utilized.

6.2. (Generalized) Zero-Shot Learning

Table 1 explores the relationship between different visual
feature extractors and specialized base models. With the
use of VINVL features, DAZLE becomes a more compet-
itive method for both the CUB and SUN dataset, while a
slight decrease in performance occurs in AWA2. This may
be caused in part by similarities between the categories in
AWA2 and the ImageNet dataset, on which the ResNet101
feature extraction is pretrained. Consistent improvements in
the performance of PPN can be observed as more features
with more localized information are utilized. The use of
both regularizers also consistently improves the performance
of PPN with the exception of the SUN dataset, where only
the Lvis regularizer contributes to improved performance
The multiplicative corrections used to compensate for the
large discrepancy between seen and unseen confidence for
GZSL can be seen in Figure 3. The plots show significant
improvements in performance when using the multiplica-
tive correction compared to the previously proposed additive
correction.

7. Conclusion and Future Work
We propose a novel approach for localization in GZSL using
region proposals from a pre-trained VL detector (VINVL)
and utilize the provided proposals in to create part proto-
type which extract relevant information from attributes for
each of these regions. Our ablation and analysis show that
VINVL is a highly effective visual information source for
GZSL and that our proposed Part Prototype Network can
potentially serve as an improved foundation for future GZSL
works. One potential avenue not explored in this work is
enhancements of the visual features provided by VINVL,
either through regularization like in generative approaches

or additional training tailored to the zero-shot tasks.
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