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Abstract

We study a limited label problem and present a novel
approach to Single-Positive Multi-label Learning. In the
multi-label learning setting, a model learns to predict mul-
tiple labels or categories for a single input image. This con-
trasts with standard multi-class image classification, where
the task is to predict a single label from many possible
labels for an image. Single-Positive Multi-label Learn-
ing specifically considers learning to predict multiple la-
bels when there is only one annotation per image in the
training data. Multi-label learning is a more natural task
than single-label learning because real-world data often
involves instances belonging to multiple categories simul-
taneously; however, most computer vision datasets contain
single labels due to the inherent complexity and cost of col-
lecting multiple high-quality annotations per image. We
propose a novel approach called Vision-Language Pseudo-
Labeling, which uses a vision-language model, CLIP, to
suggest strong positive and negative pseudo-labels. The ex-
periment performance shows the effectiveness of the pro-
posed model. Our code and data will be made publicly
available at https://github.com/mvrl/VLPL.

1. Introduction
Most image classification approaches focus on perform-
ing multi-class classification: given an input image, pre-
dict which of many possible labels is the most appropriate.
In Figure 1, a standard image classification model would
likely predict the label ‘cat.’ Most images, however, have
more than just one appropriate class. For example, Fig-
ure 1 shows a cat, a cell phone, and a laptop – all of which
would be appropriate labels for the image. Predicting mul-
tiple labels for an input image falls in the domain of multi-
label learning. One of the largest challenges for multi-label
learning is that most common computer vision datasets only
provide a single annotation, even though most images con-
tain multiple objects or classes. In [26], the authors found
that the ImageNet dataset contains 1.22 classes per image
on average, even though the dataset only includes a single

Figure 1. This figure shows different levels of available annota-
tion for multi-label learning tasks: (a) full annotation (we know
all ground truth positive and negative labels), (b) partial annota-
tion (we know partial ground truth labels, and the rest labels are
unknown), and (c) single positive annotation (we only know one
positive ground truth label, and the rest labels are all unknown).

label per image. Collecting all possible labels for an image
is time consuming, costly, and error-prone, especially when
an image has a large number of classes and some of them
may only be visible in a very small part of the image. This
problem domain – where the training data contains only a
single label, but the task is predicting multiple labels – is
called Single-Positive Multi-Label Learning (SPML).

There are a variety of different works that focus on the
SPML task [2, 8, 24]. These works mainly concentrate
on pseudo-labeling approaches and novel loss definitions
that use these labels. Pseudo-labeling uses different types
of weak supervision to identify potential positive labels for
an image. These labels may come from pre-trained multi-
class classification backbones, or from label-to-label asso-
ciation, which focuses on leveraging known or inferred rela-
tionships and dependencies between different labels. Novel
losses explore how to utilize these pseudo-labels in multi-
label training.

In this paper, we introduce a novel approach called
Vision-Language Pseudo-Label (VLPL) for SPML. Prior
pseudo-labeling work has largely focused on setting a score
threshold for extracted features [4], or incorporating uncer-
tainty in the pre-trained features in the pseudo-labeling [21].
More recently, researchers have considered using Vision-
Language Models like CLIP in the pseudo-labeling pro-
cess. In DualCoOp([22]), the authors use a fixed CLIP
model and learn positive and negative prompt contexts per
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image as pseudo-labels, which are then fed into an asym-
metric loss [20] for limited-annotation (but not single posi-
tive) multi-label classification. In [3], the authors focus on
incorporating label-to-label correspondence priors using a
structured prior derived from a CLIP model and a Semantic
Correspondence Prompt network that keys on label-to-label
correspondences.

Our VLPL approach is most similar to DualCoOp. We,
however, show that only using positive pseudo-labels ex-
tracted based on CLIP image-text similarity, and using
an Entropy Maximization loss, can achieve SOTA perfor-
mance in the SPML setting, on Pascal VOC, MS-COCO,
and CUB-Birds with a significantly simpler approach.

We demonstrate the superior performance of the VLPL
model compared to baseline models, evaluate the influence
of hyperparameters on the VLPL model’s performance, and
explore the proposed model’s performance under different
scenarios. The contributions of our study are as follows:
• Inspired by the VLM application, we proposed a novel

model called vision-language pseudo-label (VLPL) for
SPML, which aims to produce an accurate and robust
pseudo-label to boost the model performance.

• We conducted experiments on four benchmark multi-
label datasets, i.e., PASCAL VOC [5], MS-COCO [13],
NUS-WIDE [1], and CUB [25]. Our initial experiments
achieve superior performance over the baseline models,
proving the effectiveness of the proposed method. Be-
sides, by further exploration of the backbone, our method
achieves new state-of-the-art results, pushing the per-
formance boundary improvement to mAP = 93.37,
mAP = 84.65, mAP = 57.12, and mAP = 26.04
over the four benchmarks, respectively.

• To further investigate the impact on the VLPL model’s
performance, we conduct more experiments to systemi-
cally evaluate our model. We examine how varying hy-
perparameters affected the effectiveness of the model,
discuss the positive-negative imbalance in our study, and
visualize the final prediction probabilities. For more de-
tails, please refer to our experiment section.

2. Related Work
2.1. Loss-function Focused Methods

For SPML tasks, much of the work focuses on develop-
ing novel loss functions to train models. Assume Nega-
tive (AN) Loss [2] is a simple method that assumes all the
unknown labels are negative, inevitably introducing some
number of false negatives in the implementation. Though
the performance of AN is unsatisfactory, AN is still a widely
used baseline for comparison. Entropy-Maximization (EM)
loss [27] leverages the idea of acknowledging unknown la-
bels and aims to maximize the entropy of predicted prob-
abilities for unannotated labels. The Weak Assume Nega-

tive (WAN) loss [2, 15] is an updated AN method, wherein
the negative labels are weighted by a ‘weak’ coefficient
to reduce the impact of false negatives. Regularized On-
line Label Estimation (ROLE) [2] mirrors the expectation-
maximization algorithm in jointly training the image clas-
sifier and concurrently estimating potential labels online.
Large Loss (LL) [10] proposes to overcome the memoriza-
tion effect, which the model first learns the representation of
clean labels, and then starts memorizing noisy labels. Our
study does not primarily focus on the loss function – we use
the EM loss, which is suitable for our model as our label
prediction also includes a number of unknown labels.

2.2. Pseudo Label Focused Methods

Pseudo-labeling is another popular method to overcome the
problem of limited annotations per image. Given the im-
balance between positive and negative labels (where the
number of negative labels significantly outnumbers pos-
itive labels), an intuitive approach is to sample a por-
tion of the unknown labels and assign them as negative
“pseudo-labels” [12]. Clustering methods like [24] lever-
age a distance metric to facilitate weakly-supervised or
self-supervised learning for pseudo-labeling. Asymmetric
Pseudo-Labeling (APL) [27] assigns positive and negative
pseudo-labels with asymmetric tolerance. This approach
is often employed in conjunction with the previously men-
tioned EM loss. Unlike the prior pseudo-labeling methods
that lack robust reference, our strategy involves leveraging
an aligned vision-language embedding space to predict pos-
itive and negative labels. Our method demonstrates robust-
ness and introduces fewer noisy labels during implementa-
tion, thereby enhancing the quality and effectiveness of the
labeling process.

2.3. Vision-Language Model

Vision-Language Model (VLM) [9, 17] is a multi-modality
model, using the image and its corresponding text as
supervision signal to help us better understand vision-
language correlation. The most commonly used VLM
model is named Contrastive Language-Image Pre-Training
(CLIP) [17]. Since CLIP is a well-trained vision-language
model, it has impressive potential as the tool for different
downstream tasks including multi-label learning. In Dual-
CoOp [22], the authors leverage CLIP for multi-label recog-
nition tasks in limited-annotation domains (although not
single-label). They highlight the benefit of learning the rela-
tionship between different category names in the multi-label
recognition task and observe that the aligned image and tex-
tual CLIP spaces can be used for this purpose. Concretely,
they learn a positive and negative “prompt context” – a se-
quence of embedding vectors – for possible target category
names. These prompt contexts can then be used as classi-
fiers by computing the similarity between local features in
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Figure 2. The architecture of the proposed model. The image encoder is a trainable model for feature extraction, such as ResNet and Vision
Transformer, meanwhile, the VLM Vision and Text encoders are fixed for vision-language embedding space. By the vision-language
embedding operation, instead of the original single-positive label offering, we can access a brand new pseudo-label as the reference for the
final prediction.

an image and each of the context vectors, and assigning a
positive or negative label for each category (at each loca-
tion) based on whichever context has the higher similarity.
SCPNet [3] proposes to explore structured semantic prior
information to better understand label-to-label associations
in images. The authors use a CLIP model to extract an ob-
ject association matrix as the prior information to achieve
better performance. MKT [7] is proposed for the zero-
shot multi-label learning by applying the knowledge trans-
fer model with CLIP model’s initial weights. In our study,
we propose a simpler approach to leveraging CLIP features,
called Vision-Language Pseudo-Label (VLPL), that works
in the single-label annotation domain and only requires the
selection of positive pseudo-labels.

3. Approach
In this section, we describe the problem definition, detail the
architecture of the proposed model, illustrate the vision lan-
guage pseudo-labeling method, and describe our loss func-
tion.

3.1. Problem Definition

In the context of multi-label learning (MLL), we are given a
dataset D = {Xi, Yi}Ni=1 consisting of N training samples.
Each sample Xi is an input image, and its corresponding
label vector Yi ∈ {−1, 1}L has a length L. Within this
label vector, Yil = 1 designates a positive label that is rele-
vant to Xi, whereas Yil = −1 signifies a negative label that

is irrelevant to Xi. Our study focuses on Single-Positive
Multi-Label learning (SPML), where there exists only one
positive label and all others are unknown. To indicate this,
we modify the label vector annotation as Yi ∈ {−1, ∅, 1}L.
The symbol ∅ in Yil indicates that the association of the
l− th label with the input image Xi remains undetermined.

We have the annotation ΣL
l=11yil

= 1, where 1[·] rep-
resents an indicator function. This implies that each input
image has only one observed positive label, and the rest re-
main unknown. The main objective of the SPML study is to
learn a mapping function f : X → Y from the dataset D.
The ground truth label is Y = {−1, 1}, while the observed
label is limited to Y

′
= {∅, 1}, making SPML a challeng-

ing task within the realm of MLL, operating under limited
supervision.

3.2. Architecture

In Figure 2, we present the architecture of our proposed
model. This model is designed with two branches: the
upper branch is comprised of a trainable feature extrac-
tion component, with the flexibility to use any image en-
coder as its backbone. For further details about the spe-
cific image encoder utilized in our experiments, please re-
fer to Section 4. The lower branch includes the fixed VLM,
which we use for pseudo-label prediction. We initialize a
Vision Encoder and Text Encoder with pre-trained CLIP
weights, keeping these weights fixed throughout the pro-
cess. These encoders produce 768-dimensional output em-
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beddings. To generate embeddings for each possible image
label, we compute the CLIP text embedding based on the
prompt “A photo of X”. As the text encoder remains static,
these embeddings only have to be computed once. During
the model’s operation, the input image is fed into both the
trainable image encoder and the fixed CLIP vision encoder,
resulting in visual embeddings. This CLIP visual embed-
ding can be compared with the text embeddings generated
from text prompts in the form of “A Photo of ...”. To de-
termine pseudo-label assignments, we compute the cosine
similarity between the visual and label embeddings from
the text prompts. Based on this similarity measure, we se-
lect pseudo-labels for each image. Subsequently, we utilize
these pseudo-labels, in conjunction with the single positive
label, as the final reference for training the entire model,
enabling it to make accurate predictions in tasks.

3.3. Vision Language Pseudo-Labeling

Algorithm 1 Vision Language Pseudo-Labeling
Input: The visual embedding eI and the query label
embedding eiL
Parameter: positive pseudo-label threshold θ, negative
pseudo-label partial δ%
Output: Pseudo-Labeling Y of input im-
age

1: Compute the image and the query labels similarity as
equation 1

2: Let i = 0.
3: while i < L− 1 do
4: if pi > θp then
5: Yi = 1(Positive− label)
6: else if pi < θn then
7: Yi = −1(Negative− label)
8: else
9: Yi = ∅(Unknow − label)

10: end if
11: i = i+ 1
12: end while
13: return Y

Our pseudo-labeling method benefits from the “open-
world” capabilities of the large VLM, enabling the use of
rich, free-form text with a long list vocabulary of visual cat-
egories. In zero-shot learning applications, these VLMs al-
low us to obtain visual embeddings and potential label em-
beddings with ease. The cosine similarity between these
embeddings can then be used to perform image classifica-
tion. We adopt this methodology for multi-label learning
in our work. As shown in Figure 2, the VLPL employs
a visual encoder EV : Rw×h×3 → Rd and a text en-
coder EL : Rm×dc → Rd to extract the image and text
embeddings, respectively. The visual inputs are 3-channel

images of shape w × h, while the text inputs are prompts
consisting of m words, each of which is embedded into a
dc-dimensional vector. Both the image and text inputs are
mapped into a d-dimensional latent space. We obtain a vi-
sual embedding vector eI ∈ Rd and n label embedding vec-
tor e1L, e

2
L, ..., e

n
L ∈ Rd, where n denotes the label number

of the category space. We compute the dot product between
eI and each of the eiL, resulting in an n-dimensional vector,
where the i-th element means the similarity between the im-
age and the i-th label query. This similarity vector can be
used to predict the label of the image, and the probability pi
of the appearance of the i-th label on the image is computed
by the temperature softmax function

pi =
exp(< eI , e

i
L > /τ)

ΣL
j=1exp(< eI , e

j
L > /τ)

(1)

where < ·, · > denotes the dot product and τ is a tempera-
ture scalar of the softmax function.

As shown in Algorithm 1, we use the equation 1 to mea-
sure the similarity between the image and query labels. We
determine the pseudo-label in three formations: positive,
negative, and unknown using one threshold, namely, a pos-
itive threshold θ and a negative label percentage coefficient
δ%. For the input image I and the i-th query label, if the
measurement similarity pi is over than θ, we set Yi as pos-
itive. In terms of the large label space of multi-label learn-
ing, a given image has a few positive labels, and the rest are
negative. We can rank the similarity vector P = [p1, ..., pL]
and set δ% of the smallest similarity values as negative la-
bels. Afterward, the rest are set unknown. By following
this simple algorithm, we can generate a new pseudo-label
vector given the input image.

3.4. Loss Function

In the SPML domain, there is only one ground truth pos-
itive label, and the rest are unknown. How these labels
are utilized by the loss function plays a crucial role in
the model training. The Assuming-Negative (AN) Loss,
where the unknown labels are assumed to be negative, is
commonly used as the baseline loss for SPML tasks, but
leads to the generation of many false negatives during the
model training. We instead use the more recently proposed
Entropy-Maximization (EM) loss, which acknowledges the
un-annotated labels as unknown, rather than negative, and
seeks to maximize the entropy of predicted probabilities for
the unknown labels.

LossEM (x(n), y(n)) = − 1

L
ΣL

l=1[1[yn
l =1]log(fl(x

(n)))

+1[yn
l =∅]αH(fl(x

(n)))]

(2)
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H(fl(x
(n))) = −[fl(x

(n))log(fl(x
(n)))

+(1− fl(x
(n)))log(1− fl(x

(n)))]
(3)

where H(f(x(n))) is the entropy loss of the unknown la-
bels.

In our model, the VLPL will generate pseudo-labels for
positive, negative, and unknown categories. We use the EM
loss strategy to acknowledge the unknown labels and inte-
grate the pseudo-label loss of our model. Our loss is the
following:

Loss(x(n), y(n)) = − 1

L
ΣL

l=1[1[yn
l =1]log(fl(x

(n)))

+1[yn
l =∅]αH(fl(x

(n)))

+1[yn
l =1̂]βS(fl(x

(n))) + 1[yn
l =−1̂]γS(fl(x

(n)))]

(4)

S(f(x(n))) = (1− ρ)log(1− fl(x
(n)))− ρlog(fl(x

(n)))
(5)

where, 1[yn
l =1̂] denotes the pseudo positive-label, 1[yn

l =−1̂]

denotes the pseudo negative-label, S(f(x(n))) is the
pseudo-label loss with labeling smooth ρ, α, β, γ are the
coefficients of each loss section.

However, in experimentation (discussed in Section 4.5),
we found that the best model performance is achieved when
we only use pseudo-positive labels, while keep the rest la-
bels unknown, rather than including pseudo-negative labels.
Therefore our final loss function is:

Loss(x(n), y(n)) = − 1

L
ΣL

l=1[1[yn
l =1]log(fl(x

(n)))

+1[yn
l =∅]αH(fl(x

(n))) + 1[yn
l =1̂]βS(fl(x

(n)))
(6)

4. Evaluation
4.1. Implementation Details

Our models are implemented using PyTorch. We train the
model for 10 epochs, using the Adam [11] optimizer. The
batch size is 8. The learning rate is determined by grid
search in the range of the { 1e − 3,1e − 4,1e − 5}, and we
find 1e−5 yields the best performance. For data augmenta-
tion, we use horizontal flipping for the training dataset with
50% probability. Images are resized to 448 × 448 for both
our proposed model and all baseline models. We follow
the conventions of previous works in multi-label classifica-
tion [2, 27] for model evaluation and report the mean aver-
age precision (mAP).

4.2. Dataset

Since there are currently no datasets explicitly designed for
Single Positive Multi-label Learning (SPML), we use [2]

and others’ adaptation of existing large-scale multi-label
datasets to simulate a “single positive” scenario. This
method allows us to retain all ground-truth labels for per-
formance evaluation and training phenomena analysis. Af-
ter setting aside 20% of the training images for validation,
one random positive label is kept for each training image,
treating all other labels as un-annotated. This operation
is performed once for each dataset. It’s important to note
that the validation and test sets remain fully labeled. We
use four well-known datasets in our experiments, namely:
PASCAL VOC (VOC) [5], MS-COCO (COCO) [13], NUS-
WIDE(NUS) [1], and CUB-200-2011(CUB) [25].
PASCAL Visual Object Classes Challenge
(VOC2007) [5] is a widely used dataset for multi-
label recognition. It contains 5,011 images in the
training/validation set, and 4,952 images as the test set.
There are 20 possible classes, with an average of 2.5
categories per image.
Microsoft COCO [13] (MS-COCO) is another widely used
benchmark for multi-label image recognition. It contains
82,801 training images and 40,504 validation images. There
are 80 categorized objects in this dataset, with an average of
2.9 object labels per image. Since this data set lacks of test
set, the validation images are often used for evaluation in
the literature.
NUS-WIDE [1] is a real-world web image dataset. Orig-
inally, the dataset contains 269,648 Flickr images with 81
manually annotated visual concepts. However, due to some
Flickr image downloading links expiring, it is impracti-
cal to evaluate our model using the original dataset. We
use the curated dataset provided by the authors of AckUn-
known [27], which has 150,000 training images and 60,260
test images, to conduct our experiment and provide a fair
comparison to recent work.
CUB [25] is a dataset for fine-grained visual categorization
task. It contains 11,788 images of 200 subcategories be-
longing to birds, with 5,994 training images and and 5,794
testing images. In the experiment, the model will predict
312 attributes of each bird images.

4.3. Baseline Performance

Most of the current state-of-the-art models use a ResNet50
backbone. Because of this, we first explore the performance
of our proposed model using a ResNet50. Our experimen-
tal setting – using a single-positive label adaptation of the
datasets and reporting the mAP evaluation metric, evalu-
ated on the model that achieves the highest accuracy on a
withheld validation set – is the same as the previous meth-
ods [2, 10, 27]. Table 1 reports the performance results of
the different models. The proposed model, VLPL, achieves
mAP = 89.10 on the VOC dataset, mAP = 71.45 on the
COCO dataset, mAP = 49.55 on the NUS-WIDE dataset,
and mAP = 24.02 on the CUB dataset. Compared with
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Ann. Labels Methods VOC COCO NUS CUB

Full Annotation
All P. & All N BCE Loss 89.42 76.78 52.08 30.90

Limited Annotation
1 P. & All N BCE Loss 87.60 71.39 46.45 20.65

AN Loss 85.89 64.92 42.27 18.31
DW [2] 86.98 67.59 45.71 19.15
L1R [2] 85.97 64.44 42.15 17.59
L2R [2] 85.96 64.41 42.72 17.71
LS [16] 87.90 67.15 43.77 16.26

N-LS [2] 88.12 67.15 43.86 16.82
1 P. & 0 N. EntMin [6] 53.16 32.52 19.38 13.08

Focal Loss [14] 87.59 69.79 47.00 19.80
ASL [20] 87.76 68.78 46.93 18.81
ROLE [2] 87.77 67.04 41.63 13.66

ROLE+LI [2] 88.26 69.12 45.98 14.86
EM [27] 89.09 70.70 47.15 20.85

EM+APL [27] 89.19 70.87 47.59 21.84
LL-R [10] 89.2 71.0 47.4 19.5
LL-Ct [10] 89.0 70.5 48.0 20.4
LL-Cp [10] 88.4 70.7 48.3 20.1

DualCoOp [22] 83.6 69.2 42.8 −
1 P. & 0 N. VLPL(Ours) 89.10 71.45 49.55 24.02

Table 1. Results of the different models with the same experimental settings as the [2]. Using the same input image size setting 448× 448,
our model outperforms the limited-annotation baseline models for the benchmark COCO, NUS-WIDE, and CUB.

the SOTA baselines under the same experimental setting,
VLPL demonstrated superior performance across all the
benchmarks, indicating the effectiveness of our proposed
model. While we focus on the limited annotation setting,
we also compare our performance to a model trained using
full ground truth annotations. Our performance using lim-
ited annotations is competitive with the model using the full
set of ground truth annotations.

4.4. Backbone Experimentation

In the previous sections, we prove the effectiveness of our
proposed model using a ResNet50 model and explore the
model performance with different conditions. The current
state-of-the-art methods for SPML concentrate more on the
methodology but ignore the power of the classifier back-
bone architecture. It’s widely known, however, that for
computer vision tasks, an optimal network architecture with
suitable pretraining initialization can substantially improve
the model’s performance [18]. To this end, we explored var-
ious network architectures and pretraining initializations. In
our implementation, we select ConvNeXt-XL and ViT-L as
the backbone. For the pretraining initialization, we choose
the ConvNeXt-XL model pretrained under ImageNet1k and
ImageNet22k, and the ViT-L model initialized with CLIP

weights. Table 2 presents the different pretrained backbone
performances. We observe that all the chosen large network
architectures outperform the ResNet50 backbone, indicat-
ing that model architecture scaling can be beneficial for per-
formance improvement. While the model scale has a signif-
icant impact on performance, the performance gap between
different pretraining initializations is not significant.

While the ResNet50 baseline trained using VLPL al-
ready outperformed other baseline methods, the best larger
models achieve even more impressive performance im-
provement. Specifically, compared with ResNet50 back-
bone, we achieved a 5.7% increase in mAP (up to 94.16)
on the VOC dataset, a 18.5% increase (up to 84.65) on the
COCO dataset, a 15.3% increase (up to 57.12) on the NUS-
WIDE dataset, and an 8.4% increase (up to 26.04) on the
CUB dataset. Considering the model performance across
all four benchmarks, the ConvNeXt-XL model pretrained
with ImageNet-22k achieves the best performance on aver-
age.

4.5. Positive Labels vs. Negative Labels

In this section, we explore the influence of pseudo-positive
and pseudo-negative labels on the performance of the VLPL
model. Multi-label learning datasets are typically charac-
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Backbone Pretrained VOC COCO NUS CUB
ResNet-50 ImageNet1k 89.10 71.45 49.55 24.02
ConvNeXt-XL ImageNet1k 93.31 83.37 56.11 25.49
ConvNeXt-XL ImageNet22k 93.37 84.65 57.12 26.04
ViT-L CLIP 94.16 80.55 52.53 12.82

Table 2. Results of the different network architectures and pretraining initializations for the proposed model. Compared with ResNet50
backbone, all of the chosen large network architectures show better performance. Further, it shows the ConvNeXt-XL with ImageNet22k
pretraining initialization weights achieves comparable performance across the different datasets.

δ% 10% 20% 30% 40%
Pos. + Neg. 88.51 88.43 88.33 88.13
Pos. only 89.10

Table 3. The results on different pseudo-negative label percentages
over the total label vector (from 10% to 40%). We conducted the
experiments on benchmark PASCAL VOC.

terized by an imbalance between positive and negative la-
bels, as noted in previous studies [19]. For instance, the
Pascal VOC dataset has 20 potential labels, yet the aver-
age image contains only 2.5 positive labels. This imbalance
creates a challenging environment for model learning. In
the context of our method, for a predicted label vector, we
can predict pseudo-negative labels by ranking the similarity
scores between visual and label embeddings. We then se-
lect the labels with the least δ% similarity scores as pseudo-
negative labels. The rationale behind this is that the labels
with the least similarity scores are likely to be the ones that
are most irrelevant or ‘negative’ to the given image. To un-
derstand the impact of the number of pseudo-negative la-
bels on model performance, we conducted experiments us-
ing varying percentages of pseudo-negative labels, ranging
from 10% to 40% of the total label count on the benchmark
Pascal VOC dataset.

Table 3 shows the results of model performance on dif-
ferent pseudo-negative labels. We observe a decrease in
model performance as the number of pseudo-negative la-
bels increases. Our hypothesis for the cause of this is that
the imbalance between positive and negative labels nega-
tively impacts model performance. By comparing models
that use both pseudo-positive and pseudo-negative labels
against models that only utilize pseudo-positive labels it ap-
pears that the latter approach provides better performance.
In light of these findings, our practical implementation uses
pseudo-positive labeling exclusively, while treating the re-
maining labels as unknown.

4.6. Label Smoothing

Label smoothing (LS) is a method to overcome overfit-
ting and mitigate the label noise for multi-class classi-
fiers [16, 23]. In our implementation, we adopt LS for

VOC COCO NUS CUB
w/o LS 88.69 70.96 49.13 23.71
w LS 89.10 71.34 49.55 24.02

Table 4. The results on model performance with and without la-
bel smooth (LS) on the pseudo-labeling. We conducted the ex-
periments on four benchmarks. The results indicate that LS con-
tributes more to the model performance.

our pseudo-labeling and set the ϵ = 0.9. Therefore, the
i-th pseudo positive-label category entropy loss function is
lossi = −[ϵ(log(f(x)))+(1−ϵ)(log(1−f(x))]. As shown
in Table 4, we conduct the experiments with and without LS
over four benchmarks. The results indicate applying LS im-
proves the model performance compared to the model with-
out it. We set the label smoothing as the default setting in
our whole experiment.

4.7. Temperature Hyperparameter & Threshold

The temperature scalar τ of equation 1 and pseudo-labeling
threshold θ are crucial hyperparameters, as they directly
influence the pseudo-labeling processing. We conducted
a hyperparameter search experiment on a range of values
for these two hyperparameters. Considering the differ-
ent benchmark datasets under different label query num-
bers, especially for the CUB dataset. We set τ =
[0.01, 0.03, 0.05, 0.07, 0.09] and θ = [0.1, 0.2, 0.3] for
VOC, COCO, and NUS-WIDE datasets. Meanwhile, we set
τ = [0.01, 0.03, 0.05, 0.07, 0.09] and θ = [0.01, 0.03, 0.05]
for CUB to identify the optimal settings. Our results, shown
in Figure 3, indicate that the model performance is sensitive
to the τ and θ. To visualize the performance of the different
hyperparameters, we set each threshold θ as the condition
and plot the different temperature value τ over the same
θ. In terms of the performance over different benchmarks,
τ = 0.03 and θ = 0.3 yield superior performance for VOC
(mAP = 89.10) dataset, τ = 0.01 and θ = 0.3 yield
superior performance for COCO (mAP = 71.45) dataset,
τ = 0.03 and θ = 0.1 yield superior performance for NUS-
WIDE (mAP = 49.55), and τ = 0.03 and θ = 0.01 yield
superior performance for CUB (mAP = 24.02).
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Figure 3. The hyperparameter search of the temperature scalar τ , and pseudo-labeling threshold θ across the four benchmark datasets:
PASCAL VOC, COCO, NUS-WIDE, and CUB.
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Figure 4. The visualization results on the training and testing images of COCO dataset. The blue bar is the prediction probability of each
positive label. Compared with the baseline method AN, our VLPL shows superior performance for the final label prediction.

4.8. Results Visualization

To demonstrate the efficacy of our approach, we provide
visualizations in Figure 4, highlighting the label prediction
probability generated by our method compared with those
from the baseline model (referred to as AN). Our proposed
model demonstrates a high level of confidence in accurately
identifying positive labels, compared with the predictions
offered by the baseline model. For the purposes of our vi-
sualization, we have intentionally selected instances from
both the training and testing datasets. This choice allows us
to showcase how our VLPL method consistently excels in
performance across different stages of model training and
testing. The visual evidence serves as a testament to the
advantages of employing VLPL, both during the training
phase and in the application to unseen data.

5. Discussion

We introduced VLPL, an innovative yet simple approach
to single-positive multi-label learning. VLPL leverages a

large-scale vision-language model and utilizes the aligned
visual and textual embedding similarities to generate
pseudo-labels. Our method consists of simple components
and results in significant performance improvements across
several popular datasets when compared to existing, more
complex approaches. We carried out a comprehensive set
of experiments and ablations to better understand the impact
of various factors within the VLPL framework and explore
how to maximize accuracy.

SPML is an extreme challenge of the weakly-supervised
multi-label classification task. Meanwhile, pseudo-labeling
is one of the most effective methods for SPML task. Pre-
vious pseudo-labeling methods concentrate on the single
modality (visual embedding) and lacking a stable label ref-
erence. However, CLIP, a model jointly mapping visual and
label embeddings into the same space, makes it possible to
refer the different visual embeddings to the corresponding
labels. What’s more, as a foundation model, CLIP is well-
pretained with a large-scale dataset, making it capable of
extracting the discriminative features.
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