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Abstract

By using few-shot data and labels, prompt learning ob-
tains optimal prompts that are capable of achieving high
performance on downstream tasks. Existing prompt learn-
ing methods generate high-quality prompts that are suit-
able for downstream tasks but tend to perform poorly in
scenarios where only very limited data (e.g., one-shot) is
available. We address on this challenging one-shot sce-
nario and propose a novel architecture for prompt learn-
ing, called Image-Text Feature Alignment Branch (ITFAB).
ITFAB aligns text features closer to the centroids of image
features and separates text features with different classes
to resolve misalignment in the feature space, thereby fa-
cilitating the acquisition of high-quality prompts with very
limited data. In one-shot setting, our method outperforms
the existing CoOp and CoCoOp methods and in some cases
even surpasses CoCoOp’s 16-shot performance. Testing
on different datasets and domain, show that ITFAB almost
matches CoCoOp’s effectiveness. It also works with cur-
rent prompt learning methods like MapLe and PromptSRC,
improving their performance in one-shot setting.

1. Introduction

Vision-and-language models (VLMs) have demonstrated
remarkable zero-shot classification capabilities, thus avoid-
ing predefined label spaces and enabling ad-hoc addition
of target labels. VLMs are trained from vast numbers
of image-text pairs (such as img and alt-text tags)
crawled from the web, with CLIP [27] and ALIGN [14] us-
ing 400M and 1B pairs for training respectively.

However, the zero-shot performance deteriorates when
samples that are encountered in a downstream task are
either absent or very rare in the pretraining dataset, as
compared to full-scratch training models [41]. This phe-
nomenon, in which the training distribution is different from
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Figure 1: Vanilla CoCoOp performance declines signifi-
cantly when relying on prompts with only one-shot train-
ing. By incorporating our proposed method (ITFAB), mod-
els can achieve high performance with only one-shot.

that of the model’s operation, is known as a domain shift. To
tackle domain shifts, models are typically adapted to down-
stream tasks by using few-shot unlabeled or labeled data in
the operation environment [9, 34, 39]. On the other hand,
VLMs are designed with an enormous number of parame-
ters for training from large-scale training data. As a result,
adaptation to downstream tasks is very time-consuming and
suffers from the loss of valuable features acquired during
pretraining (known as catastrophic forgetting).

One approach to overcome this issue is a prompt engi-
neering, which devises input texts. For instance, in satel-
lite image classification, the prompt “a satellite photo of
a ⟨classname⟩” yields 13.3% better performance than the
simpler prompt “a photo of a ⟨classname⟩” [41]. However,
handcrafting prompts that appropriately describe operation
environments is often inefficient. Moreover, such descrip-
tion in practice scenarios may itself be challenging without
domain experts.

Prompt learning has been proposed to overcome such
limitations of prompt engineering [1, 16, 17, 32, 41, 42].
In prompt learning, prompt tokens are trained using few-
shot labeled data for downstream tasks, while the VLM’s
image and text encoders are frozen. CoOp [41], a milestone
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work in prompt learning, defines prompts as learnable vec-
tors and optimizes them to fit few-shot training samples ef-
fectively. Also, to address CoOp’s limited generalization to
downstream tasks, CoCoOp [42] has been introduced as a
successor model. CoCoOp generates prompts that are con-
ditioned on image features, thus yielding improved general-
ization capabilities for unseen categories.

Most existing methods assume that at least 16-shots per
category are available for prompt learning [16, 17, 42]. In
scenarios where data collection is difficult, however, such
as medical imaging [24] and industrial inspection [29], it is
necessary to adapt to using very limited data (e.g., one-shot
data). Figure 1 shows preliminary experiments of 16- and
one-shot accuracies within the CoCoOp framework. This
analysis reveals a notable decrease in the downstream accu-
racy for the one-shot setting, as opposed to the conventional
16-shot configuration. Our objective in this paper is to im-
prove downstream accuracy of prompt learning even with
very limited data.

To investigate the cause of degradation, we visual-
ized feature spaces of vision-and-language models obtained
from prompt learning. The investigation showed that image
features form clusters for each category and text features
move in the feature space during prompt learning. Also, we
found that text features trained by adequate training data
(e.g., a 16-shot setting) are located close to the centroids of
image features whose category is the same. Conversely, in
one-shot prompt learning, these text features demonstrate a
limited capacity to move sufficiently from their original po-
sitions in the directions of image features’ centroids. We hy-
pothesis that these feature locations are important for high-
quality prompts, and propose requirements for the feature
space.

Based on above hypothesis, in this paper, we propose
Image-Text Feature Alignment Branch (ITFAB), which
aims to move text features closer to the centroids of image
features, while separating the text features to increase their
identification. The proposed branch can encourage exclu-
sion among text features with different labels and inclusion
among features with identical labels. This ITFAB mech-
anism effectively mitigates disparities that arise within the
feature space because of limited training data, such as in the
case of one-shot learning. Moreover, ITFAB can improve
one-shot performance of arbitrary prompt learning methods
through integration with existing architectures.

To demonstrate ITFAB’s effectiveness, we conducted
one-shot, Base-to-New [42] experiments on 10 different
datasets by using CoCoOp architecture. The results con-
firmed that ITFAB outperformed the conventional methods.
On certain datasets, the one-shot accuacy surpassed that of
CoCoOp with 16 shots. On the other hand, ITFAB may
suffer from overfitting to the source data, because it forces
text features to explicitly traverse to the centers of source

data categories. We also evaluated ITFAB’s cross-dataset
and domain generalization performance, revealing accu-
racy comparable to that of CoCoOp. These results show
that ITFAB can improve the one-shot accuracy while re-
taining its generalization capability. Furthermore, we inte-
grated ITFAB into the state-of-the-art (SoTA) prompt learn-
ing methods, MapLe [16] and PromptSRC [17], to verify its
model-agnostic capacity. Though similar Base-to-New ex-
periments, we confirmed that the one-shot performance was
again improved. Our contributions in this paper are twofold:
• We focus on prompt-learning scenarios in which only

very limited data is available. From observations of the
feature space, we proposed requirements for it that enable
high-quality prompts even in a one-shot setting.

• We introduce a branch, ITFAB, that promotes exclusion
among features with different labels and inclusion among
features with the same label, thus our approach.

2. Related Works
2.1. Vision-and-Language Models for Vision Tasks

Vision-and-Language Models (VLMs) have achieved great
success on image recognition fields such as identification,
object detection, and semantic segmentation [10, 14, 20, 27,
31, 38]. These models facilitate a convergence of image
processing and natural language processing. Specifically,
they obtain the correspondence in a feature space of a vast
number of pairs of images and text collected from the pub-
lic web. This approach enables zero-shot prediction without
any additional data by matching the positions in the feature
space of any image and text [40]. Compared to existing
unimodal methods focused only on images, Align [14] and
CLIP [27] demonstrate superior zero-shot performance, do-
main generalization capability, and robustness against ad-
versarial samples.

Although VLMs have outstanding zero-shot perfor-
mance on various tasks, they are challenging to adapt to
downstream tasks without forgetting pretraining knowl-
edge. Recently, two lines of research have been intensively
investigated. The first explores transfer learning to down-
stream tasks, and comprises approaches that emphasize text
encoders [16, 17, 41, 42] and those that prioritize image en-
coders [1, 15]. The second line explores knowledge distilla-
tion and aims to improve the model performance on object
detection [6, 8], semantic segmentation [5, 21], and so forth.
In our work, we investigate methods that focus on applying
a text encoder to downstream tasks with only a very limited
number of examples, targeting CLIP, one of the most widely
used VLMs.

2.2. Prompt Learning

Minor prompt changes, e.g., from ”a photo of ⟨classname⟩”
to ”a photo of a ⟨classname⟩” [27], cause VLMs to exhibit
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significant accuracy fluctuation on downstream task. The
design of appropriate prompts to describe downstream envi-
ronment is challenging, and domain expert knowledge may
be especially needed in industrial and medical domains.

Inspired by “prompt engineearing” in natural language
processing (NLP), “prompt learning” aims to obtain op-
timal prompts by applying few-shot samples in a down-
stream environment. The main approach in prompt learn-
ing entails the optimization of prompts representing con-
tinuous learnable vectors by using few shot samples. The
cross-entropy loss function is often used as the training
objective. CoOp [41] was the pioneering attempt to rep-
resent prompts as continuous vectors rather than discrete
ones. More recently, CoCoOp [42] conditions prompts with
image features to enhance generalization for unseen cate-
gories. MaPLe [16] innovatively integrates learnable vec-
tors with a text encoder’s intermediate features and sub-
sequently uses the vectors as inputs to an image encoder
following a linear transformation. This strategy enables
effective multimodal prompt learning. PromptSRC [17]
critically addresses the knowledge preservation in pretrain-
ing. Specifically, it introduces an advanced prompt-learning
model that harmonizes task-agnostic knowledge and task-
specific knowledge. Moreover, recent advancements[18]
have introduced prompt-learning approaches that circum-
vent the use of images by leveraging large language mod-
els (LLMs). Theses approaches assume the availability of
LLMs or limited testing data, aligning with our research
premise. Nonetheless, they lack empirical validation in sce-
narios that are restricted to one-shot application. Hence, our
study primarily concentrates on such scenarios, and propose
a novel approach that aims to enhance the one-shot capabil-
ities of current methodologies.

3. Proposed Method
We use the text and image encoders of CLIP as our
backbone. Additionally, our prompt learning is based on
the most widely used method, which involves vectorizing
prompts and learning by minimizing cross-entropy error.
This section first introduce these concepts before explain-
ing our proposed method.

3.1. Prompt Learning for CLIP

Prompt learning eliminates the need for handcrafted design
of prompt, e.g.,“a photo of a”, to match downstream tasks.
The earliest work, CoOp [41], defines a prompt as sequence
of M continuously differentiable tokens, [v1][v2] . . . [vM ].
In the case of CLIP-ViT, [vi] is 512-dimensional vector.
The prompt representing the ith category can be then de-
fined as ti = {v1,v2, . . . ,vM , ci}. Let features from the
image encoder and text encoder be denoted by x and g(·).
Then the class probabilities can be expressed by the follow-
ing formula:

p(ŷ|x) = exp(sim(x, g(ty))/τ)∑C
i=1 exp(sim(x, g(ti))/τ)

. (1)

Here, sim(·, ·) is a metric that measures similarity in
a feature space, with the cosine similarity as a common
choice, and τ is the temperature parameter.

CoCoOp [42] conditions prompts with image
features to enhance generalization for unseen cat-
egories. In practical, image-conditioned prompts
ti(x) = {v1(x),v2(x), . . . ,vM (x), ci} are formu-
lated by summing meta-tokens π, derived from “meta-net”
θ, and the [vi]. The class probabilities are expressed by

p(ŷ|x) = exp(sim(x, g(ty(x)))/τ)∑C
i=1 exp(sim(x, g(ti(x)))/τ)

. (2)

Both CoOp and CoCoOp update tokens —CoCoOp ad-
ditionally adjusts the meta-net parameters— by using the
cross-entropy loss from downstream tasks:

Lce(y, ŷ) = −
C∑
i=1

yi log(ŷi). (3)

3.2. Feature Space Analysis

In this section, we evaluate the requirements for successful
prompt learning by visualizing the feature space and exam-
ining the relationship between the locations of image and
text features. We compare the feature spaces between one
and 16-shot prompt learning in CoOp. Finally, we target
the image features {x}Ni ∈ R512 obtained from the image
encoder, and the text features {z}Ki ∈ R512 obtained by
passing tokens through the text encoder after prompt learn-
ing. Note that N denotes the sample size, while K denotes
category size. Note also that, in prompt learning, because
each encoder’s weight are frozen, the embedding positions
of image features do not change before and after learning;
only the embedding positions of the vectorized text features
can change.

Figures 2(a) and (b) illustrate a significant disparity in
the downstream task performance between one and 16-shot
settings. In this study, we seek to understand the reasons for
such disparities by analyzing the arrangement of image and
text features within the feature space. Using the EuroSAT
[11] and OxfordPets [26] datasets as examples, we observed
that image features (depicted as dots in the figure) naturally
form hyperspherical clusters for each category. This phe-
nomenon is induced by a well-trained CLIP image encoder
on a vast amount data, as documented by [30].

In the one-shot feature space, which is highlighted in the
areas enclosed by rectangles in Fig.2(a), text features (de-
picted as stars) either overlapping or are very close to each
other. We evaluated the categories and their representative
images that are closely embedded in the one-shot scenario.
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Figure 2: Visualization of the feature space after prompt learning in the (a) one-shot and (b) 16-shot [35]. The stars and
dots denote text and image features, respectively. (c) Category names and corresponding sample images indicated by the text
features enclosed in rectangles. (d) Zoomed-in view of rectanglar region in (a) and (b), showing text features moving from
one-shot position to 16-shot position.

Text features with linguistically similar meaning are embed-
ded in close proximity, as shown in Fig.2(c), even when the
image characteristics differ significantly. For example, al-
though the image characteristics “Sea or Lake” and “River”
differ significantly, both of them have the same meaning
“natural water”.

Next, when using a sufficient training data as in the 16-
shot setting, text features move closer to the center of im-
age features with the same category, as observed in Fig.2(b).
Figure 2(d) provides a zoomed-in view illustrating this shift.
CLIP-based models predict categories from similarity be-
tween text and image features. Therefore, when text fea-
tures are embedded close to each other but far from image
features with the same category, misrecognition may result
in downstream tasks. Below, from these observation, we
summarize the requirements for the text and image features
in the feature space.
• Text features should be embedded close to the mode of

image features with the same category.
• Text features should be embedded far from each other.

3.3. Image-Text Feature Alignment Branch

Our proposed Image-Text Feature Alignment Branch (IT-
FAB) is based on the above observations. ITFAB promotes
prompt updates to simultaneously satisfy the exclusivity of
text features with different categories and the inclusivity of

image features with the same category. Our problem setting
only allows only one sample per category. With a suffi-
ciently trained image encoder, however, we can assume that
the randomly selected single sample is extracted from near
the each category’s centroids. By leveraging our hypothesis
above, ITFAB can explicitly bring text features closer to the
one-shot image features, thereby meeting the requirements
outlined in the previous section. Additionally, ITFAB can
be integrated with any prompt-learning method, thus im-
proving the performance in one-shot scenarios in the base
model. Hence, in this section, we discuss a case where the
proposed method is integrated with CoCoOp, a base model
that is commonly used in prompt-learning.

Figure 3 illustrates the proposed ITFAB. It is respon-
sible for calculate the loss value, inspired by [23], which
augment both the exclusion and inclusion among fea-
tures from each encoder. For a dataset with K cate-
gories, the image encoder’s output features are represented
as x = {x1,x2, . . . ,xK}, with corresponding category
{y1, y2, . . . , yK}. For one-shot learning, the training data
volume used in each epoch matches the category count.
The text encoder’s output features are denoted as z =
{z1, z2, . . . , zK}, where these features’ category are equiv-
alent to the category names used within the prompts, de-
noted as {ci}Ki=1. The establishment of f = ⟨x, z⟩ and
y = {y1, y2, . . . , yK , c1, c2, . . . , cK} enables definition of
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precise inclusion loss LInc and exclusion loss LExc, as fol-
lows:

LInc =
∑
i

∥∥fi −wc
yi

∥∥2
2

(4)

LExc = −
∑
i

( 1

k − 1

∑
j ̸=yi

∥∥fi −wc
j

∥∥2
2
+
∥∥wc

yi
−wc

∥∥2
2

)
(5)

Here, wc is a learnable center of gravity, whose position
is optimized to the center of each category during prompt
learning. LInc forces each text feature to move close to
the center of gravity, while LExc forces each text feature
to move far away. These two loss functions are expected to
fulfill the above requirements even in one-shot setting.

Finally, as given below, the total loss function Ltotal is
obtained by adding LInc and LExc to the base model’s orig-
inal loss (in this case, CoCoOp’s cross-entropy loss LCE),
which is used for parameter updating. Note that λInc and
λExc are balancing terms.

Ltotal = LCE + λIncLInc + λExcLExc (6)

4. Experiments

In this section, we describe evaluation experiments that
were conducted in a benchmark setting to verify the pro-
posed method’s effectiveness. Additionally, we performed
ablation study to ensure the validity of the comparisons. Fi-
nally, we also assessed the proposed method’s performance
when integrated with MaPLe and PromptSRC, the SoTA
models in prompt learning.

4.1. Benchmark Setting

Following previous research [42], we conducted the eval-
uations in a benchmark setting for prompt learning. This
benchmark setting includes the Base-to-New, Cross-Dataset
Evaluation, and Domain Generalization tasks, which are de-
scribed below.

Base-to-New

In this task, all categories are divided into two groups: Base
and New. The prompt is learned using only the Base cat-
egories, and the accuracy on both Base and New test sets
is measured using the learned prompt. Previous methods
extracted 16 samples per category from the Base, but we
tackled the more challenging task of learning the prompt in
a one-shot scenario.

Cross-Dataset Evaluation

In this task, prompts trained on ImageNet are evaluated on
other datasets. The proposed method may overfit to the
source dataset because it explicitly adjust the positions of
text features in the feature space. Accordingly, we used this
task to verify that our method could achieves performance
equivalent to previous methods.

Domain Generalization

In this task, prompts trained on ImageNet are evaluated on
ImageNet variants. As mentioned above, our objective was
to determine whether generalization capability would be re-
tained.

Datasets

We used 10 classification datasets with the Base-to-New
and Cross-Dataset Evaluation tasks. Specifically, we used
the general object category datasets ImageNet [4] and Cal-
tech101 [7]; datasets for fine-grained classification such
as OxfordPets [26], StanfordCars [19], Flowers102 [25],
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Table 1: Comparison with CoOp/CoCoOp on Cross-Dataset Evaluation. CoCoOp with ITFAB (Ours) achieve comparable
results with vanilla CoCoOp.
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CoOp 62.20 83.53 81.30 60.23 58.57 79.50 12.40 52.77 42.13 58.60 59.12
CoCoOp 69.50 93.73 89.47 65.07 70.77 85.97 21.57 65.73 43.63 66.67 67.21

CoCoOp+ITFAB 69.50 93.23 89.50 66.20 70.57 86.10 21.23 66.37 42.17 68.07 67.29

Base  Accuracy

New AccuracyHarmonic Mean

CoOp CoCoOp CoCoOp+ITFAB

Figure 4: Comparison of ITFAB with CoOp and CoCoOp
on Base-to-New. All models were trained with one-shot set-
ting, with one sample chosen from each category.

Food101 [2], and FGVCAircraft [22]; the scene classifica-
tion dataset SUN397 [37]; the action classification dataset
UCF101 [33]; and the satellite image dataset EuroSAT [11].
For the Domain Generalization task, we trained prompts by
using ImageNet as the source data and evaluating the ac-
curacy on ImageNet variants; ImageNetV2 [28] (a resam-
pling), ImageNetSketch [36] (a sketch version), ImageNet-
A [13] (adversarial images), and ImageNet-R [12] (a wide
range of styles, such as sculptures and cartoons).

Previous studies [41, 42] also included the texture dataset
DTD [3] in their evaluations. We analyzed each category in
DTD in detail and found significant variance in image char-
acteristics even within the same category. For example, the
category “matted” includes images with significantly dif-
ferent features, such as lawns, dogs, and perms. Given our
problem setting of one-shot learning, such variability within
the dataset could cause performance fluctuations, depend-
ing on the chosen sample, which would make accurate eval-
uation difficult. Accordingly, we excluded DTD from the
evaluation datasets and used it in an independent evaluation
in Section 4.3.

Experimental Setting

We trained prompts with only one-shot, which was ran-
domly selected for each class. We used image and text en-
coder on a pretrained ViT-B/16 CLIP model. For the bench-
mark experiments, we integrated ITFAB with the CoCoOp
architecture as shown in Fig.3. We trained CoCoOp for 10
epochs in the original manner, followed by five epochs with
the proposed losses calculated from ITFAB. The weights
λInc and λExc were set to 0.001 and 0.0001, respectively.
Other parameters, such as the batch size and context length,
followed by the CoCoOp settings. Each experiment was run
three times with different seeds, and the averaged result is
shown.

4.2. Main Results

We evaluated ITFAB’s effectiveness by comparing it with
CoOp and CoCoOp. First, we verified how our method sur-
passed existing methods by investigating the Base-to-New
task. Then, we demonstrated the ITFAB’s generalization
by analyzing Cross-Dataset Evaluation and Domain Gener-
alization task results.

Base-to-New

Figure 4 shows the comparison results for the proposed
method with CoOp and CoCoOp across 10 different
datasets. These result comprise the accuracies for the Base
and New categories and their Harmonic mean. The detailed
accuracies for each dataset are given in the Appendix 6.
With implicitly operating text features in a feature spaces,
ITFAB improve Harmonic Mean on all 10 datasets in com-
parison with CoCoOp, and obtains an overall gain from
73.39% to 74.55%. The proposed ITFAB increased the av-
erage one-shot accuracy across the 10 datasets by +1.16%
as compared to vanilla CoCoOp. Regarding the individ-
ual accuracy for each dataset, ITFAB demonstrated strong
generalization capabilities, notably with improvements of
+8.46% and +5.43%, respectively for the Aircraft and Eu-
roSAT.

For other datasets, however, the accuracy was compara-
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ble to that of CoCoOp. We attribute the limited accuracy
improvement for some datasets to text features’ position in
a feature space on initialization. In the case of general cat-
egories which extensively include in the CLIP pretraining
dataset, initial prompts might be somewhat optimal before
prompt learning. As a result, the proposed method’s adjust-
ments to the text features’ position did not yield significant
effects.

Cross-Dataset Evaluation & Domain Generalization

For the Cross-Dataset Evaluation and Domain Generaliza-
tion tasks, we trained prompts on all 1000 categories in
ImageNet, and then directly transferred them to the other
nine datasets and ImageNet variants. As ITFAB explic-
itly forces text features’ position closer to the centers of
image features, the trained models might have overfit to
the source dataset. As summarzed in Tables 1 and 2, the
proposed method outperformed CoOp and achieved perfor-
mance comparable with vanilla CoCoOp. These results sug-
gest that the proposed method does not overfit to the source
dataset and is capable of solving different datasets and out-
of-distribution datasets without performance degradation.

Table 2: Comparison with CoOp/CoCoOp on Domain Gen-
eralization. ”-*” depicts suffix of ImageNet variants. Co-
CoOp with ITFAB (Ours) achieve comparable results with
vanilla CoCoOp.

Source Target

ImageNet -V2 -S -A -R

CoOp 62.20 55.20 40.53 43.30 68.03
CoCoOp 69.50 63.00 48.23 50.30 76.40

CoCoOp+ITFAB 69.50 62.80 48.10 50.00 76.20

4.3. Ablation Study

Epoch Fairness

As mentioned above, we trained our method first with the
CoCoOp for 10 epochs and then with proposed losses for
an additional five more epochs. To show that our improve-
ments were not just due to the additional training epochs,
we also extended CoCoOp’s training to 15 epochs. In Ta-
ble 3, “CoCoOp” refers to the model trained for the 10
epochs as in the original paper, while “CoCoOp†” denotes
the model trained for 15 epochs. The values represent the
average accuracy across the 10 datasets, similar to the Base-
to-New experiment. The results indicate that CoCoOp† ac-
tually performed worse than original CoCoOp, with a par-
ticularly notable performance degradation in the New sub-
set. This result suggests that the increased training cause
CoCoOp to overfit to the Base subset, thereby reducing the
generalization performance. In contrast, our method main-

tained high performance without losing its generalization
capability.

Table 3: Ablation on epoch size. CoCoOp† denotes the
model trained for 15 epoch.

Base New H

CoCoOp 72.02 72.04 71.97
CoCoOp† 72.27 70.88 71.48

CoCoOp+ITFAB 73.07 72.11 72.49

DTD Dataset Evaluation

For the reason explained in Section 4.1, we exclude the
DTD dataset from the Base-to-New task and conducted an
individual evaluation on it.

The bottom row of Table 4 summarizes the average per-
formance across all categories in DTD. Overall, the pro-
posed method performed −3.98% worse than CoCoOp did.
We measured the accuracy for each category and examined
the top three categories with the largest accuracy differences
between ITFAB and CoCoOp. The results indicated that the
categories, where CoCoOp performed better, exhibited sig-
nificant variability in image characteristics within the cat-
egory (for example, the “matted” category includes grass,
dogs, and hair). In contrast, the categories, where ITFAB
excelled, tended to have relatively less variability within the
category.

Our method seeks to improve the one-shot performance
by aligning text and image features in the feature space.
In cases where image characteristics have large variability
within the same category, even if text features are brought
close to the image features chosen for the one-shot setting,
the probability that other image from the same category ap-
pear in similar positions decreases. Without adjusting em-
bedding positions, CoCoOp handles such variability better
and outperforms our method in these cases. Conversely, in
categories with less variability, whose images are more sim-
ilar, our method is more effective than CoCoOp, because
aligning one image closely aligns others too.

Accuracy Beyond One-Shot Setting

Figure 5 shows the accuracy trends when the number of
shots was increased from one to 16 shots. The solid red line
represents the harmonic mean for the proposed method, and
the solid green line represents that for CoCoOp, with the ac-
curacies for both Base and New indicated by dashed lines.
For reference, the results of zero-shot evaluation using CLIP
directly is plotted with blue dots. These results demonstrate
that the proposed method had the effect of consistently en-
hancing the backbone model’s performance even when the
number of shot was increased.
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Table 4: Accuracy and sample images of DTD each cate-
gory after one-shot prompt learning. The upper half shows
categories where CoCoOp’s performance is relatively su-
perior, while the lower half indicates categories where the
proposed method excels.

Classname

Accuracy
(Ours /

CoCoOp /
∆)

Sample images

matted
38.99 /
66.67

−27.78%

meshed
14.81 /
41.67

−26.85%

gauzy
20.37 /
46.30

−25.93%

lacelike
42.59 /

9.26
+33.3%

pothholed
80.56 /
73.15

+7.41%

spiralled
36.11 /
29.63

+6.48%

ALL
54.35 /
58.33

-

CoCoOp
CoCoOp+ITFAB
CLIP

# Shots

A
cc

ur
a

cy
 [%

]

Base Accuracy

Harmonic Mean

New Accuracy

Figure 5: Comparison with CoCoOp from one- to 16-shot
on the Base-to-New task across 10 dataset. CLIP’s zero-
shot accuracy is also shown for reference.

4.4. Model-Agnostic Study

The proposed ITFAB can be integrated into any prompt
learning method and contribute to improve its one-shot per-
formance. To evaluate ITFAB’s model agnosticism, we ap-
plied it to other SoTA prompt learning approaches, MaPLe
and PromptSRC.
MaPLe: Multi-modal Prompt Learning (MaPLe) [16]
learns prompts across both image and text branches, at-
tempting multi-modal optimization. We integrated ITFAB
into the MaPLe architecture, by using the features obtained
from the image and text encoders.
PromptSRC: Prompting with Self-regulating Constraint
(PromptSRC) [17] seeks Pareto optimal solutions between
task-specific and task-agnostic knowledge. As with MaPLe,
we integrated ITFAB into PromptSRC.

Table 5 lists the average accuracies across 10 datasets in
a one-shot setting. All the models with ITFAB showed im-
proved accuracy. MaPLe with ITFAB showed improvement
in both Base and New accuracies, with a harmonic mean
increase of 0.9%. On the other hand, PromptSRC with IT-
FAB exhibited a performance decrease of about 1.5% as
compared to MaPLe. As PromptSRC seeks the Pareto op-
timum between pretrained and downstream knowledge, IT-
FAB might have made it difficult for PromptSRC to con-
verge to the optimal solution because it forces text features
to move close to image features.

Table 5: Model agnostic evaluation results. Models inte-
grated with ITFAB improve one-shot accuracy.

Base New H

MapLe 71.88 71.87 71.80
MapLe+ITFAB 72.13 73.38 72.70

PromptSRC 71.37 69.17 70.13
PromptSRC+ITFAB 71.58 69.08 70.19

5. Conclusion

Prompt learning is an effective technique for adapting
VLMs like CLIP to downstream tasks using few-shot sam-
ples. However, existing prompt learning methods assume
that 16 samples per category are available. In this paper,
we focused on the more challenging scenario of one-shot
prompt learning. First, to investigate the requirements for
better performance, we visualized and compared the feature
spaces after prompt learning between the one- and 16-shot
settings. Leveraging this analysis, we introduced Image-
Text Feature Alignment Branch (ITFAB) for alignment of
image and text features in a feature space. CoCoOp in-
tegrated with ITFAB showed improved one-shot accuracy
as compared with vanilla CoCoOp. Furthermore, ITFAB
worked with SOTA prompt learning methods like MaPLe
and PromptSRC.
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[21] Timo Lüddecke and Alexander S. Ecker. Image segmenta-
tion using text and image prompts. In CVPR, 2022. 2

[22] S. Maji, J. Kannala, E. Rahtu, M. Blaschko, and A. Vedaldi.
Fine-grained visual classification of aircraft. 2013. 6

[23] Aamir Mustafa, Salman Khan, Munawar Hayat, Roland
Goecke, Jianbing Shen, and Ling Shao. Adversarial defense
by restricting the hidden space of deep neural networks. In
ICCV, 2019. 4

[24] Jannatul Nayem, Sayed Sahriar Hasan, Noshin Amina,
Bristy Das, Md Shahin Ali, Md Manjurul Ahsan, and Shiv-
akumar Raman. Few shot learning for medical imaging: A
comparative analysis of methodologies and formal mathe-
matical framework. 2023. 2

[25] Maria-Elena Nilsback and Andrew Zisserman. Automated
flower classification over a large number of classes. In 2008
Sixth Indian Conference on Computer Vision, Graphics Im-
age Processing, pages 722–729, 2008. 5

[26] Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and
C. V. Jawahar. Cats and dogs. In CVPR, 2012. 3, 5

[27] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual
models from natural language supervision. In ICML, 2021.
1, 2

[28] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and
Vaishaal Shankar. Do imagenet classifiers generalize to im-
agenet? 2019. 6

[29] Karsten Roth, Latha Pemula, Joaquin Zepeda, Bernhard
Schölkopf, Thomas Brox, and Peter Gehler. Towards total
recall in industrial anomaly detection. In CVPR, 2022. 2

[30] Kuniaki Saito, Donghyun Kim, Piotr Teterwak, Stan
Sclaroff, Trevor Darrell, and Kate Saenko. Tune it the right
way: Unsupervised validation of domain adaptation via soft
neighborhood density. 2021. 3

[31] Gyungin Shin, Weidi Xie, and Samuel Albanie. Reco: Re-
trieve and co-segment for zero-shot transfer. In NeurIPS,
2022. 2

[32] Manli Shu, Weili Nie, De-An Huang, Zhiding Yu, Tom
Goldstein, Anima Anandkumar, and Chaowei Xiao. Test-
time prompt tuning for zero-shot generalization in vision-
language models. In NeurIPS, 2022. 1

7769



[33] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah.
Ucf101: A dataset of 101 human actions classes from videos
in the wild. 2012. 6

[34] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell.
Adversarial discriminative domain adaptation. In CVPR,
2017. 1

[35] Laurens van der Maaten and Geoffrey Hinton. Visualizing
data using t-sne. In JMLR, pages 2579–2605, 2008. 4

[36] Haohan Wang, Songwei Ge, Eric P. Xing, and Zachary C.
Lipton. Learning robust global representations by penalizing
local predictive power. In PMLR, 2019. 6

[37] Jianxiong Xiao, James Hays, Krista A. Ehinger, Aude Oliva,
and Antonio Torralba. Sun database: Large-scale scene
recognition from abbey to zoo. In CVPR, pages 3485–3492,
2010. 6

[38] Lewei Yao, Jianhua Han, Youpeng Wen, Xiaodan Liang, Dan
Xu, Wei Zhang, Zhenguo Li, Chunjing Xu, and Hang Xu.
Detclip: Dictionary-enriched visual-concept paralleled pre-
training for open-world detection. In Neurips, 2022. 2

[39] Qing Yu, Atsushi Hashimoto, and Yoshitaka Ushiku. Noisy
universal domain adaptation via divergence optimization for
visual recognition. 2023. 1

[40] Jingyi Zhang, Jiaxing Huang, Sheng Jin, and Shijian Lu.
Vision-language models for vision tasks: A survey. 2023.
2

[41] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Zi-
wei Liu. Learning to prompt for vision-language models.
In IJCV, page 2337 ‒ 2348. Springer Science and Business
Media LLC, 2022. 1, 2, 3, 6

[42] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Zi-
wei Liu. Conditional prompt learning for vision-language
models. In CVPR, 2022. 1, 2, 3, 5, 6

7770


	. Introduction
	. Related Works
	. Vision-and-Language Models for Vision Tasks
	. Prompt Learning

	. Proposed Method
	. Prompt Learning for CLIP
	. Feature Space Analysis
	. Image-Text Feature Alignment Branch

	. Experiments
	. Benchmark Setting
	. Main Results
	. Ablation Study
	. Model-Agnostic Study

	. Conclusion
	. Detailed Accuracies for Each Dataset on Base-to-New

