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Abstract

The potential for zero-shot generalization in vision-
language (V-L) models such as CLIP has spurred their
widespread adoption in addressing numerous downstream
tasks. Previous methods have employed test-time prompt
tuning to adapt the model to unseen domains, but they over-
looked the issue of imbalanced class distributions. In this
study, we explicitly address this problem by employing class-
aware prototype alignment weighted by mean class proba-
bilities obtained for the test sample and filtered augmented
views. Additionally, we ensure that the class probabilities
are as accurate as possible by performing prototype dis-
crimination using contrastive learning. The combination
of alignment and discriminative loss serves as a geomet-
ric regularizer, preventing the prompt representation from
collapsing onto a single class and effectively bridging the
distribution gap between the source and test domains. Our
method, named PromptSync, synchronizes the prompts for
each test sample on both the text and vision branches of
the V-L model. In empirical evaluations on the domain gen-
eralization benchmark, our method outperforms previous
best methods by 2.33% in overall performance, by 1% in
base-to-novel generalization, and by 2.84% in cross-dataset
transfer tasks.

1. Introduction

Training Vision-Language Models (VLMs) with large-scale
image-text pairs is known for imparting robust generaliza-
tion capabilities across diverse downstream tasks [1, 20, 31,
41, 42, 44]. However, training these models from scratch
for each downstream task is very time-consuming. More-
over, the essence of pre-training with a large-scale dataset is
lost when the pre-trained model is not generalizable across
downstream tasks. This is due to unexpected changes in
data distribution, and the sensitivity to these shifts leads to a
decline in performance [16, 30, 32]. To tackle this, there ex-
ist three most commonly used techniques: fine-tuning [28],

prompt tuning [47], adapter [13], and LoRA [19]. Among
these, prompt tuning is the simple, recent, and most widely
used technique for foundation models [21, 22, 43, 46, 47].
However, prompt learning/tuning approaches are used dur-
ing the training phase to learn representative prompts based
on the training data for the downstream task. This approach
does not specifically address the distribution shift present
in the dataset. Recent methods, TPT [35] and PromptAlign
[33], adjusts the learnable prompt tokens dynamically during
testing to enable test-time adaptation and align the context
of the test sample as per the seen distribution by the model.
Specifically, TPT [35] updates the learnable prompt tokens
(keeping the model parameters frozen) by minimizing the
entropy of top-Nk confidently predicted samples, acquired
through diverse augmented views of the incoming test sam-
ple. Additionally, PromptAlign [33] aligns token distribution
of the test sample in the visual branch with the pre-computed
statistics of the complete proxy source dataset irrespective of
the fact that one class distribution may have different mean
and variance than the other classes.

In this work, we demonstrate the multi-modal test-time
adaptation of prompts. In contrast to PromptAlign, which
aligns the distribution for the complete source dataset with
test sample, we propose class-aware prototype alignment to
address the distributional shift on a class-wise basis. For
instance, in an open world there are 360 different breeds
of dogs compared to only 71 for cats, leading to one class
having higher variance than the others. For each test sam-
ple, we obtain randomly augmented views (for both text
and image) that are fed to the model for prompt tuning on
both the textual and visual branches. We adapt the learnable
prompt tokens by aligning the prototype for test sample and
confident augmented views with the pre-computed class pro-
totypes (obtained from the proxy source dataset) weighted by
the mean probability of each class obtained from confident
augmented views. Before alignment, we update the prompt
tokens on both the text and visual branches using prototype
discrimination and then use updated prompts to align the test
sample and augmented views with class prototypes using
mean class probabilities. This is based on the idea that pro-
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totype vector can capture the complete information of mean
and variance for each class distribution and hence it miti-
gates the class collapse (during test time adaptation) due to
high variance of particular classes. Empirical evaluation of
our methods shows state-of-the-art Top-1 accuracy for three
tasks: domain generalization, base-to-novel generalization,
and cross-dataset transfer. This validates the effectiveness
of our method in enhancing zero-shot generalization. Our
contributions can be summarized as follows:
• We propose a class-aware prototype alignment technique

for individual test samples to align the context of each
test sample with the source distribution on a class-wise
basis, thereby mitigating the effects of distributional shift
between classes.

• We propose class-aware prototype discrimination to dis-
cover the class distribution for efficient alignment. Ad-
ditionally, we propose the offline computation of class
prototypes from a proxy source dataset for foundation V-L
models.

• We propose multi-modal test-time prompt tuning for both
text and visual branches. Empirical evaluation on base-
to-novel generalization, domain generalization, and cross-
dataset transfer shows the efficiency of our method over
existing methods.

2. Related Work
Vision-Language (V-L) foundation models like CLIP [31]
and ALIGN [20] have emerged as robust zero-shot gener-
alizable models. They integrate image and text modalities
through pre-training on extensive image-text pairs. How-
ever, adapting these models to specific downstream tasks
with limited data remains challenging. Recent methods ex-
plore prompt tuning in CLIP-like models, treating prompts
as continuous learnable vectors and fine-tuning them while
keeping the model parameters frozen. CoOp [47] proposed
fine-tuning CLIP by learning a set of prompts in the text
encoder. CoCoOp [46], an improvement over CoOp, dynam-
ically conditions the text prompts by the image embeddings.
MaPLe [21] is a deep prompting baseline that tunes prompts
on both text and image branches, further conditioning im-
age prompts on text prompts using a V-L coupling func-
tion. However, these approaches necessitate training data for
prompt learning, limiting adaptation to novel datasets during
test time. Recent approaches like TPT [35] aim to learn
prompts exclusively at test time but encounter challenges
in handling distribution misalignment between CLIP’s pre-
training data and downstream test data. PromptAlign [33]
addresses this by introducing token distribution alignment
in the image branch. However, it does not account for the
potential variance in class distributions. In contrast, our
method, inspired by a multi-modal prompting variant [21],
actively aligns class prototypes by leveraging a proxy dataset
as a substitute for unavailable CLIP pre-training data. To

our knowledge, our approach is the first to explicitly address
class-aware distribution misalignment in V-L foundational
models during test time.

3. Methodology

Revisiting CLIP: Our approach is based on the pre-trained
V-L model: Contrastive Language-Image Pre-Training
(CLIP). It consists of a text and visual encoder (denoted
by Ft and Fv, respectively, and their pre-trained param-
eters are represented by θCLIP = {θt, θv}, respectively),
used for mapping the text and image to the vector repre-
sentation, respectively. The input image is X, which is
divided into M patches, and the [CLS] token is prepended
to these M patch tokens that are projected to produce X̃v =
{e[CLS], e1, e2, ......eM}, where ei is the embedding for the
corresponding patch token in X. The image encoder pro-
duces latent visual feature representation f̃v = Fv(X̃v, θv)
with transformer blocks from X̃v. The class label y is em-
bedded within a text template, such as “a photo of a <CLS>”
resulting in X̃t = {SOS, t1, t2, ..., tL, ck, EOS}, where
SOS and EOS are the start and end token embeddings and
tl|Ll=1 and ck are the token embeddings corresponding to
the text template and the class label, respectively. Similarly,
the text encoder Ft encodes X̃t with transformer blocks to
produce latent text feature representation f̃ t = Ft(X̃t, θt).
For zero-shot inference, each text feature for class labels
y = {1, 2, .....C} is paired with an image feature to compute
the similarity score si = sim(f̃ ti · f̃v) where sim(·) denotes
cosine similarity. The predicted probability on X for each

yi is given as p(yi|X) = e
sim(f̃ti

·f̃v)/τ∑C
j=1 e

sim(f̃tj
·f̃v)/τ

, where τ is the

temperature of softmax.
Prompt Tuning: CLIP integrates a considerable pool of
knowledge derived from its training on millions of image-
text pairs characterized by varying degrees of noise. Prompt
tuning methods aim to extract the rich features learned by the
CLIP model. Recent approaches [3, 21, 43, 46, 47] append
extra learnable prompts to the input of image and text en-
coders while keeping them frozen. Modified input prompts
with frozen encoders generate undistorted and rich CLIP
features, where prompt tuning tries to map the context to the
source distribution, i.e., the CLIP pre-training dataset. In
our work, we use a recent multi-modal prompting baseline
[21] where prompt tuning is performed on both the text and
image encoders. Specifically, the image and text encoders
process the input X̃v = {e[CLS],pv, e1, e2, ......eM} and
X̃t = {SOS,pt, t1, t2, ..., tL, ck, EOS} respectively. The
learnable prompts pv and pt represent the V visual and T
textual tokens, respectively. We will call prompts pt and
pv as p only. Our approach is based on deep prompting,
as in[21], along with text and image prompts at subsequent
transformer blocks. We suggest referring to [21] for more
details on baseline architecture.
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Test Time Adaptation: Test-time adaptation aims to boost
generalisation in a zero-shot manner. Existing methods,
Test time prompt tuning (TPT)[35] and PromptAlign[33],
both are introduced to provide the model context that is cus-
tomized for each individual test sample in order to extract
rich knowledge from CLIP. For both methods, several aug-
mented views H(Xtest) are generated from the given test
sample Xtest. The average entropy for the filtered views (se-
lected using a confidence threshold) is then used to update
the prompts p using the following unsupervised objective:

Lent = argmin
p

−
C∑
i=1

p̃p(yi|Xtest) log p̃p(yi|Xtest) (1)

where p̃p(yi|Xtest) is the average of vector class probabil-
ities (over the filtered augmented views) produced by the
model. Additionally, PromptAlign uses distribution align-
ment loss, which aligns the mean and variance of filtered
augmented views of the test sample with source statistics
across layers of the model.

3.1. Proposed Method: PromptSync

The multi-modal test-time prompt tuning method, PromptAl-
ign [33], updates text and visual prompts using entropy loss
and distribution alignment loss with highly confident aug-
mented views (obtained from a test sample Xtest). PromptAl-
ign, despite considering the distribution, does not take into
account the fact that the distribution of each class/domain
can be entirely different from other classes/domains, and
hence using the source statistics of mean and variance for
distribution alignment can still be suboptimal. Inspired by
prototype learning [38] and Extreme-Multi-PatchSSL (EMP-
SSL) [39], which establish a prototype/benchmark for each
class/sample, we propose class-wise prototype alignment
between original and augmented views for both source and
test samples. The architecture of PromptSync is shown in
Figure 1. We use the parameter update from prototype dis-
crimination to generate the class probabilities for the test
sample and its augmented views. We accumulate the av-
erage of gradients from prototype alignment loss weighted
by class probabilities for confident augmented views. The
accumulated gradient over multiple iterations is then applied
for prompt tuning during test-time adaptation.

3.2. Class-aware Prototype Generation

We generated prototypes for each class for both text and
visual branches. The prototype for each class is computed
using proxy source dataset. For a test sample, Xtest and its
Nk random views (generated using a set of augmentations H
on Xtest) the prototype vector is generated. Let’s denote the
token ei features of a sample x ∈ {Xtest+H(Xtest)}, at the
output of the text encoder and visual encoder as ET (x, ei)
and EV (x, ei), respectively. The prototype for a sample

from text and visual branches is given as:

h{t,v}
x =

1

|P |

|P |∑
i=1

E{T,V }(x, ei)

hv
CLS,x = EV (x, eCLS)

(2)

where |P | represents the total number of tokens (learnable
and non-learnable for both text and visual), excluding EOS,
SOS, and CLS. t, v represents textual branch and visual
branch respectively. For the proxy source dataset, the class-
aware prototype is obtained as:

ht
ck

=
1

|D(ck)|
∑

x∈D(ck)

ht
x, (3)

hv
ck

=
1

|D(ck)|
∑

x∈D(ck)

hv
x, (4)

hv
CLS,ck

=
1

|D(ck)|
∑

x∈D(ck)

hv
CLS,x (5)

where D(ck) contains all samples for class ck. The pro-
totypes for augmented views are calculated using the aug-
mented samples for each class ck denoted as Daug(ck) and
the corresponding prototypes are denoted as haug,t

ck
, haug,v

ck
and haug,v

CLS,ck respectively.

3.3. Prototype Discriminating Loss

The discriminating loss is responsible for training learnable
prompts to distinguish the context of samples from one class
compared to other classes. This goal is achieved by pushing
the class prototype hm

ck
, m ∈ {t, v} for both text and visual

branches away from the prototype of class hm
cj , m ∈ {t, v}

where ck ̸= cj . Likewise, we pull prototypes hm
ck

and haug,m
ck

for same class and push away augmented ones for cj ̸= ck.
In this regard, contrastive learning [7, 8, 14, 23] offers a
solution to pull prototypes of positive pairs and push away
negative pairs. We refer to [34] to propose our discriminating
loss LD, formally expressed as:

Lpos(ck) =
1

|H|
∑

aug∈H
esim(hm

ck
,haug,m

ck
)/τ (6)

Lneg(ck) =
1

|H|
∑

aug∈H

C∑
c=1,c̸=ck

esim(hm
ck

,hm
c )/τ

+ esim(haug,m
ck

,hm
c )/τ + esim(hm

ck
,haug,m

c )/τ (7)

LD = − 1

|m| ∗ C
∑
∀m

C∑
c=1

log
Lpos

Lneg
(8)

where ck ∈ [1, C] and m ∈ {t, v}, i.e.|m| = 2. The proto-
types hm

ck
and haug,m

ck
additionally contains hv

CLS,ck
, haug,v

CLS,ck
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Figure 1. Architecture of proposed PromptSync method for zero-shot generalization in CLIP. During test time, we updates the learnable
prompts using discriminative and alignment of class prototypes. For a single test example, we obtain multiple augmented views and obtain
the mean class probabilities after parameter updates with discriminating loss. Mean class probabilities act as weights in the class-prototype
alignment with filtered augmented views. Gradient are accumulated over multiple iterations before final update to the learnable prompts.

when m = v. Resulting prompt update p → p̂ (learnable
prompt tokens) is obtained after applying gradients for the
discriminating loss. Since the proxy dataset will remain
same for all the test instances, the updated prompt can be
saved and restored each time for an incoming test sample.
We presented the study on performance and latency with
and without saving these updated prompts in Appendix 10.
For the rest of the paper we generalize our method without
requiring to save these updated prompts.

3.4. Prototype Alignment Loss
Loss LD can effectively separate different classes, it is not
able to tune the prompt for the test sample, which comes
from a different distribution than the source distribution.
Hence, we propose the prototype alignment of the test sam-
ple (and its augmented views) with the class prototype ob-
tained from the source distribution. We propose to weigh
the prototype alignment by the probability of the test sam-
ple lying in the particular class. Lets denote the probability
p̃p̂[c] (as mentioned in Eq.1) as the mean of probabilities (for
class c) produced with the updated prompt p̂ across filtered
augmented views (preserved after the confidence selection
filter) including test sample (F ). The amplitude and angle
alignment of sample xi with the class prototypes for both
text and visual branches is calculated as follows:

L
′

amp(xi) =

C∑
c=1

p̃p̂[c]||pmxi
− pmc ||2 (9)

L
′

ang(xi) =

C∑
c=1

p̃p̂[c]sim(pmxi
, pmc ) (10)

where m ∈ {t, v}. However, there is an issue with MSE
loss since it gives an equal penalty (e.g. L′

amp = 0.1) for an
increase from 1.2 to 1.3 and 1.7 to 1.8. But we wanted to
penalise more for 1.2 to 1.3 since increase in MSE in the
smaller range should be penalised more to preserve the base
class performance. Hence we penalise with logarithm i.e.
we use Lamp = logL′

amp. Similarly, the penalty should be
applied to 1/L′

ang for angle alignment. The updated ampli-
tude and angle alignment loss is Lamp(xi) = logL′

amp and
Lang(xi) = log(1/L′

ang) = − logL′

ang respectively. We
combined the amplitude and angle loss with equal impor-
tance and hence the prototype alignment loss LA is given as:

LA =
1

|F |
∑
xi∈F

(Lamp(xi) + Lang(xi))

= − 1

|F |
∑
xi∈F

log
L′
ang(xi)

L′
amp(xi)

(11)

3.5. Algorithm Details

In order to compute the prototype discriminating loss on
the source dataset, we require the pre-training dataset of the
CLIP model. However, it was trained on over 400 million
image-text pairs, which are not publicly available. Neverthe-
less, in previous works[2, 33], CLIP has been heavily tuned
on the ImageNet[11] dataset to achieve excellent zero-shot
performance. Hence, we use ImageNet as the proxy for the
source dataset to compute prototypes for each class. These
prototypes are computed offline for both the sample and its
augmented views, and they are used directly during test-time
adaptation. During each iteration of test-time adaptation, the
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meta-train stage is entered first. The model starts training
using the prototype discriminating objective argmin

p
LD,

and gradients are calculated, resulting in the prompt update
p → p̂ (ith iteration). Subsequently, the meta-test stage is
executed. Here, the augmented views are first filtered using
a confidence threshold over predicted probabilities using the
updated prompts p̂. The mean probabilities p̃p̂ are computed
over F and used as weights in LA. The model is trained on
F , and the gradient of prototype alignment loss ∇pLA is
calculated. We average out the gradients over all samples
in F . Finally, the prompts p is updated using combined
objective: Lent + argmin

p
LA. For n > 1 we accumulate

the averaged gradients before final prompt update.

4. Experiments
We have evaluated PromptSync on different benchmark set-
tings (Appendix 9) with different datasets described below:
Datasets: For domain generalisation setting, we follow
PromptAlign [33] and evaluated our method on four out-
of-distribution (OOD) variants of ImageNet [11]: Ima-
geNetV2 [32], ImageNet-Sketch [40], ImageNet-A [18] and
ImageNet-R [17]. We also consider the evaluation on a re-
cent and challenging benchmark, namely, Photorealistic Un-
real Graphics (PUG) dataset [4], comprised of different tex-
tures, sizes, orientations, and backgrounds. For cross-dataset
transfer setting, we follow TPT [35] and evaluate the perfor-
mance on 10 diverse image classification datasets with vary-
ing complexities for visual recognition tasks. This includes
Caltech 101 [12] for generic objects. Five fine-grained
datasets (spanning images of animals, flowers and trans-
portation) are StanfordCars [24], Food101 [5], Flowers102
[27], FGVC-Aircraft [25], OxfordPets [29]. Moreover, four
datasets, namely, SUN397 [37], DTD [10], UCF101 [36],
and EUROSAT [15], comprise scenes, textures, human ac-
tions, and satellite imagery, respectively. For base-to-novel
generalisation, we follow [21] and evaluate our method on
ImageNet and the 10 image classification datasets.
Baselines: We compared PromptSync with existing few-
shot prompt learning methods for CLIP adaptation; these
are CoOp [47], CoCoOp [46], TPT [35], and PromptAlign
[33]. MaPLe [21] is a multi-modal prompt learning baseline
that adapts CLIP by learning prompts on both text and visual
branches. TPT [35] and PromptAlign [33] are the test-time
prompt tuning methods that tune the prompt for each incom-
ing test sample, achieving state-of-the-art performance in
prompt learning.
Implementation Details: We ran all experiments on a single
NVIDIA A100 40GB GPU. Following [21], we trained on
ImageNet with 16-shot training data selected at random for
each class using 2 prompt tokens for a depth of 3 layers (on
CLIP ViT-B/16 backbone architecture). We optimized the
prompts on both the text and visual branches using a single

test image. We augmented each test image with 127 differ-
ent views using random resized crops, background substi-
tution, horizontal flip augmentations, and visual corruption.
For text augmentation, we used hyponyms, synonyms, and
meronyms from WordNet[26]. Moreover, we generated vari-
ous text prompts from pre-trained LLMs [6]. Additionally,
we randomly masked one of the learnable tokens for 15% of
augmented views. We computed the gradients of alignment
loss for a batch size of 128 images, including the original
image. During the meta-train stage, we updated the original
parameters (using a single iteration) and then optimized the
prompts in the meta-test stage by calculating the gradients
of alignment loss w.r.t. the updated parameters accumulated
for a single (n = 1) iteration to facilitate the one-to-one
comparison with baselines. We obtained the top 10% con-
fident predictions of augmented views based on the lowest
entropy. We used the AdamW optimizer and a learning rate
β of 5e−4 for the fine-grained datasets and 0.04 for the rest
of the datasets.

4.1. Domain Generalization

We demonstrate that all test-time adaptation methods exhibit
better performance (Table 1) compared to the pre-trained
CLIP model, highlighting the advantage of tuning V-L mod-
els at test time. PromptSync achieves the highest Top-1
accuracy averaged across all the domains of ImageNet vari-
ants. Furthermore, we evaluated the ImageNet-trained model
on various out-of-distribution (OOD) datasets and observed
consistent improvement in performance compared to exist-
ing state-of-the-art (SOTA) approaches. The detailed results
for each domain dataset are presented in Tables 1 and 2. This
confirms that alignment and discriminative training with aug-
mented views on both the text and visual branches enhance
the generalization performance of V-L models like CLIP.

4.2. Base to Novel Generalization

Table 3 presents the detailed performance report of Prompt-
Sync on base and novel classes across 11 recognition
datasets. On average, our strategy outperforms the model
performance by 1.29% on base classes and nearly 1% on
novel classes. We observe that PromptAlign, based on a dis-
tribution alignment strategy, outperforms for novel classes
in most cases, with an average improvement of 0.79% com-
pared to the best-performing model. However, the margin
of improvement is very low. In contrast, with TPT, the per-
formance drops in some instances, such as for OxfordPets,
Eurosat, and UCF101. This demonstrates that: 1) test-source
alignment is crucial for prompt tuning. 2) Prompt tuning
alone in the text branch is not sufficient for zero-shot gener-
alization. Since distribution alignment does not promote dis-
criminative learning and the entropy loss on the test dataset is
noisy, PromptSync outperforms with class-aware prototype
discrimination and alignment across different augmented
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Imagenet V2 Imagenet Sketch Imagenet A Imagenet R OOD Avg

CLIP 60.86 46.09 47.87 73.98 57.20
CLIP+TPT 64.35 47.94 54.77 77.06 60.81
CoOp 64.20 47.99 49.71 75.21 59.28
CoOp+TPT 66.83 49.29 57.95 77.27 62.84
Co-CoOp 64.07 48.75 50.63 76.18 59.91
Co-CoOp+TPT 64.85 48.27 58.47 78.65 62.61
MaPLe 64.07 49.15 50.90 76.98 60.28
MaPLe+TPT 64.87 48.16 58.08 78.12 62.31
PromptAlign 65.29 50.23 59.37 79.33 63.55

PromptSync 67.54 53.42 61.92 80.64 65.88

Table 1. Comparison on the domain generalization setting. Prompt tuning methods are trained on ImageNet and evaluated on datasets
with domain shifts

Camera
(Yaw/ Pitch/ Roll)

Pose
(Yaw/ Pitch/ Roll)

Scale Texture Lighting Worlds

MaPLe 48.73/ 39.93/ 32.13 48.10/ 28.40/ 27.80 46.90 37.90 15.50 32.13
MaPLe+TPT 57.04/ 45.99/ 39.23 56.26/ 35.64/ 33.26 54.87 43.73 22.52 42.00
PromptAlign 58.14/ 46.93/ 40.45 57.43/ 36.31/ 34.32 56.18 44.97 23.06 43.24

PromptSync 59.84/ 48.54/ 41.92 59.72/ 38.84/ 36.64 58.12 45.98 25.02 44.84

Table 2. Comparison on the domain generalization setting for distribution alignment. MaPLe is trained on ImageNet and evaluated on
OOD dataset i.e., PUG

views. Averaging the gradients further motivates domain-
agnostic prompt tuning on both the text and visual branches.
This enhances the zero-shot generalization of the V-L model
compared to other state-of-the-art approaches. Moreover,
our strategy for prompt tuning does not lose information for
base classes.

4.3. Cross-Dataset Transfer

In Table 4, we compared the transfer performance of Prompt-
Sync with existing state-of-the-art methods using prompt
learning. We evaluated methods for transfer performance
across diverse cross-datasets. PromptSync consistently out-
performs the previous best method, i.e., PromptAlign [33],
across all cross-datasets, providing an average improvement
of 2.84%. Compared to PromptAlign, which outperforms
the previous method MaPLe + TPT by a very small mar-
gin, i.e., 0.42%, our method shows a significant average
improvement of 3.26% over MaPLe + TPT. Other meth-
ods, CoOp and CoCoOp, on average, perform worse than
zero-shot CLIP + TPT (except ProDA [45]). This affirms
that both text-visual alignment and domain-agnostic param-
eter updates result in better transfer generalization across
cross-datasets in V-L models. As opposed to our method,
the previous approaches were not consistent in performance
across all datasets, which further affirms the advantage of a
domain-agnostic training strategy.

5. Ablation

Class-Aware Prototype Alignment: Table 5 summarizes
the comparison between two alignment strategies: distribu-
tion alignment of the test sample with the class-agnostic
source distribution. All results are on the ImageNet-A
dataset. PromptAlign adopted distribution alignment along
with averaged cross-entropy for prompt tuning. However,
we perform domain-agnostic parameter updates with class-
aware prototype alignment for the test sample. As shown
in Table 5, PromptAlign† without entropy loss is as good
as vanilla MaPLe. This is due to the fact that distributional
alignment does not promote any discriminative learning in
the absence of entropy loss. However, because entropy loss
is noisy due to the poor performance of the vanilla zero-shot
V-L model, we propose the stronger discriminative loss of
class prototype alignment for prompt tuning with source
and test samples with augmented views. PromptSync† with-
out entropy loss outperforms the corresponding counterpart
PromptAlign†. This is because the class-aware prototype
alignment has both alignment and discriminative properties,
thus improving test-time adaptation on its own. With addi-
tional signals from predicted probabilities for each class, the
class-aware prototype alignment acts as a geometric regular-
izer, mitigating class collapse in prompt representation.
Loss variants: We conducted an ablation study on ampli-
tude and angle loss for the class-aware prototype alignment
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Datasets Sets
CoOp

(IJCV22)
CoCoOp

(CVPR22)
ProDA

(CVPR22)
MaPLe

(CVPR23)
MaPLe + TPT

(CVPR23)
PromptAlign

(NIPS23)
PromptSync

Average
Base
Novel

82.38
67.96

80.47
71.69

81.56
72.30

82.24
75.09

82.16
74.95

83.19
75.88

84.17
77.17

ImageNet
Base
Novel

76.46
66.31

75.98
70.43

75.40
70.23

76.67
70.54

77.73
72.24

78.26
72.59

79.23
73.84

Caltech101
Base
Novel

97.80
93.27

97.96
93.81

98.27
93.23

98.00
94.27

98.54
94.29

98.60
94.50

98.62
94.67

OxfordPets
Base
Novel

94.47
96.00

95.20
97.69

95.43
97.83

95.43
97.80

95.23
97.37

95.38
97.56

95.44
97.83

Stanford Cars
Base
Novel

75.67
67.53

70.49
73.59

74.70
71.20

72.90
73.97

74.00
75.20

75.02
75.71

76.42
77.21

Flowers102
Base
Novel

97.27
67.13

94.87
71.75

97.70
68.68

95.93
72.40

96.24
72.10

96.61
72.34

97.73
73.78

Food101
Base
Novel

89.37
88.77

90.70
91.29

90.30
88.57

90.70
92.07

91.13
92.03

91.63
92.68

92.39
92.95

FGVC Aircraft
Base
Novel

39.67
31.23

33.41
23.71

36.90
34.13

37.27
35.53

34.31
35.81

37.21
37.27

40.91
39.31

SUN397
Base
Novel

80.85
68.34

79.74
76.86

78.67
76.93

80.80
78.70

81.15
79.18

81.57
79.48

84.28
83.01

DTD
Base
Novel

79.97
48.60

77.01
56.00

80.67
56.48

80.30
59.23

82.20
59.91

82.60
60.55

83.49
62.03

Eurosat
Base
Novel

90.10
53.00

87.49
60.04

83.90
66.00

93.63
72.87

91.02
68.96

94.10
72.71

94.63
73.19

UCF101
Base
Novel

84.53
67.37

82.33
73.45

85.23
71.97

82.97
78.57

82.23
77.34

84.11
79.30

85.75
81.29

Table 3. Comparison on Base-to-novel generalization setting. PromptSync shows consistent improvement on both base and novel classes
over previous methods

Caltech Pets Cars Flowers Food101 Aircraft SUN397 DTD EuroSAT UCF101 Average

CLIP 93.35 88.25 65.48 67.44 83.65 23.67 62.59 44.27 42.01 65.13 63.58
CLIP+TPT 94.16 87.79 66.87 68.98 84.67 24.78 65.50 47.75 42.44 68.04 65.10
CoOp 93.70 89.14 64.51 68.71 85.30 18.47 64.15 41.92 46.39 66.55 63.88
CoOp + TPT 93.15 89.48 66.77 68.48 86.48 20.51 66.06 43.32 37.73 68.91 64.08
CoCoOp 93.79 90.46 64.90 70.85 83.97 22.29 66.89 45.45 39.23 68.44 64.63
CoCoOp + TPT 88.57 85.33 59.68 55.31 80.64 16.89 60.24 38.93 48.55 63.35 59.75
ProDA 86.70 88.20 60.10 77.50 80.80 22.20 - 50.90 58.50 - 65.62
MaPLe 93.53 90.49 65.57 72.23 86.20 24.74 67.01 46.49 48.06 68.69 66.30
MaPLe+TPT 93.59 90.72 66.50 72.37 86.64 24.70 67.54 45.87 47.80 69.19 66.50
PromptAlign 94.01 90.76 68.50 72.39 86.65 24.80 67.54 47.24 47.86 69.47 66.92

PromptSync 95.78 91.89 69.24 77.68 87.72 25.91 67.98 50.99 59.36 71.04 69.76

Table 4. Comparison on cross-dataset transfer setting. Prompt tuning methods are trained on ImageNet and evaluated on cross-datasets

objective. Table 6 compares three loss choices: 1) amplitude
loss, 2) angle loss, and 3) amplitude + angle loss. Clearly,
the combination of amplitude and angle performs better than

other choices. The formulation for the combination of ampli-
tude and angle loss is the same as in equation 11. We further
investigated other variants, i.e., combining two of them with-
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Method
Entropy

Loss
Alignment

Loss
Discriminative

Loss
Top-1
Acc.

MaPLe ✗ ✗ ✗ 50.90
MaPLe+TPT ✓ ✗ ✗ 58.08
PromptAlign† ✗ ✓ ✗ 50.85
PromptAlign ✓ ✓ ✗ 59.37
PromptSync† ✗ ✗ ✓ 56.67

PromptSync ✓ ✓ ✓ 61.92

Table 5. Ablation Study. Analysis of Alignment, Discriminative
and Entropy minimization loss. The average of Top-1 accuracy(%)
across three seeds is reported

Lamp Lang sub sum_exp LA

PromptSync 59.84 58.81 57.86 59.83 61.92

Table 6. Ablation analysis to alignment loss variants. All results
are on ImageNet-A dataset

out taking the log: 1) subtraction between amplitude and
angle L′

amp−L′

ang(sub) 2) the summation of exponential of
both losses exp(L′

amp) + exp(1/L′

ang)(sum_exp). Clearly,
the formulation in equation 11 (LA) performs best among
other variants. Ablation on the proxy dataset is given in
Appendix 12, and ablation on performance and latency with
and without saving updated prompts is provided in Appendix
10. We also compared the number of augmented views and
prompt updates in Appendix 11.

6. Performance and Latency

The experiments presented in the Table 7 (Appendix) in-
volve a comparison of different methods, namely MaPLe +
TPT, PromptAlign, PromptSync*, and PromptSync. In these
experiments, we evaluated the top-1 average accuracy (%)
and latency (in hours for a single prompt update) of each
method. Specifically, we investigated PromptSync with and
without saving the updated prompt obtained after prototype
discrimination, with the variant denoted as PromptSync*
indicating the adaptation of prompt tokens for test samples
after restoring saved prompt tokens.

The results, as shown in Table 7, include latency mea-
surements represented in hours for a single prompt update,
and all evaluations are conducted on the ImageNet-A dataset.
Notably, the PromptSync* variant demonstrates a faster pro-
cessing time compared to the full PromptSync method, with
only a marginal drop in performance. This outcome under-
scores the achieved generalization through prototype align-
ment. Furthermore, in comparison to previous methods such
as MaPLe + TPT and PromptAlign, the PromptSync* variant
exhibits only a slight increase in latency (0.03 hours) while
still improving overall performance.

7. Sensitivity Comparison

We further performed the sensitivity comparison of our
method as compared to other state-of-the-art baselines. In
Appendix, Figure 2(a) shows the comparison of performance
during test time adaptation as the number of views increases.
All the results are on ImageNet-A dataset. In comparison to
PromptAlign and MaPLe + TPT, their performance almost
plateaus around 64 views with insignificant improvement
further, while PromptSync shows a consistent improvement
with the increase in views and insignificant improvement
beyond 128. This proves the generalizability achieved by our
method since it optimises base CLIP over a larger number
of possible shifts in the dataset, resulting in better perfor-
mance. Figure 2(b) shows the performance comparison as
the number of prompt update steps increases. All the meth-
ods increase their performance with an increase in the num-
ber of steps; however, our method shows better adaptation
to the test sample with more steps in comparison to Promp-
tAlign and MaPLe + TPT. For apples-to-apples comparison
we perform a single-step update (128 views) following TPT
[35].

8. LAION400M Proxy Dataset Analysis

Given CLIP’s impressive zero-shot performance on Ima-
geNet, we opted for ImageNet as a viable proxy source
dataset, aligning with prior research [33]. We worked with a
subset of LAION400M, comprising 2.5 million images (2
times the size of ImageNet). Furthermore, we carried out an
ablation study on the alignment strategy using LAION400M
as the source dataset, a dataset known to mirror CLIP’s train-
ing dataset [9]. The results for this ablation study is shown
in Table 8 (Appendix). Notably, the performance impact re-
mains consistent when utilizing this subset of LAION400M
alongside ImageNet. Source class prototypes are computed
on the proxy source data to derive the distribution for align-
ment during test time. As this proxy dataset aligns with the
model’s training set, this offline computation remains un-
changed despite environmental shifts and only necessitates
computation once.

Conclusion

In summary, PromptSync significantly improves zero-
shot generalization in vision-language models. Our
approach, addressing class dominance and variance,
outperforms existing methods by 2.33% overall, with
a 1% boost in base-to-novel generalization and 2.84%
in cross-dataset transfer on a domain generalization
benchmark. This underscores PromptSync’s effectiveness
in enhancing the robustness of vision-language models.
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