
A Method of Moments Embedding Constraint and its Application to
Semi-Supervised Learning

Michael Majurski
Information Technology Lab, NIST

University of Maryland, Baltimore County
michael.majurski@nist.gov

Sumeet Menon
University of Maryland, Baltimore County

sumeet1@umbc.edu

Parniyan Farvardin
University of Miami
pxf291@miami.edu

David Chapman
University of Miami

dchapman@cs.miami.edu

Abstract

Discriminative deep learning models with a lin-
ear+softmax final layer have a problem: the latent space
only predicts the conditional probabilities p(Y |X) but not
the full joint distribution p(Y,X), which necessitates a gen-
erative approach. The conditional probability cannot de-
tect outliers, causing outlier sensitivity in softmax networks.
This exacerbates model over-confidence impacting many
problems, such as hallucinations, confounding biases, and
dependence on large datasets. To address this we intro-
duce a novel embedding constraint based on the Method of
Moments (MoM). We investigate the use of polynomial mo-
ments ranging from 1st through 4th order hyper-covariance
matrices. Furthermore, we use this embedding constraint to
train an Axis-Aligned Gaussian Mixture Model (AAGMM)
final layer, which learns not only the conditional, but also
the joint distribution of the latent space. We apply this
method to the domain of semi-supervised image classifi-
cation by extending FlexMatch with our technique. We
find our MoM constraint with the AAGMM layer is able to
match the reported FlexMatch accuracy, while also mod-
eling the joint distribution, thereby reducing outlier sen-
sitivity. We also present a preliminary outlier detection
strategy based on Mahalanobis distance and discuss fu-
ture improvements to this strategy. Code is available at:
https://github.com/mmajurski/ssl-gmm

1. Introduction

The majority of deep classifiers rely on a softmax final
activation layer which predicts the conditional probability
p(Y |X). When that layer receives input X , the model pre-
dicts a soft pseudo-distribution of labels Y which argmax

Figure 1. Schematic of the outlier problem, and how genera-
tive modeling of the joint probability can improve the situation.
Prediction with (a) fully-supervised softmax, (b) semi-supervised
KMeans, and (c) semi-supervised AAGMM.

can convert into a hard label. If X is distant from the de-
cision boundary, then by definition, softmax assigns a pre-
diction Y with high confidence. This works well for inlier
samples, well represented by the training distribution. How-
ever, when presented with an outlier X , it is likely X will
not be near the decision boundary (Figure 1, top). There-
fore, softmax perceptrons, by definition, over-confidently
hallucinate when given unexpected inputs [41]. Most deep
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Figure 2. t-SNE[36] plot of the latent embedding space for various final layers with different MoM embedding constraints. AAGMM results
include the explicitly modeled cluster centered marked with ”X”s. Depending on the run, AAGMM cluster centers can be degenerate (a),
non-degenerate but still mis-aligned with the clusters (b), acceptably aligned (c), or well aligned with the underlying clusters (d).

classifiers use softmax without a safety net and as such over-
confidently predict Y . Ideally, when input X is distant from
the decision boundary and training exemplars, the model
should not be confident about the output class label Y .

Replacing softmax with a generative method that models
the joint probability p(Y,X) can improve the capability of
deep classifiers. Models using a final layer capable of learn-
ing the joint probability p(Y,X) can infer the conditional
p(Y |X). More importantly, such a layer can also infer the
prior probability p(X). Thus, if X is an unexpected in-
put, then such a layer can flag the input as a low-probability
sample (equivalently a high-probability outlier), rather than
simply confidently predicting a label.

Prior work has explored generative modeling for image
classification [16, 18, 23]. How to best train and utilize gen-
erative modeling within a deep learning context remains an
open question. The naive approach of minimizing cross en-
tropy between Y and Ŷ will not work. Figure 2 (a & b)
shows t-SNE plots of the model latent embedding space for
94% accurate semi-supervised CIFAR-10 [19] image classi-
fication models, demonstrating why the naive approach will
not work as intended. However, the explicitly modeled clus-
ter centers (shown as X’s) do not align with the underlying
data. While that model has acceptable predictive perfor-
mance, it does not accurately learn and represent the under-
lying training data. To construct a robust model, one cannot
simply fit a decision boundary. The model needs to learn the
full joint distribution of the latent space. Figure 2 (c & d)
demonstrates that with our proposed AAGMM final layer
with either 2nd or 4th order MoM embedding constraints,
the exact same model can achieve comparable (if not bet-
ter) accuracy, but with the added benefit of modeling the
underlying data clusters in the latent space.

We apply this work to the domain of Semi-Supervised
Learning (SSL), because over-confident label predictions
can cause confounding issues with pseudo-labeling meth-
ods [1]. SSL leverages an abundance of unlabeled data to

improve deep learning based model performance under lim-
ited training data regimes [14, 24, 51]. Contrastive learn-
ing methods leverage the intuition that similar instances
should be close in the representation space, while different
instances are farther apart [21, 43]. Consistency regulariza-
tion borrows the intuition that modified views of the same
instance should have similar representations and predictions
[15, 20, 34, 47]. This work contributes:

1. A novel Method of Moments (MoM) based embedding
constraint that enables the model to not only learn the
decision boundary but also the latent joint distribution.
Moreover, this constraint ensures that each latent cluster
exhibits a well-behaved Gaussian shape.

2. A replacement of the final linear+softmax activation
layer of the neural network with either an axis-aligned
differentiable Gaussian Mixture Model (AAGMM) or an
equal variance version named KMeans trained via back
propagation, both of which have explicit modeling of
class cluster centroids.

3. A preliminary outlier removal strategy based on Maha-
lanobis distance that is compatible with AAGMM and
MoM techniques.

We apply this methodology to the task of semi-
supervised image-classification using CIFAR-10 [19] and
STL-10 [10] with 40 training labels. Only 40 labels were
used to provide a sufficiently difficult SSL problem, as
SOTA results with higher numbers of labeled samples are
approaching fully supervised performance [50]. The em-
bedding constraint penalties are applied to all unlabeled
data and not just the valid pseudo-labels. As such our
method fits the latent joint distribution across all of the un-
labeled data points, an improvement on baseline pseudo-
labeling methods (like FlexMatch [47]) which only fit the
conditional distribution to the high confidence pseudo-
labels while removing low confidence pseudo-labels.
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2. Related Work

SSL has shown great progress in learning high quality mod-
els, in some cases matching fully supervised performance
for a number of benchmarks [47]. The goal of SSL is to
produce a trained model of equivalent accuracy to fully su-
pervised training, with vastly reduced data annotation re-
quirements. Doing so relies on accurately characterizing
inlier vs outlier unlabeled samples.

2.1. Pseudo-Labeling

Self-training was among the initial approaches employed in
the context of SSL to annotate unlabeled images. This in-
volves the initial training of a classifier with a limited set of
labeled samples which incorporates pseudo-labels exceed-
ing a predefined threshold into the gradient descent process
[9, 25–27, 33, 44, 46]. A closely related method to self-
training is co-training, where a given dataset is represented
as two distinct feature sets [4]. These independent sam-
ple sets are subsequently trained separately using two dis-
tinct models, and the sample predictions surpassing prede-
termined thresholds are utilized in the final model training
process [4, 30]. A notable approach to pseudo-labeling is
the Mean Teacher algorithm [35], which leverages expo-
nential moving averages of model parameters to acquire a
notably more stable target prediction. This refinement sub-
stantially enhances the convergence of the algorithm.

Several papers have attempted to enhance the quality of
pseudo-labels to either improve the final model accuracy,
improve the rate of convergence, or avoid confirmation bias
[1]. Rizve et al. [32] explore how uncertainty aware pseudo-
label selection/filtering can be used to reduce the label
noise. Incorrect pseudo-labels can be viewed as a network
calibration issue [32] where better network logit calibration
might improve results [42]. Improvements to the pseudo-
labeling process have been demonstrated by imposing cur-
riculum [47] or by including a class-aware contrastive term
[43]. Leveraging the concept of explicit class cluster centers
for conditioning semantic similarity improves final model
accuracy [49]. Additionally, improvements have been found
in incorporating purely clustering based methods like DINO
[7] into semi-supervised methods [12].

2.2. Consistency Regularization

Consistency Regularization is a branch of techniques that
have been instrumental toward many of the state of the art
techniques in semi-supervied learning within the last sev-
eral years [2, 3, 15, 21, 34, 47, 49, 50]. The idea being
that augmentation does not typically change the meaning
of images. MixMatch is a semi-supervised pseudolabeling
that greatly popularized the use of consistency regulariza-
tion to ensure that augmentation does not affect the pre-
dicted label [2, 3]. FixMatch further extended this method

by introducing the notion of weak and strong augmentations
including the cutout operator to increase the robustness of
the regularization [34]. FlexMatch is a further improve-
ment that introduces a curriculum pseudo-labeling strategy
for flexible threshold values [47]. Co-Match made use of
a form of consistency regularization to ensure that strong
augmentations shared not only a similar pseudolabel, but
furthermore a similar embedding space. Moreover, a neigh-
borhood graph was constructed for embeddings and pseu-
dolabels and refined via co-learning [21]. Con-match intro-
duced a confidence metric based on the similarity of a bas-
ket of augmented embeddings [15]. SimMatch introduced
a graph-based label propagation algorithm through a low-
dimensional latent projection, and utilized multiple forms
of consistency regularization including both semantic-level
and instance-level consistency terms [49, 50].

2.3. Latent Embedding Constraints

A notable latent embedding constraint that is related, yet
substantially different from our approach is the Evidence
Lower Bound (ELBO) [16]. ELBO approximates a la-
tent sample with a variational distribution and constrains
the KL-divergence between the variational distribution and
a target shape which is typically a multivariate standard
normal distribution [16]. The main drawback of this ap-
proach is that the true KL-divergence is intractable to calcu-
late. As such, the posterior must take on a simplified form.
Most practical implementations use a diagonal posterior
which can only penalize simple differences in shape such as
mean and standard deviation. Arbitrarily complex posteri-
ors are nevertheless possible using the method of Normaliz-
ing flows [8, 17, 31], which provides an iterative framework
based on change of variables although this method is quite
involved. Our MoM constraint is relatively simple but can
also penalize complex differences in shape by constraining
2nd, 3rd, and 4th order hyper-covariance matrices, although
we do so by comparing the moments directly. This greatly
simplifies implementation as we do not need to explicitly
construct a posterior distribution.

Another notable embedding constraint is the Maximum
Mean Discrepancy (MMD), also known as the two-sample
test [13]. MMD was used in the Generative Moment Match-
ing Network [22] and has since been used extensively for
the problem of domain adaptation [37, 38], in order to con-
strain the latent projections of the source and target distri-
butions to follow the same distribution. MMD is a moment-
matching constraint based on the kernel trick and can there-
fore constrain any difference in shape between two sam-
ples including very high order moments. Due to the ker-
nel trick requiring proper inner products, MMD can only
be used to constrain one sample to another sample. It can-
not directly constrain sample statistics to population statis-
tics, although it is possible to approximate populations nu-

7811



merically via monte-carlo sampling [48]. Like MMD, our
method is based on MoM, but it does not involve the kernel
trick, and instead penalizes polynomial moments explicitly
thereby enabling the sample embedding to be constrained
to an exact target distribution.

3. Methodology

In this section, we explore our proposed replacement final
activation layers and our embedding space constraints. Our
methodology is based upon the published FlexMatch [47]
algorithm as implemented in the USB framework [39], with
identical hyper-parameters unless otherwise stated. We ex-
tend FlexMatch with a few minor training algorithm modi-
fications explored in Section 4.1. FlexMatch [47] is a sim-
ple, well performing SSL algorithm. As such, it serves as a
good comparison point for exploring the effect of our con-
tributions.

Both the linear layer replacements and the embedding
constraints explored herein represent increasing levels of
prescription about how the final latent embedding space
should be arranged compared to a traditional linear layer.
The idea of leveraging clusters in embedding space is not
new [5, 6, 11], but we extend the core idea with a novel dif-
ferentiable model with learned cluster centroids and MoM
based constraints. The MoM constraints do not impose any
assumptions outside of applying L2 penalties as described
in Section 3.2.

3.1. Alternate Final Layers

As we discussed in the introduction traditional final acti-
vation layers such as linear+softmax are fully discrimina-
tive in that they directly estimate the conditional proba-
bility p(Y |X). These layers do not estimate p(X) or the
joint probabilities p(Y,X). To overcome this limitation, we
present two generative final activation layers: (a) the Axis
Aligned GMM (AAGMM) layer and (b) an equal variance
version of AAGMM that we henceforth call the KMeans ac-
tivation layer due to the similarity of the objective function
with a gradient based KMeans.

These activation layers are fully differentiable and inte-
grated into the neural network architecture as a module in
the same way as a traditional final linear layer. As such,
they do not require external training and do not use expec-
tation maximization. They are drop-in replacements for the
final linear layer.

Importantly, these activation layers exhibit both dis-
criminative and generative properties. The neural network
model F (X; θF ) transforms the data X into a latent space
Z = F (X; θF ), and the final activation layer estimates the
probability densities p(X), p(Y ;X) and p(Y |X) by fitting
a parametric model to the latent representation Z.

3.1.1 Axis Aligned Gaussian Mixture Model Layer

The AAGMM layer defines a set of K trainable clusters,
one cluster per label category. Each cluster k = 1 . . .K
has a cluster center µk and cluster covariance Σk. The prior
probability of any given sample Xi is defined by the mixture
of cluster probability densities over the D-dimensaional la-
tent representation Zi as follows,

p(Xi) =

K∑
k=1

N (Zi, µk,Σk)

where Zi = F (Xi, θF )

(1)

Where N (Zi, µk,Σk) represents the multivariate Gaus-
sian pdf with centroid µk and covariance Σk. AAGMM
is axis aligned because Σk is a diagonal matrix, as such
the axis-aligned multivariate normal pdf simplifies to the
marginal product of Gaussians along each of the D axes as
follows,

N (Xi, µk,Σk) =

D∏
d=1

1

σk,d

√
2π

exp
(Zi,d − µk,d

σk,d

)2
where σ2

k,d = Σk,d,d

(2)

As there is one cluster per label category, the joint prob-
ability for sample i with label assignment k, p(Yi,k, Xi) is
given by the normal pdf of the kth cluster,

p(Yi,k, Xi) = N (Zi, µk,Σk) (3)

By Bayesian identity, the conditional probability Ŷi,k =
p(Yi,k|Xi) can therefore be inferred from Eq. 1 and 3 as
follows,

Ŷi,k = p(Yi,k|Xi) =
p(Yi,k, Xi)

p(Xi)
(4)

The AAGMM layer is implemented as a normal PyTorch
[28] module. It has two parameters updated by backprop.
(1) the explicit cluster centers, a matrix K × D initialized
randomly, and (2) the diagonal elements of the D × D
matrix Σk are randomly initialized in the range [0.9, 1.1],
which contains the diagonal elements of the GMM Sigma
matrix for each cluster.

3.1.2 KMeans Layer

We also implement a KMeans final layer which is a more re-
strictive form of the AAGMM layer. The KMeans layer is
additionally constrained such that the Gaussian covariance
matrix Σk for each cluster center k is the [D ×D] identity
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matrix. This constraint yields spherical cluster centers; sim-
ilar to how the traditional KMeans algorithm also assumes
spherical clusters. See the published codebase for imple-
mentation details about the AAGMM and KMeans layers.

3.1.3 Relation between K-means, AAGMM and Soft-
max layers

Figure 3. Illustrated relationship between K-means and Softmax
Layers for 1D binary classification. If the joint distributions (blue
curve and red curve) follow equivariate normal probability densi-
ties, then the conditional distribution (black curve) is softmax.

The AAGMM, KMeans and Softmax layers are theoret-
ically related because Softmax is the conditional distribu-
tion p(Y |X) that arises when the joint distributions p(Y,X)
follow the equivariate normal distributions as modeled by
KMeans. Figure 3 shows a simple example of this relation-
ship in one dimension with two labels A (blue curve) and B
(red curve), with joint distributions as follows,

p(Y = A,X) =
1

2
N (X,µA, σ)

p(Y = B,C) =
1

2
N (C, µB , σ)

(5)

In this case the conditional distribution can be described
by sigmoid which is a special case of Softmax,

p(Y = A | X) = sigmoid(mX + b)

where

m =
µA − µB

σ2
and b =

µ2
A + µ2

B

2σ2

(6)

The AAGMM layer is a generalization of the KMeans
layer to allow different diagonal covariance matrices for
each cluster. This gives the AAGMM somewhat greater ex-
pressive power than Softmax and KMeans as it can model
the joint distribution of latent spaces with different cluster
sizes and non-spherical shapes.

3.2. Method of Moments Embedding Constraints

We introduce and evaluate a series of embedding constraints
based on the Method of Moments (MoM) [29]. For each
sample i and each cluster k, the joint p(Yi,k, Xi) is calcu-
lated as in Eq. 3 and then used to infer the prior p(Xi)
and the conditional p(Yi,k|Xi). As usual, the conditional

probability is trained using cross entropy loss. When em-
bedding constraints are omitted, it is possible for the model
to learn an accurate decision boundary for the conditional
probability without modeling the latent joint distribution.
MoM solves these problems and is an appropriate strategy
for semi-parametric models.

The MoM relies on the use of consistent estimators,
which asymptotically share sample and population statis-
tics. Assume that z is a finite sample of n elements drawn
from infinite population Z, then a series of P well-behaved
sample statistics gp should very closely approximate their
P population statistic as follows,

∀p = 1 . . . P
1

n

n∑
i=1

gp(zi) ≈ E(gp(Z)) (7)

We can therefore constrain the latent representation of
our model to approximate a multivariate standard normal
distribution.

The centralized moments are a classical choice for the
consistent estimator gp representing the terms of a power
series around the mean µ

gp(Z) = (Z − µ)p (8)

In the univariate standard normal case, the pth order cen-
tralized moment constraint is the following.

E [(Z − µ)p] =

{
0 if p is odd
σp(p− 1)!! if p is even

(9)

Where ’!!’ represents the double factorial operator. By
this formula, the univariate unit Gaussian has mean 0, stan-
dard deviation 1, skew 0, and kurtosis 3.

The multivariate standard normal distribution is the
marginal product of the univariate standard normal distri-
butions. As such, if we redefine Z, µ, and p to be all D
dimensional, then the centralized marginal product moment
can be defined as follows,

E [gp(Z − µ)] = E

[
D∏

d=1

(Zd − µd)
pd

]
(10)

Due to independence of the axes, this multivariate popu-
lation moment can be represented as a product of univariate
moments of the individual standard normal distributions as
follows,

E

[
D∏

d=1

(Zd − µd)
p
d

]
=

D∏
d=1

E [(Zd − µd)
pd ] (11)

The error (loss) term associated with the embedding con-
straint for any moment p is equal to the L2 distance between
the sample and population statistics as follows,
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εp =

(
1

n

n∑
i=1

gp(zi)− E(gp(Z))

)2

(12)

Some moments are more important than others, and must
be weighted more heavily. First order moments are simply
the sample mean, and should be given the greatest weight
as an embedding constraint. The second order moments
form a sample covariance matrix, which ideally should be
equal to the identity matrix, but the diagonal terms should
be given greater weight than the off-diagonal terms. This is
because, in a D×D covariance matrix, there are D(D−1)
off diagonal terms, but only D, diagonal terms. The pth

order sample moments form a p − 1 dimensional hyper-
covariance matrix, with terms residing on the intersection
of anywhere between 0 and p− 1 hyper-diagonals. To pre-
vent over-representation of off-diagonal terms and encour-
age representation of on-diagonal terms, the loss function
we use for any given moment term is inversely proportional
to the number of moment terms that share the same num-
ber of hyper-diagonals. This heuristic weighting scheme
ensures that the overall contribution of each moment order
is not overly influenced by the off-diagonal terms, and that
the error weighting is therefore diagonally dominant. This
weighting scheme supports using 0 to 4th order MoM con-
straints seamlessly and is not a hyper-parameter we expect
to require tuning.

3.3. Manhabalobis Outlier Removal

The AAGMM layer allows us to detect and remove outliers
based on Mahalanobis distance in the latent feature space.
By outlier, we are referring to the problem that the pseu-
dolabel learner (i.e. FlexMatch) is simply not yet ready
to learn a given unlabeled sample, because the model has
only attempted to learn the distribution of labeled and pre-
viously pseudolabeled samples up until that point. Due to
small labeled sample size, the labeled and pseudolabeled
samples do not fully represent the distribution of the unla-
beled samples in early iterations. Thus, unlabeled samples
far from the learned distribution are considered to be ouliers
in a given iteration.

In order to implement outlier removal, in the context of
pseudolabeling, we exclude the unlabeled detected outlier
sample from gradient updates for any the given iteration of
the semi-supervised procedure. For FlexMatch in partic-
ular, all unlabeled samples are augmented with weak and
strong RandAugment. As such we use the weakly aug-
mented samples as input to outlier detection.

Mathematically, we consider an unlabeled sample x to be
an outlier if it is distance from all cluster centers µ1 . . . µK

in terms of Mahalanobis distance based on the cluster co-
variances Σ1 . . .ΣK . Mahalanobis distance of a given point
x to cluster k is defined as follows,

dM,k(x) =

√
(x− µk)

T
Σ−1

k (x− µk) (13)

Define XL as the labeled population and XU as the un-
labeled population, with x ∈ XU as an unlabeled sample,
and P90 as the 90th percentile. As such, we detect outliers
as follows,

x ∈ XU is an outlier iff.
maxk dM,k(x) > τ

where τ = P90 (maxk dM,k (XL))

(14)

4. Experiments
We evaluate both AAGMM and KMeans linear layer re-
placements and the embedding space constraints using our
modified FlexMatch [47] on the common SSL benchmarks
CIFAR-10 [19] at 40 labels (4 labels per class) and STL-
10 [10] at 40 labels. We randomly selected 5 seeds a priori
for evaluation. For each algorithm configuration tested, one
model was trained per seed. During each run, the required
number of labeled samples are drawn without replacement
from the training population of the dataset in a deterministic
manner (reproducible with the same seed). All data not in
this labeled subset are used as unlabeled data (i.e., the labels
are discarded).

4.1. Hyper-Parameters

All CIFAR-10 models were trained with the standard
benchmark WideResNet28-2 architecture [45]. All STL-
10 models were trained with the standard benchmark
WideResNet37-2 architecture [45]. This work leverages
the published FlexMatch [47] code, hyper-parameters, and
training configurations within the USB Framework [39].
However, due to the higher training instability of the
AAGMM layers compared to a linear layer, the gradient
norm was clipped to 1.0. Despite specific attention to com-
puting the AAGMM and embedding constraints in a numer-
ically stable manner, they are still less stable during back-
prop than a simple linear layer. Gradient clipping was es-
pecially important when there were latent points that were
multiple standard deviations away from the cluster centers.
In this case, the gradient of the Gaussian probability density
function converges rapidly toward zero, which can affect the
division step of equation 4. We have almost entirely over-
come this issue in the code by using laws of exponents in or-
der to normalize the denominator to be greater or equal to 1
prior to division, but in extreme cases of latent points distant
from cluster centers, the gradient clipping is still necessary
to achieve stable gradient descent.

We believe that the rapid decrease in slope of the Gaus-
sian distribution pdf for points that are multiple standard
deviations away from the mean. As the conditional distri-
bution involves calculating a division step, it is very likely
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Mean Test Accuracy Per Method and Dataset
Last Layer Emb Dim CIFAR-10 at 40 Labels (5 trials)

Embedding Constraint None 1st Order 2nd Order
Linear (unmodified FlexMatch) 128 95.03 ±0.06

Linear (FlexMatch w/ Reduced Emb Dim) 8 90.89 ±3.24

AAGMM 8 94.98 ±0.07 94.64 ±0.27 93.58 ±2.74

KMeans 8 90.15 ±6.40 93.50 ±0.62 93.44 ±0.50

Last Layer Emb Dim STL-10 at 40 Labels (3 trials)
Embedding Constraint None 1st Order 2nd Order

Linear (unmodified FlexMatch) 128 70.85 ±4.16

AAGMM 8 58.79 ±11.00 71.11 ±7.60 70.40 ±6.39

Table 1. Mean test accuracy % for CIFAR-10 and STL-10 SSL benchmarks comparing various configurations of our method. The
FlexMatch results in the table is drawn from the publication. For CIFAR-10, the WideResNet model used by FlexMatch has an embedding
size of 128 dimension. Results for a given order of embedding constraint include all lower constraints.

that such a division may become less stable for points that
are not near the mean.

This work includes an exploration of how various la-
tent embedding dimensionalities affect the generative lin-
ear layer replacement. As such, the model architecture
was modified with a single additional linear layer before
the output to project the baseline model embedding dimen-
sion (128 for WideResNes28-2) down to a reduced 8 dimen-
sional space. Results listed with an embedding dimension-
ality of 128 do not include the additional linear layer which
reduces the latent dimensionality.

Due to exponential GPU memory requirements with
each successive MoM moment, only the 8D embedding
can operate with higher order MoM embedding constraints.
While our method can place constraints on any number of
moments, we only explored MoM constraints up to the sec-
ond order in this paper. Results for any given order of em-
bedding constraint include all lower constraints.

4.2. CIFAR-10 and STL-10 Results

While current SOTA on CIFAR-10 at 250 labels is close to
fully supervised accuracy, the 40 label case provides a far
more challenging task. Table 1 summarizes the relative per-
formance of our various configurations. As we simply ex-
tended FlexMatch, our hyper-parameter selection is likely
sub-optimal, and further experimentation might yield im-
provements. The ’Linear (unmodified FlexMatch)’ row in
Table 1 represents the baseline fully connected linear last
layer exactly as FlexMatch published. The ’Linear (Flex-
Match w/ Reduced Emb Dim)’ row in Table 1 represents
FlexMatch performance where its final Linear layer pro-
duced a latent embedding dimensionality of 8 (instead of the
stock model latent dimensionality of 128). Its worth noting
that the significantly smaller embedding dimensionality re-
duced average model accuracy by 5%. That accuracy is re-
stored by replacing the Linear layer with an AAGMM layer;

despite keeping the reduced latent embedding dimensional-
ity. That trend is mirrored with STL-10, where the 70.85%
FlexMatch accuracy drops to 58.79% using a latent embed-
ding dimensionality of 8 (and the unconstrained AAGMM
layer), which the 1st order embedding constrained version
of AAGMM restores to 71.11% accuracy.

We see that the AAGMM final layer consistently out per-
forms the KMeans final layer for the CIFAR-10 Test Accu-
racy with 40 labels. We furthermore see that the KMeans
layer performs significantly better with the 1st and 2nd or-
der MoM constraint, as compared with no constraints.

For STL-10 the AAGMM final layer (71.11%) improved
upon the FlexMatch [47] result (70.85%), though within the
margin of error. Additionally, both 1st and 2nd order MoM
constraints significantly improved the upon the AAGMM
with no embedding constraints.

The modeled cluster centers vary in quality between
individual model runs of the AAGMM layer due to the
stochasticity of the training process. Figure 2 (a & b) show-
cases degenerate cluster centers. The Figure 2 (c & d)
AAGMM model learned cluster centers that are an adequate
approximation of the underlying data, where the embed-
ding constraints encourage cluster centers which are better
aligned with the underlying data. It is worth noting that we
did not observe the KMeans layer learning non-degenerate
cluster centers without an embedding constraint. In con-
trast, the AAGMM layer can, under some circumstances,
learn viable cluster centers. To quantify the modeled clus-
ter compactness, we measure the average L2 distance from
each test data point to its assigned cluster as shown in Table
2.

To place our results in context with the current SSL
SOTA for CIFAR-10 and STL-10 at 40 labels Table 3 com-
pares against the current best methods, demonstrating that
this methodology is nearly competitive with for CIFAR-10,
but still requires improvement and tuning for STL-10.
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Latent Embedding Space Cluster Compactness
Dataset Last Layer None 1st MoM 2nd MoM

CIFAR-10 AAGMM 1.03 0.58 0.53
CIFAR-10 KMeans 18.41 0.96 1.06

STL-10 AAGMM 2.32 0.79 0.76

Table 2. Average L2 distance from each test data point to its as-
signed cluster center.

CIFAR-10 STL-10
Method (40 Labels) (40 Labels)

FixMatch[34] 13.81 ±3.37 35.97 ±4.14

FlexMatch[47] 4.97 ±0.06 29.15 ±4.16

FreeMatch[40] 4.90 ±0.29 15.56 ±0.55

SimMatchV2[50] 4.90 ±0.04 15.85 ±2.62

AAGMM+None 5.02 ±0.07 41.21 ±11.00

AAGMM+1stOrder 5.36 ±0.27 28.89 ±.60

Table 3. Error rate % for CIFAR-10 and STL-10 SSL benchmarks
with 40 labels, comparing to state of the art results. Results for
previously published methods are drawn from USB [39] except
for FreeMatch [40] and SimMatchV2 [50] publications.

5. Discussion

Although our preliminary results with the proposed
AAGMM and MoM achieve high accuracy relative to
SOTA, this was achieved without Mahalanobis outlier de-
tection as documented in Table 4. When the outlier detec-
tion was enabled, we believe the reduced accuracy is due
to: 1. the 90th percentile distance threshold being too ag-
gressive and filtering too much signal relative to noise, and
2. the need for an adaptive outlier detection threshold. In
early epochs, an aggressive outlier detection threshold is vi-
able because the model will not adequately fit many of the
unlabeled samples, but as the model converges the fit im-
proves reducing the need for outlier removal. As such, we
believe that the aggressive outlier filtering is removing too
many inliers, particularly in later epochs.

The proposed MoM embedding constraint has at least
one significant downside, by requiring exponentially in-
creasing amounts of GPU memory for each successive mo-
ment penalty included as shown in Table 5.

This limits the current practicality of these MoM con-
straints. Additional optimization and/or avoiding the ex-
plicit creation of both the nth order moment and its target
value on GPUs would likely improve the usability.

Semi-supervised learning is highly sensitive to both
which samples are selected form the labeled population [34]
and the stochasticity of the training process itself.

Future work in this area will explore alternate outlier re-
moval strategies, including thresholding the unlabeled sam-
ples based on their latent sample probability p(X) as op-

AAGMM (8D) Mean Test Accuracy With Outlier Removal
CIFAR-10

Outlier Threshold None 90th Percentile
MoM: None 94.98 ±0.07 94.9 ±0.125

MoM: 1st Order 94.64 ±0.27 87.70 ±2.96

MoM: 2nd Order 93.58 ±2.74 87.25 ±2.51

STL-10
Outlier Threshold None 90th Percentile

MoM: None 58.79 ±11.00 57.50 ±12.75

MoM: 1st Order 71.11 ±7.60 64.18 ±3.82

MoM: 2nd Order 70.40 ±6.39 65.90 ±4.09

Table 4. Mean test accuracy % for CIFAR-10 and STL-10 SSL
benchmarks comparing an 8D embedding AAGMM final layer
with and without outlier removal during training. Results for a
given order of embedding constraint include all lower constraints.

AAGMM Training GPU Memory Requirements (in GiB)
Emb Dim None 1st 2nd 3rd 4th

8 7.72 7.71 7.70 7.76 8.76
32 7.71 7.71 7.79 13.15 > 20.47

Table 5. GPU RAM utilization in GiB on Nvidia RTX A4500 with
20.47GiB of VRAM evaluated on CIFAR10 using WRN28-2 with
a batch size of 64. Each row shows the results for a given embed-
ding dimensionality, and each row a MoM embedding constraint
order, where ”None” indicates a stock linear layer.

posed to latent Mahalanobis distance. The Mahalanobis
distance is part of the exponential term in the calculation
of the multivariate Gaussian PDF. As such, we expect that
a removing outliers based on low p(X) is likely to perform
comparably to removing samples based on far Mahalanobis
distance, in the special case that all clusters share a similar
determinant det (Σk). Additionally, we plan to explore how
to best take advantage of the better behaved latent embed-
ding space to improve data efficiency for model training.

We demonstrate a novel fully differentiable Axis-
Aligned Gaussian Mixture Model with Method of Moments
based latent embedding space constraints can be applied to
semi-supervised learning. The combination of these tech-
niques enables outlier detection strategies that would other-
wise not be possible with a traditional softmax discrimina-
tor approach. This preliminary work constructs these novel
layers with the associated constraints and demonstrates
reasonable performance on challenging benchmark semi-
supervised learning tasks, while opening the door for future
outlier detection strategies that can make semi-supervised
learning more robust to large and diverse unlabeled sample
distributions.
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