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Abstract

In a Model Marketplace, multiple parties may submit
pretrained neural networks that accomplish similar tasks.
These networks usually have different architectures and are
trained on different datasets. It would be significantly ben-
eficial to fuse all these models into a single model with su-
perior performance and lower cost of execution. However,
the training parties may be unwilling to share their train-
ing data, due to data privacy and confidentiality, and may
not agree to participate in a federated learning collabora-
tion. As an alternative, we propose a data-free model fu-
sion framework, based on knowledge distillation, to com-
bine several pretrained models into a superior model with-
out the need for the raw training data. We employ a gen-
erative approach to synthesize data for knowledge distilla-
tion. The data generator needs to be trained to produce a
diverse set of samples that have a similar distribution to that
of the training data. Generating samples that cause student-
teacher disagreement can expand the coverage of the data
distribution, reduce chance of mode collapse and, improve
data-free knowledge distillation. However, we found that
in a multi-teacher setting, encouraging disagreements be-
tween the teachers and the student causes confusion for the
generators and deteriorates the results. To tackle this, we
introduce Generator Assistants (GA), which keep the gen-
erators evolving without causing confusion. Experiments
on CIFAR-10, CIFAR-100 and Stanford Dogs datasets show
that our method greatly improves the data-free model fusion
performance compared to the prior art.

1. Introduction
Recent years have witnessed an unprecedented develop-
ment and usage of deep Convolutional Neural Networks
(CNNs) that achieved state-of-the-art results in various
computer vision tasks, including classification and segmen-
tation. In order to achieve generalizable models, a diverse
set of data from various sources is required. However, due
to privacy and security concerns, data sets from various
sources often cannot be moved to a centralized database

for training a model. Therefore, distributed learning mech-
anisms such a federated learning and model fusion have
gained a lot of attention. A related scenario is a Model
Marketplace, where multiple parties can submit their pre-
trained AI models to be used by other users for inference.
In a Model Marketplace it is common to have multiple pre-
trained models with different architectures, trained by dif-
ferent parties using different datasets that perform a similar
task. If users want to use these models for inference, they
should either choose one of the models without knowing
which model would perform the best on their data or use
multiple models in an ensemble [20, 21] and incur higher
cost. Model ensembling is also less interpretable compared
to a single model. It would be greatly beneficial if the
marketplace owner could fuse all these models into a sin-
gle model to provide the users with superior performance
and lower cost of execution. As mentioned, it might be im-
possible to obtain the training data of each model due to
privacy and confidentiality issues. In addition, the training
parties may not agree to participate in a federated learning
collaboration [12], where they need to retrain a model, re-
peatedly. As a practical solution, we propose a data-free
model fusion framework, based on knowledge distillation,
that can be used to combine pretrained models into one su-
perior model in terms of performance (accuracy, robustness,
scalability) and infrastructure usage (time, memory, number
of GPUs), without the need for the raw training data.

We propose to treat this problem as a Data-free Knowl-
edge Distillation (DFKD) with multiple teachers, where
synthesized samples are used for distillation. We consider
a general case in which the teachers are trained on dif-
ferent datasets and may have different architectures. For
data synthesis, we employ a generative approach where we
train a dedicated generator for each teacher. Each gener-
ator needs to synthesize samples that have a distribution
similar to that of the original training data of its corre-
sponding teacher (i.e. have similar statistics to that of the
training data). The samples should also be diverse to suffi-
ciently cover the training distribution and avoid mode col-
lapse. Several loss functions have been proposed to sat-
isfy these conditions. Among them, the adversarial (ADV)
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loss [3, 5, 25] is especially effective in producing statisti-
cally diverse samples for single-teacher knowledge distil-
lation. The ADV loss encourages the generator to synthe-
size images that cause student-teacher disagreement, which
iteratively expands the distributional coverage of the sam-
ples during training. However, expanding the ADV loss to
a multi-teacher setting is not a trivial problem. Our exper-
iments show that rewarding dissimilarity between multiple
teachers and one student causes confusion for the generators
and deteriorates the results. Without the adversarial loss,
the generator does not expand the distributional coverage of
the generated images which results in sub-optimal perfor-
mance. We address this problem by introducing Generator
Assistants (GA), and extend the application of adversarial
loss to multi-teacher settings. Each Generator Assistant is
a dedicated model to a teacher-generator pair and is trained
to mimic a teacher using samples synthesized by its corre-
sponding generator. Therefore, it can be used to calculate a
meaningful adversarial loss to train a generator to produce
diverse samples and mitigate mode-collapse.

We summarize our novelty and contribution here: 1) Al-
though DFKD has been well studied, Data-free Model Fu-
sion (DFMF) with multi-talent teachers and different archi-
tectures are not well explored in the literature. Through ex-
tensive experiments, we illustrate the superior performance
of our DFMF over several compared methods, and the fused
model attains greater accuracy when compared to individual
teacher networks; 2) Our main novel contribution is the in-
troduction of Generator Assistant (GA) to address the chal-
lenge that uniquely exists in data-free model fusion.

2. Related Work
Knowledge Distillation (KD) [9] was originally proposed
to learn a compact student model from a large teacher
model. Instead of learning directly from labeled data, the
student can learn from the soft labels generated by the
teacher on unlabeled data. Later, training a student us-
ing multiple teachers was also proposed where the student
either learns from the ensemble of the teachers’ outputs
[14, 19, 22, 27, 28] or the output of the most confident
one [23]. To improve learning efficiency and effectiveness,
most of these methods also proposed various losses to in-
corporate learning from the intermediate features, in addi-
tion to the final soft labels. In [14, 19, 27, 28] the teachers
are trained on the same dataset, while in [22, 23] the teach-
ers are trained on different ones (multi-talent teachers). Al-
though these methods do not require labeled datasets, they
all use real data for knowledge distillation. In fact, most of
these methods used the original training data of the teachers
[14, 19, 27, 28]. As discussed before, in many applications,
the raw training data are not accessible for model fusion.
It should be mentioned that using out-of-domain or even
same-domain but out-of-distribution data as replacement for

original data during KD usually leads to unsatisfactory re-
sults. Therefore, data-free model fusion using synthetic
samples is the only practical solution in many cases.

Data-free model fusion can be achieved via Data-free
Knowledge Distillation (DFKD). These methods synthe-
size samples for KD using: (1) the non-generative ap-
proaches [5, 6, 25] that produce data samples, batch-by-
batch, based on model inversion, or (2) the generative ap-
proaches [2, 3, 7, 16, 17, 26] that train a generative model
for synthesis. DeepInversion [25] “inverts” a trained net-
work (teacher) to synthesize class-conditional images start-
ing from random noise. A BatchNorm feature distribution
regularization loss (BN loss) was proposed to optimize the
input while regularizing the distribution of intermediate fea-
ture maps using information stored in the batch normaliza-
tion layers of the teacher. An iterative competition scheme
using an adversarial (ADV) loss was also proposed to en-
courage the synthesized images to cause student-teacher
disagreement and improve sample diversity. CMI [5] im-
proves data diversity using a contrastive learning objective
that encourages the newly synthesized instances to be dis-
tinguishable from the ones synthesized in previous batches.
Although impressive image synthesis and KD results were
obtained, these methods suffer from long image synthesis
time, making them less practical. An alternative line of
work focuses on training a generator that can synthesize
samples with faster speed. In DAFL [2], a generator was
trained to take random noise as input and generate images
that can produce strong one-hot predictions with the teacher
classifier. KEGNET [26] is similar to DAFL but used a
class-conditional generator. They further introduced a de-
coder to recover the input noise from the generated images,
and preventing the generator from converging to a naı̈ve so-
lution, with a collapsed mode. ZSKT [17] trains an adver-
sarial generator to search for images on which the student
poorly matches the teacher. Han et al. [7] attempted to in-
crease the diversity of the generated images by proposing
diversity seeking regularization. Since these works mainly
rely on one-hot prediction of the teacher classifier as regu-
larization, the generated samples do not necessarily follow
the same distribution as the original training data and could
result in degraded KD performance. To alleviate this prob-
lem, in [3, 16], the authors introduced a batch normalization
(BN) loss to train generators that are able to produce higher-
quality and more realistic images. In [16], multiple class-
conditional generators were trained for each class to address
the mode-collapse problem. However, this method does not
scale well when there are many classes. In DFQ [3], class-
unconditional generators were trained that scale well with
the number of classes. ADV loss was used to iteratively
improve the generators. Variational Information Distilla-
tion (VID) loss [1] was also used to improve student learn-
ing efficiency and effectiveness by matching intermediate
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layer outputs the student and the teacher. The latest work in
DFKD is FastDFKD [6], which learns a meta-synthesizer
that seeks common features as the initialization for the fast
data synthesis and significantly accelerate DFKD.

There are studies exploring data-free model fusion us-
ing other approaches. In [24], the authors constructed
group-stack generative adversarial networks with dual gen-
erators. The target network is obtained by regrouping the
trained dual part generator. Although multiple teachers
were present, only one generator was trained. Additionally,
BN regularization was not used for training the dual gen-
erators. One limitation of this approach is that the teacher
and target network should have similar architecture with the
same number of block numbers. In their study, the same ar-
chitecture is used for all the networks.

3. Methods

Let Tθk and θk represent the k-th teacher and its learnable
parameters and K be the number of teachers. The pre-
trained teacher Tθ∗ , with parameters θ∗, is trained on its
corresponding labeled dataset and will not be updated dur-
ing model fusion. Let Sϕ be the student with learnable pa-
rameters ϕ. For simplicity, we assume that all the teachers
and the student are trained for the same task of C-category
classification. Since the teachers are pretrained on different
datasets, for each teacher we train a corresponding genera-
tor network Gψk

to synthesize samples with a distribution
similar to that of the teacher’s training data. To help with
the process, for each teacher, we train a generator assis-
tant (GA) network Aχk

, with learnable parameters χk. A
diagram of our data-free model fusion scheme is given in
Fig. 1.

Figure 1. A diagram of our DFMF scheme. Only 2 teachers are
included in this example. The colored arrows indicate which net-
works the loss functions are trying to minimize or maximize.

3.1. Training the Student

The student Sϕ learns from multiple teachers through KD
using the synthetic samples produced by all of the genera-
tors. The student is updated by minimizing the loss below:

LSϕ = Ex
[
D
( K∑
k=1

wkTθ∗k(x), Sϕ(x)
)
+ β

K∑
k=1

wkL
VID
ϕ,θ∗k

(x)
]
,

x ∈
K⋃
k=1

Gψk
(z)

(1)
In this equation, x is an image generated by one of the gen-
erators, Tθ∗k(x) and Sϕ(x) are the soft labels produced by
the k-th teacher and the student, respectively where a soft-
max with temperature τ is applied to the teachers and the
students outputs. E represents expected value and D stands
for Kullback-Leibler (KL) divergence. In addition to the KL
divergence loss, we also use variational information distil-
lation (VID) to match intermediate layer outputs between
the teachers and the student. LVID

ϕ,θ∗ is the VID loss which
is one of the state-of-the-art KD variants that formulates
knowledge transfer as maximizing the mutual information
between the teacher and the student networks, which yields
better student accuracy with faster convergence. Details
about VID loss can be found at [1].

Additionally, β is a weighting factor for the VID loss, wk
is the weight to control the importance of the k-th teacher
in the learning process and

∑K
k=1 wk = 1. z is the random

input to a generator and p(z) is its Gaussian probability dis-
tribution. Gψk

(z) is the image produced by the k-th gener-
ator. Here we use the union of all the generators’ outputs as
the input images x for KD. This means that an image pro-
duced by any of the generators goes through all the teachers
during the KD process.

3.2. Training the GAs

Each GA Aχk
learns from its matched teacher Tθ∗k through

knowledge distillation using the synthetic samples gener-
ated by its corresponding generator Gψk

. Each GA is up-
dated by minimizing the following loss:

LAχk
= Exk

[D(Tθ∗k(xk), Aχk
(xk)) + βLVID

χk,θ∗k
(xk)], (2)

where xk is an image produced by the k-th generator and
Aχk

(xk) is the output of the k-th GA, where a softmax with
temperature τ is applied to the teacher and GA’s outputs.

3.3. Training the Generators

The loss function to update the generators is comprised of
two parts: fidelity loss and adversarial loss. The fidelity
loss encourages each generator to synthesize samples that
are similar to the training data of its corresponding teacher.
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The fidelity loss is further comprised of Batch Normaliza-
tion (BN) loss, Instance Categorical Entropy (ICE) loss and
Batch Categorical Entropy (BCE) loss [3] as in:

LFψk
= Ep(z)

[∑
l

DN ((µ̂l,ψk
(z), σ̂2

l,ψk
(z)), (µl, σ

2
l ))

]
+Ep(z)[H(Tθ∗k(Gψk

(z)))]−H(Ep(z)[Tθ∗k(Gψk
(z))]).

(3)
The first term in Eq. (3) is the BN loss which encourages
the generator to produce samples that result in features with
the same mean and variance values as those stored in the
BN layers of the teacher. Here, µl and σ2

l are the mean and
variance values stored in the l-th normalization layer and,
hence, are learned from the original training data. µ̂l,ψk

(z)
and σ̂2

l,ψk
(z) are the corresponding mean and variance com-

puted over the synthesized samples Gψk
(z). We assume

the distributions are Gaussian and use the Kullback-Leibler
(KL) divergence between two Gaussian distributions as:

DN ((µ̂, σ̂2), (µ, σ2)) =
(µ̂− µ)2 + σ̂2

2σ2
− log

σ̂

σ
− 1

2
. (4)

The second term in Eq. (3) minimizes the instance cat-
egorical entropy, denoted by H(·). Assuming the teacher
is well trained for accurate classification, a good genera-
tor should produce samples that yield low entropy outputs
from the teacher (the probability for one category should
be high). The third term maximizes the batch categori-
cal entropy. Because there is no prior knowledge for the
categorical probability distribution of the original training
data, it is reasonable to assume the classes appearing in the
dataset follow uniform distribution. This prevents the gen-
erator from producing samples of only one or a few classes,
and is achieved by maximizing the entropy of the teacher’s
averaged outputs over any batch.

The adversarial loss encourages a generator to produce
samples that cause disagreement between each teacher and
its corresponding GA and hence, avoid producing repeated
or similar samples. This expands the distribution of the gen-
erated images and helps with mitigating the mode collapse
problem. The adversarial loss is given by:

LAψk
= −Ep(z)[D(Tθ∗k(Gψk

(z)), Aχk
(Gψk

(z)))] (5)

The overall loss to train a generator is given by:

LGψk
= LAψk

+ αLFψk
, (6)

where α ≥ 0 is a weighting factor.

3.4. Implementation

Our proposed data-free model fusion scheme is summarized
in Algorithm 1. zB denotes the random input batch of size
B to the generators, and L(zB) denotes the loss averaged

over the batch. As suggested in [3], we perform warm-
up training for the generators using only the fidelity loss
in Eq. (3). The pre-training procedure reduces generation
of unreliable samples in the early phase. The number of
epochs for warm-up and main training are Nwarm−up and
N , respectively. M is the overall number of iterations per
epoch. We update the student more frequently than the gen-
erators to reduce the chance of falling into local minima,
which is controlled by MS . By adjusting MGA, we also
update GAs less frequently than the student to balance be-
tween speed and performance, as GAs only help the gener-
ators and do not need to be as high-quality as the student.

Algorithm 1 Data-free model fusion
Input: Pretrained teachers {Tθ∗

k
}Kk=1, randomly initialized student Sϕ

Output: An optimized student Sϕ∗

1: Randomly initialize generators {Gψk
}Kk=1 and GAs {Aχk}Kk=1

2: b← ⌊B/K⌋
3: for k: 1 to K do ▷ Warm-up training for generators
4: for n: 1 to Nwarm−up do
5: for m: 1 to M do
6: zB ← [N (0, I)]B

7: ψk ← ψk − ηG∇ψk
LFψk

(zB)

8: end for
9: end for

10: end for
11: for n: 1 to N do
12: for m: 1 to M do
13: for k: 1 to K do ▷ Update generators
14: zB ← [N (0, I)]B

15: ψk ← ψk − ηG∇ψk
LFψk

(zB)

16: end for
17: for k: 1 to K do
18: for m: 1 to MGA do ▷ Update GAs
19: zB ← [N (0, I)]B

20: χk ← χk − ηA∇χkL
A
χk

(zB)
21: end for
22: end for
23: for m: 1 to MS do ▷ Update student
24: for k: 1 to K do
25: zb ← [N (0, I)]b

26: xbk ← concatenate(xb(k−1), Gψk
(zb))

27: end for
28: ϕ← ϕ− ηS∇ϕLSϕ(x

bK)
29: end for
30: end for
31: end for
32: ϕ∗ ← ϕ

4. Experiments and Results
4.1. Experimental Settings

Datasets. We evaluated our method on CIFAR-10 (10 cat-
egories), CIFAR-100 (100 categories) [13] and Stanford
Dogs (120 categories) [10] datasets to demonstrate the effi-
cacy of our method in fusing models with different number
of output labels and input image resolution. Each CIFAR
dataset contains 50,000 training samples and 10,000 test-
ing samples with image resolution of 32 × 32. Stanford
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Dogs consists of 12,000 training samples and 8,580 test-
ing samples, with image resolution of 200 × 200 or larger
that are resized to 224 × 224 in our study 1. The train-
ing samples are only used to train the teacher networks, and
the testing data are used to evaluate model accuracy. The
CIFAR datasets are used to investigate two-party (K = 2)
scenario, whereas the Stanford Dogs dataset is used to in-
vestigate both two-party and four-party (K = 2 and K = 4)
scenarios. We also investigated balanced (BL) and imbal-
anced (IBL) data split modes. In the BL data split, the
dataset is evenly split between multiple parties hence, class
distribution imbalance between parties is unlikely (roughly
same number of samples per party for each class). The IBL
mode simulates imbalanced class distribution where each
pretrained teacher is better at some classes than the other
ones. For each party, 1/K of all the classes are selected as
the frequent classes and the remaining classes are the infre-
quent classes. For each selected frequent class, p samples
are selected for this party and the remaining samples (used
as infrequent class samples for the other parties) are evenly
split between the other K − 1 parties so that each one con-
tains q samples. We investigated different imbalance ratios
where the imbalance ratio r is defined as r = p/q. This way
we make sure that there is no data overlap for each party nor
missing data for the whole training set. For example, when
K = 2 and r = 3, the first party is composed of 75% of the
data for the first half of the classes and 25% of the data for
the last half of the classes (r = 75%/25% = 3), whereas
the second part keeps the rest of the data. When K = 4 and
r = 10, the first party is composed of 76.9% of the data for
the first quarter of the classes and 7.69% of the data for the
rest of the classes; the second party is composed of 76.9%
of the data for the second quarter of the classes and 7.69%
of the data for the rest of the classes, etc. In this paper, we
use r = 3 in the CIFAR studies. For the Stanford Dogs
study, we use different values for r ∈ {3, 10, 20}.

Compared methods. Since there are limited studies ex-
ploring data-free model fusion, we scaled up various DFKD
methods from a single-teacher context to a multi-teacher
scenario, and compared our method with them. Our base-
lines include generative DFKD methods such as ZSKT [17],
DAFL [2] and DFQ [3], and also the state-of-the-art non-
generative method CMI [5]. We notice that when we apply
the state-of-the-art generative DFKD method, DFQ, to the
multi-teacher setting, the ADV loss causes confusion and
leads to worse results. Therefore, we also compare to DFQ
without ADV loss (w/o ADV). Since the non-generative
method CMI also uses the ADV loss, we took one step fur-
ther and applied GAs to CMI (w/ GA) as well for com-
parison. Tab. 1 shows the usage of different loss functions

1Due to our organization’s internal policies we cannot use ImageNet
for evaluation. We use the Stanford Dogs dataset as an alternative for a
more challenging dataset than the CIFAR datasets.

Method BN ICE BCE ADV ACT CR GA
ZSKT - - - ✓ - - -
DAFL - ✓ ✓ - ✓ - -
DFQ (w/o ADV) ✓ ✓ ✓ - - - -
DFQ ✓ ✓ ✓ ✓ - - -
CMI ✓ ✓ - ✓ - ✓ -
CMI (w/ GA) ✓ ✓ - ✓ - ✓ ✓
DFMF (ours) ✓ ✓ ✓ ✓ - - ✓

Table 1. Comparison of different methods based on usage of vari-
ous loss functions and generator assistants.

and GAs for each method. All the loss functions can be
found in Sec. 3 except for the activation loss (ACT) used in
DAFL and the contrastive learning loss (CR) used in CMI,
which can be found in [2] and [5], respectively. Note that
DFQ is essentially the ablation study of our DFMF without
GA. For fair comparison, VID loss is used in all the genera-
tive methods, even though it is not originally used by ZSKT
and DAFL. For all the methods, we combine all the gener-
ators’ synthesized samples as a batch for KD, as described
in Sec. 3.1.

Implementation details. We use ResNet-18, ResNet-34
and ResNet-50 [8] for our teachers and students. For our
generators, we use the same architecture as in [3] which
is one fully connected layer followed by three upsampling
(nearest neighbor interpolation) plus convolutional layers.
For pre-training the teacher networks, we use Nesterov ac-
celerated gradient [18] with weight decay and the momen-
tum set to 5 × 10−4 and 0.9, respectively, as suggested by
[2]. We train the teacher networks for 200 epochs. For the
CIFAR datasets, the teachers are trained from scratch with a
batch size of 256. The learning rate is initialized at 0.1 and
divided by 10 at epochs 80 and 120. Stanford Dogs dataset
has only 100 images per class in its training set. Training
each teacher from scratch using only a portion of this data
set results in poor performance. To improve performance,
we use ImageNet [4] pretrained ResNet weights as initial-
ization before training the teacher models on the Stanford
Dogs samples. A batch size of 64 is used. The learning rate
is initialized at 0.01 and divided by 10 at epochs 50, 100 and
150. For training the generators, we use the Adam optimizer
[11] with learning rate of ηG = 10−3 and momentum of 0.5.
Similar to the teachers, the GAs and the student are initial-
ized with ImageNet pretrained weights before training on
the Stanford Dogs data set, but are trained from scratch for
CIFAR studies. We use Nesterov accelerated gradient with
cosine decaying [15] learning rate of ηA = ηS = 0.05 and
momentum 0.9. Random rotation, crop, flipping and color
jitter (details provided in Supplementary Material) are used
on the generated images for data augmentation. The origi-
nal VID loss [1] was proposed to match every intermediate
layer between the teacher and the student. In this study, we
only match the last convolutional layer outputs between the
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Dataset Method
Accuracy (%)

BL split IBL split (r=3)

CIFAR10

Gold Standard 94.92
Teachers 92.41/92.26 90.43/89.79
Teacher Ensemble 93.85 93.12
ZSKT 56.34±11.61 63.44±16.36
DAFL 89.04±2.87 89.76±0.24
DFQ (w/o ADV) 92.66±0.10 91.81±0.09
DFQ 90.64±1.47 88.12±2.42
CMI 92.89±0.07 91.74±0.11
CMI (w/ GA) 92.99±0.06 92.02±0.12
DFMF (ours) 93.10±0.11 92.27±0.19

CIFAR100

Gold Standard 76.85
Teachers 67.9/68.6 65.22/65.48
Teacher Ensemble 73.04 73.3
ZSKT 41.13±0.77 36.04±6.60
DAFL 67.46±0.15 63.98±4.69
DFQ (w/o ADV) 67.75±0.21 66.97±0.04
DFQ 57.73±2.87 57.26±2.06
CMI 68.46±0.24 67.57±0.18
CMI (w/ GA) 69.10±0.37 68.32±0.25
DFMF (ours) 70.05±0.13 69.67±0.09

Table 2. Data-free model fusion results with homogeneous net-
works on CIFAR-10 and CIFAR-100 datasets. The two teachers
and the student are all using the ResNet-18 architecture.

teacher and the student (or GA) as these models can have
different number of layers. Here, we use uniform weights
of wk = 1/K in Eq. (1). The remaining hyperparameters
for our DFMF are: Nwarm−up = 50, N = 200, M = 400,
MGA = 5, MS = 10, B = 256, α = 0.1, β = 1.0 and
τ = 3.0. For the compared generative methods (ZSKT,
DAFL, DFQ) listed in Sec. 3, we used the same parameters
Nwarm−up, N , M , MS and B for warm-up and knowledge
distillation. The weights to balance different loss function
terms are equal to the ones described in their original pa-
pers. Note that for DFQ (w/o ADV), we found that pre-
training the generators sufficiently and keeping them frozen
during KD performs better as compared to updating the gen-
erators iteratively. To have a fair comparison with the same
number of generator updates, for DFQ (w/o ADV) we use
Nwarm−up = 250 in the warm-up training stage and keep
the generators frozen later on. For CMI, we used the hy-
perparameters in the authors’ GitHub implementation [6].
For CMI with GAs, we used 200 iterations to update the
GAs and 400 iterations to update the student in each epoch.
For each method, we trained all the models three times and
reported the results as mean ± (sample) standard deviation.

4.2. Performance on CIFAR-10 and CIFAR-100

Homogeneous Network Results. In this section, the teach-
ers, GAs and the student all use ResNet-18 architecture.
DFMF is compared with other methods and the results are
shown in Tab. 2. Gold Standard is the result of a ResNet-18
network trained on all the training data without data split.

Figure 2. Example images produced by one of the generators from
different methods in the CIFAR-100 ‘IBL split (r=3)’ experiment.
Sample images from generators after warm-up training and at the
end of the training process are compared.

Two teachers are trained on half of the training data each.
Teacher Ensemble is the ensemble of the two teachers.

Our proposed DFMF with GAs produces the best results
compared to the other data free fusion methods. The fused
model accuracy is also substantially higher than either of
the teachers. Although an ensemble shows higher accu-
racy than a fused model, it is more expensive in terms of
inference time and computational resources. Among all the
compared methods, ZSKT performs the worst. This is ex-
pected because ZSKT only uses ADV loss to update the
generators. Although using the ADV loss alone works fine
in the single-teacher setting, introducing disagreements be-
tween multiple teachers and one student causes confusion
for the generators and worsens the results. DAFL performs
better than ZSKT, but its performance is limited due to the
lack of the BN loss. Without using GAs, DFQ also performs
poorly with the ADV loss. DFQ (w/o ADV) performs much
better than DFQ, however its performance is still limited as
the generator will no longer expand the distributional cover-
age of the generated images. CMI performs better than the
other generative baseline methods, and adding the GAs fur-
ther improves its performance. This suggests that GAs can
help the non-generative methods as well. Note that the per-
formance improvement is more substantial on CIFAR-100
compared to CIFAR-10. We also plot the fused model accu-
racy over training epochs for different methods in the Sup-
plementary Material, where we show that DFMF training is
more stable and converges faster than the other generative
methods.

Fig. 2 shows a few example images produced by one
of the generators from different generative methods in the
CIFAR-100 ‘IBL split (r=3)’ experiment. Sample images
from generators after warm-up training and at the end of
the training process are compared (CMI samples are not
shown here as CMI is a non-generative method and does
not fit into this paradigm). It can be observed that both
ZSKT and DAFL produce unrealistic images due to incom-
plete fidelity losses. DFQ generator produces good images
after warm-up training without the ADV loss, but the im-

7736



Method
Accuracy (%)

BL split IBL split (r=3)
Teachers 1 (ResNet18) 67.90 65.22
Teachers 2 (ResNet34) 67.80 61.50
Teacher Ensemble 73.15 71.70
DFMF (GA=T) 71.16±0.08 69.05±0.22
DFMF (GA=S) 70.50±0.68 67.54±1.33

Table 3. Data-free model fusion results with heterogeneous net-
works on the CIFAR-100 dataset. The two teachers are using
ResNet-18 and ResNet-34, and the student is using ResNet-50.

age quality deteriorates towards the end of training because
of the ADV loss limitation in the multi-teacher setting. Our
DFMF generators manage to produce high-quality synthetic
images throughout the whole training process.

Heterogeneous Network Results. In real-world ap-
plications, it is not uncommon for the pretrained teacher
networks to have different architectures. Depending on
our needs and available computational resources, we might
need a large and powerful or a compressed student network.
Therefore, we also investigate the performance of DFMF
under the heterogeneous network scenario, where the teach-
ers and the student have different network architectures. In
such a setting, we can use GAs that have a network archi-
tecture similar to their corresponding teacher (GA=T) or to
the student (GA=S). We conducted experiments to investi-
gate the performance of the student in each of these scenar-
ios. To this end, we use ResNet-18 and ResNet-34 for the
two teachers and ResNet-50 for the student. We run DFMF
(GA=T) and DFMF (GA=S) on CIFAR-100 dataset three
times and show the mean ± (sample) standard deviation re-
sults. Tab. 3 suggests that GAs with similar architectures
to their corresponding teachers result in improved perfor-
mance. Similar to the homogeneous case, the fused model
using DFMF outperforms each of the pretrained teachers.

4.3. Performance on Stanford Dogs

In this section, ResNet-18 is used for all the teachers, GAs
and the student. The DFMF performance is shown in Tab. 4.
It can be seen that on a more challenging dataset with more
classes, higher image resolution, and a larger number of par-
ties (teachers), our DFMF still produces outstanding results
significantly outperforming the teachers and CMI (w/ GA).
In BL and IBL studies with a mild imbalance ratio (r = 3),
our DFMF outperforms the gold standard. As we further in-
crease the imbalance ratio (r = 10 and r = 20), DFMF still
produces results close to the gold standard and ensemble re-
sults. More detailed analysis regarding the model accuracy
on different class-based subsets are provided in the Supple-
mentary Material, where we show that the teacher models
are only specialized at certain classes, whereas our DFMF,
like the gold standard and ensemble models, are good at

Figure 3. Example images produced by one of the DFMF gener-
ators in the Dogs ‘IBL split (r=3)’ experiment with 2 parties, as
compared to the original Stanford Dogs images.

all the classes. Fig. 3 shows that DFMF can still produce
high-quality synthetic images when the images have higher
resolution.

5. Discussion
Our experiments showed that, in a multi-teacher setting
without generator assistants, using an adversarial loss to
train the generators deteriorates the results. This was
demonstrated by lower performance of DFQ with adversar-
ial loss in Tab. 2. In a single-teacher KD scenario, after
some epochs, the student learns to follow the teacher very
closely on samples similar to the ones that have been used
for KD up to that point. Therefore, dissimilarity between
the outputs of the teacher and the student for an input sam-
ple is an indicator of the sample novelty for the student. As
a result, we can use adversarial loss to encourage the gen-
erator to produce samples that cause dissimilarity between
the student and the teacher, and hence, produce a more di-
verse set of samples. This will improve the coverage of
the original training data distribution and decrease chances
of mode collapse. However, in model fusion as a multi-
teacher KD scenario, the student cannot closely resemble
all of the teachers, as the teachers’ outputs may be differ-
ent from each other for any given sample. Therefore, there
is always some dissimilarity between each teacher and the
student regardless of the novelty of the input sample. As
such, encouraging the generators to produce samples that
result in more student-teacher dissimilarity does not lead to
better coverage of the original training data distribution or
enhanced KD.

This is illustrated in in Fig. 4 where we plot the ADV
loss (averaged across multiple parties) vs. training epochs
for DFQ and DFMF in a multi-teacher setting. Only one
training session is shown for each method for better il-
lustration. The ADV loss between the teachers and the
student for DFQ (loss T S DFQ) shows abnormally (neg-
ative) large values with significant fluctuations as the stu-
dent cannot resemble all of the teachers. Rewarding this
dramatic dissimilarity between multiple teachers and one
student causes confusion for the generators and deterio-
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Party
Num.

Method
Accuracy (%)

BL split IBL split
r=3 r=10 r=20

1 Gold Standard 79.50

2

Teachers 76.82/76.98 75.69/74.30 70.00/67.25 61.12/57.94
Ensemble 80.56 80.71 79.90 78.81

CMI (w/ GA) 75.60±0.09 75.11±0.04 73.34±0.01 72.65±0.22
DFMF (ours) 80.44±0.15 80.78±0.15 79.45±0.13 78.60±0.23

4

Teachers
74.14/74.15/
73.60/74.84

72.30/72.74/
70.87/72.30

54.02/55.48/
49.77/54.95

54.02/55.48/
49.77/54.95

Ensemble 81.33 81.08 79.45 78.76
CMI (w/ GA) 76.22±0.13 76.11±0.20 74.33±0.09 73.64±0.28
DFMF (ours) 81.01±0.23 80.75±0.15 78.94±0.07 78.31±0.06

Table 4. Data-free model fusion results on the Stanford Dogs dataset with 2 and 4 parties. The teachers and the student are all using the
ResNet-18 architecture.

rate the results. In comparison, the ADV loss between
the teachers and GAs (loss T A DFMF) shows manageably
small values with minimal fluctuations, which also leads
to much more mild ADV loss plots between the teachers
and the student (loss T S DFMF, only calculated for com-
parison purpose but not contributing to back-propagation
here) compared with the DFQ plots, suggesting more sta-
bilized student training. This supports our approach to pair
each teacher with a generator assistant to resemble a single-
teacher KD scenario for each generator and bring back the
benefits of the adversarial loss.

Figure 4. Examples of ADV loss vs. training epochs for DFQ and
DFMF (loss T S DFQ is multipled by 0.1 for better illustration).

In this study, we use the VID loss by only matching the
last convolutional layer outputs between the teacher and the
student (or GA). Although this might sacrifice performance
slightly, it has the potential for better scalability when the
teachers and student have different architectures and layer-
wise matching is difficult. In the future, we will explore

heterogeneous network settings beyond ResNets.

In our experiments we update GAs with half the fre-
quency of the student update (MGA = 5, MS = 10)
to reach a balance between computation speed and perfor-
mance, as GAs only help with the generators and do not
need to have the same high quality as the student. We tried
updating GAs with the same frequency as the student but
got similar results (see Supplementary Material for numer-
ical results). As a next step, we will investigate whether
further reducing MGA can still maintain the same perfor-
mance. In this study, we used uniform weights for wk in
Eq. (1), where wk = 1/K. In more complicated scenarios
where there are mixed-quality teachers, adaptive sample-
wise weight assignment [28] may be beneficial. For ex-
ample, teacher predictions close to one-hot labels can be
assigned with larger weights.

Last but not least, we focused on the scenario where the
teachers are all trained to predict the same classes in this
study. DFMF with multi-talent teachers that specialize on
different classification tasks is our on-going research, where
we expect the GAs will also be helpful.

6. Conclusion

In this paper, we present a novel data-free model fusion
method (DFMF) that combines multiple pretrained models
into one model for superior performance without the need
for the raw training data. We propose to use generator as-
sistants to improve the generators for producing adversar-
ial samples, which are helpful for multi-teacher knowledge
distillation. Experiments on the CIFAR-10, CIFAR-100
and Stanford Dogs datasets demonstrate that our proposed
DFMF achieves substantial improvement compared to the
prior art. We also show that the proposed DFMF works well
on both homogeneous and heterogeneous network settings.
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