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Abstract

Handwritten Document Recognition (HDR) has emerged
as a challenging task integrating text and layout informa-
tion recognition to tackle manuscripts end-to-end. Despite
advancements, the computational efficiency of processing
entire documents remains a critical challenge, limiting the
practical applicability of these models. This paper presents
the Document Attention Network for Computationally Effi-
cient Recognition (DANCER). The model differs from ex-
isting approaches with its unique encoder-decoder struc-
ture, where the encoder reduces spatial redundancy and
enhances spatial attention, and the decoder, comprising
transformer layers, efficiently decodes the text using opti-
mized attention operations. This design results in a fast,
memory-efficient model capable of effectively transcribing
and understanding complex manuscript layouts. We eval-
uated DANCER’s efficacy on the ICFHR 2016 READ com-
petition dataset, focusing on recognizing single and double-
page historical documents. We demonstrate how DANCER
can triple the training batch size compared to prior models
within the same memory limits and reduce memory usage by
up to 65% without compromising recognition quality. The
proposed approach sets new standards in efficiency and ac-
curacy for HDR solutions, paving the way for practical and
scalable applications in diverse contexts.

1. Introduction

Despite the advent of digital technologies, handwriting re-
mains deeply rooted in various aspects of our lives, from
personal notes and letters to official documents and histor-
ical archives that preserve our society’s written past. The

ability to automatically transcribe and analyze handwritten
content allows information retrieval and preservation, in ad-
dition to enabling the development of intelligent systems
that can interact with and understand manuscript content.

Handwritten Text Recognition (HTR) is a challenging
research area with numerous applications that range from
digitizing historical documents to automatic handwritten
data ingestion. Over the years, deep learning models have
achieved remarkable performance in HTR by leveraging re-
current and convolutional neural networks [34, 43], and,
more recently, attention-based models [10, 11, 28].

Recent advances in the handwritten text recognition field
based on transformer models [12, 13] enabled the recog-
nition of whole documents in a segmentation-free end-to-
end fashion without constraints present in previous works
[10, 11], such as relying on segmented text regions. Re-
moving the segmentation step avoids the possibility of er-
rors stemming from this stage, simplifies HTR pipelines,
and increases the available context for learning and interpre-
tation. The so-called Handwritten Document Recognition
(HDR) is an exciting modeling framework that recognizes
both the handwritten content and layout entities to tackle
manuscripts end-to-end.

The current approaches for HDR present high computa-
tional costs, mainly arising from the use of transformer lay-
ers with quadratic time and memory complexity in sequence
length [17]. Yet, there are multiple benefits to improving
the computational cost of handwritten text recognition mod-
els. Minimizing the memory requirements of HTR models
not only impacts their practical use in real-world scenarios
but also makes them more accessible to the general pub-
lic, broadening the potential applications of these technolo-
gies. Besides, it allows training and deploying these models
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in limited hardware with low memory resources and favors
larger batch sizes that decrease the total training time.

Optimizing the time required to train new models can be
crucial for research and industrial parties as it helps to inno-
vate at a faster pace. There are also environmental concerns,
as optimizing training time helps minimize the carbon foot-
print and energy consumption. Furthermore, a faster so-
lution means quicker iterations, enabling researchers and
practitioners to explore various architectures and hyperpa-
rameters, which can lead to reduced development time.

In addition to the speed and memory concerns, maintain-
ing high recognition rates is essential to delivering meaning-
ful transcriptions. Accordingly, our primary goal is to pro-
pose a faster document recognition model that requires less
memory and exhibits recognition rates on par with state-
of-the-art (SOTA) approaches. With this goal in mind, we
present a Document Attention Network for Computation-
ally Efficient Recognition (DANCER). Compared to SOTA
models, our HDR model significantly improves computa-
tional efficiency without sacrificing recognition accuracy.

We conducted extensive experiments on a historical
handwriting benchmark and compared DANCER with ex-
isting state-of-the-art models. The results suggest that
DANCER presents superior performance in speed and
memory requirements while maintaining robust recognition
rates that are on par with SOTA. We evaluated DANCER
in single-page and double-page versions of the READ 2016
historical dataset. Among the improvements obtained, we
can highlight that DANCER can process three times more
samples than previous solutions with a memory reduction
of up to 65% compared to other methods under similar con-
ditions. We can summarize our contributions as follows:
• We propose a new model for handwritten document

recognition that significantly reduces computational
costs, offering a novel approach regarding efficiency and
scalability. The key innovations that our model introduces
for the document recognition task include:
– Enhancement of the encoder recognition module with

a gated depth-wise separable convolution for advanced
attention-aware feature extraction, enabling selective
focus on key elements within handwritten texts.

– The use of an optimized convolution operation, called
octave convolution [9], that minimizes the spatial re-
dundancy, thus enhancing processing efficiency.

– Enhancement of the decoder module through highly ef-
ficient attention operations, i.e., memory-efficient at-
tention and FlashAttention [14, 35], to address compu-
tational limitations of traditional attention models.

Collectively, these changes make our approach more effi-
cient and scalable to larger and more complex datasets.

• We carried out thorough evaluations of DANCER and
predecessor models in both single and double-page doc-
ument recognition tasks, demonstrating the adaptability

and effectiveness of our model across multiple real-world
scenarios. The proposed model excels in processing ef-
ficiency and memory utilization while preserving high
recognition accuracy.

• We perform scalability analyses that help assess the ben-
efits brought by our proposal. We discover that DANCER
is better at managing the computational resources as the
compute load grows, whether in terms of batch size or the
document’s number of text lines.

2. Related Work
Most of the research in HTR has been conducted based
on solutions requiring segmented characters, words, lines,
paragraphs, or an isolated text column. That implies that
layout analysis and segmentation are necessary before text
recognition. However, over the past few decades, there has
been a trend toward minimizing the restrictions required to
recognize handwritten texts, aiming to build what is referred
to as unconstrained handwritten text recognition. As such,
removing the segmentation requirements has been the target
of many previous works since the step might cause subse-
quent errors in a recognition pipeline.

In this context, we can highlight the method proposed by
[19] to directly recognize text lines without explicit charac-
ter segmentation using the Connectionist Temporal Classi-
fication (CTC) objective function. The use of the CTC loss
to train recurrent or convolutional neural networks became
a standard practice to recognize lines of handwritten text
until the present [3, 7, 8, 16, 21, 22, 30, 34, 38, 41, 43]. Fol-
lowing a different line, other researchers have investigated
attention models to predict character sequences from text
line images [1, 23, 28, 33, 44].

There were also developments toward recognizing hand-
written content within paragraph images, meaning an ex-
plicit line segmentation step would not be needed [2, 4,
37]. Initial works such as the ones by [2, 4] used Multi-
dimensional Long-Short Term Memory (MDLSTM) net-
works to build attention-based models. However, the re-
sults were far from what was achieved with line-level solu-
tions. [4] used a character-based MDLSTM attention model
with speed limitations mainly due to the decoding process-
ing recognizing a single character at a time.

More recent studies such as [10, 11] matched or outper-
formed systems that receive pre-segmented lines working
directly on paragraph images. On the one hand, [11] pro-
poses the Vertical Attention Network (VAN) approach, an
encoder-decoder architecture with an attention mechanism
for selecting the features that represent the current text line
being read combined with a Long-Short Term Memory net-
work. On the other hand, the model proposed in [10] is a
recurrence-free and attention-free alternative to the previous
version, having a single convolutional layer as the decoder.

Although the proposals in [10, 11] can perform the
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recognition without explicitly segmenting the text lines, the
investigations are restricted to paragraph images. A natu-
ral evolution is, therefore, the recognition of complete text
pages. Under this challenge, the first approaches were two-
step solutions that would first detect the text lines and then
proceed to their recognition. [31] introduced a model that
learns to predict Start of Line (SoL) positions to derive a
bounding box to extract the line and feed a line-level HTR
model. In the Start-Follow-Read (SFR) model [45], besides
learning to predict the SoL, a line follower network assists
in extracting warped lines to feed a line-level recognition
module. Suit et al. [40] jointly train text line detection
and recognition neural networks under a multi-task learning
framework and take advantage of weight sharing between
both models to increase performance. Other works also fol-
low a similar strategy of jointly training text detection and
transcription networks [5, 6].

Recent works [39, 46] presented solutions that avoid
the two-step segmentation and line-level recognition frame-
work. Instead, these models directly learn to recognize
manuscript content without segmenting lines or paragraphs.
[46] achieves full-page recognition by unfolding the input
paragraph image into a single very large text line, with the
downside that it does not preserve the line breaks. Since it
recognizes a continuous list of characters over a flattened
1D vector, it only handles pages with one column due to the
lack of understanding of the document layout.

In [39], an attention-based encoder-decoder model ca-
pable of handling complex document pages such as two
columns is presented. The authors used the ResNet-34 [20]
backbone for the encoder and a transformer network as the
decoder [42]. The model has approximately 28 million pa-
rameters, considerably higher than other works, including
ours. Although the model has fewer constraints compared
to early works, the error rates are still significantly below
what is achieved with cropped text line approaches. As a
result of the developments aiming to build a robust and un-
constrained handwritten text recognition solution, a recent
trend refers to recognizing both transcription and layout en-
tities contained in a document as a unified task.

2.1. Handwritten Document Recognition (HDR)

Handwritten Document Recognition is an evolving field
that integrates layout understanding with textual recogni-
tion, enabling end-to-end processing of manuscripts. The
shift from recognizing isolated text regions to entire docu-
ments encompasses complexities that span spatial, contex-
tual, and structural dimensions. HDR must contend with di-
verse document layouts that may include multiple columns
and annotations. This complexity requires sophisticated
models to distinguish between different text regions and un-
derstand their spatial relationships.

The Document Attention Network (DAN) [12] is the first

model to tackle this task with an encoder-decoder model
based on a vanilla convolutional encoder followed by a tra-
ditional transformer decoder [42]. The model is trained us-
ing cross-entropy loss on a softmax output layer with units
representing the respective language alphabet and the layout
entities. [29] evaluates the DAN model to recognize Rus-
sian manuscript documents. One of the main drawbacks of
DAN is its high computational cost. Considering the time
aspect, the decoding process is conducted one character at a
time, so the inference time for a whole page is substantial.

Faster DAN [13] is an evolution model that improves
the inference speed through a multi-line positional encoding
strategy that allows us to decode characters from different
lines in a parallel manner. However, there are computing
limitations even in this optimized model. Using traditional
transformers comes with inherent computational cost chal-
lenges, e.g., high memory consumption, training time, and
scaling issues [14, 24, 35], due to the quadratic complexity
of the standard attention [42]. In light of these challenges,
our work seeks further improvements in the computing side
by proposing a model design with reduced computational
complexity to obtain a faster and less memory resource-
intensive solution without compromising recognition accu-
racy.

3. Proposed DANCER Model
Our document recognition pipeline starts with a prepro-
cessing stage that consists of a standardization step to nor-
malize the input. During the model training, preprocess-
ing includes on-the-fly data augmentation comprising a set
of techniques commonly adopted in predecessor studies
[12, 13] (random scale, random perspective, elastic distor-
tion, dilation and erosion, color jittering, gaussian noise,
gaussian blur, and random sharpening). The optical model
DANCER receives the preprocessed document image and
end-to-end recognizes the manuscript content and layout in-
formation.

3.1. Problem Formulation

We formulate the HDR task as finding the likeliest token
sequence t∗ = (t1...tn)t∈T given the document image D,
where T = A ∪ L ∪ {< eot >} encompasses the dataset’s
alphabet A, the layout tokens L and an extra token < eot >
that indicates when the model has finished the transcription.
Layout tokens are in the form of XML tags with an open and
a closed variant.

3.2. Architecture

The architecture of the computationally efficient document
attention network we introduce in this paper is illustrated in
Figure 1. The network follows an encoder-decoder design
composed of an optimized fully convolutional encoder and
transformer decoder.
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Figure 1. Architecture of the Document Attention Network for
Computationally Efficient Recognition. The model follows an
encoder-decoder design. The encoder comprises vanilla, octave,
depthwise, and gated conv layers. The decoder constitutes trans-
former layers based on memory-efficient and FlashAttention.

The encoder was designed to be faster while still being
capable of learning a representative space that captures the
important information from the documents. It comprises
ReLU-activated convolution layers of different types com-
bined with max pooling, normalization, and dropout layers.
Due to the benefits found in [11–13], we use a Diffused Mix
Dropout [11] to increase regularization. It consists of vary-
ing the layer’s localization given a predefined set of avail-
able positions and the type of dropout layer – standard or
spatial dropout. The localization and dropout types are ran-
domly selected. We use 0.5 and 0.25 dropout probabilities
for standard and 2D dropout layers.

The encoder starts processing the document image with a
vanilla convolutional block. The block comprises three tra-
ditional convolution layers plus an instance normalization
layer to increase the model’s stability. The Mix Dropout is
placed before the first or second convolution layer in this
first block.

The vanilla’s convolutional block feeds a sequence of
five blocks of octave convolutions (OctConv), compris-
ing most of the encoder layers. OctConv is a special
convolutional layer that splits the signal into high and
low-frequency paths to decrease the redundancy of slow-
changing features stored under the same spatial resolution
as the high-frequency features.

We chose this convolution because it can deliver a ro-
bust feature learning capability while improving speed and
memory consumption. This multi-scaling strategy might be
beneficial in capturing features on different abstraction lev-
els. That is, it could enable the optical model to capture the
complex details of character shapes, such as thin lines and
character stroke combinations (through the high-frequency
path), as well as the overall patterns and standard text struc-
tures (through the low-frequency path), which are impera-
tive for understanding the text’s comprehensive layout and
contextual background.

The octave blocks consist of two octave convolution lay-
ers followed by an instance normalization layer. We also in-
clude the Diffused Mix Dropout and the possible locations
where it can be applied are before the second convolution
layer, before the normalization layer, or after the normal-
ization layer.

The last block comprises three highly efficient depth-
wise separable conv layers. The adoption of this convolu-
tion type in the upper layers, which holds the highest num-
ber of filters, is strategically motivated by its efficiency ben-
efits. Depth-wise separable convolution, by decoupling the
spatial and depth (channel) dimensions of the convolution
process, significantly reduces the computational complex-
ity and the number of parameters compared to traditional
convolution.

We introduce a gated convolution [15] in the depth-wise
portion of the last layer to include spatial attentional aware-
ness in our encoder. The gated conv operates by applying an
element-wise multiplication of the convolution output with
a gating signal. The signal is generated by another sigmoid-
activated convolution, enabling selective focus on the more
relevant features. The gated depth-wise separable conv can
potentially help our model focus on the relevant handwrit-
ing content and avoid the noise usually present in historical
documents.

The sequence of encoder blocks totalizes 16 layers plus
the extra gated convolution inside the last gated depth-wise
separable convolution. For detailed hyper-parameter infor-
mation, refer to the supplementary material. Next, a series
of 8 transformer decoder layers receive a flattened version
of the convolutional encoder’s output with a 2D positional
encoding strategy to maintain information about the doc-
ument image’s multi-dimensional nature. The number of
attention heads is set to 4, and the dropout to 0.1. The out-
comes of previous studies directly influenced these hyper-
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parameter settings [12, 13]. The output token embeddings
are also encoded with positional data and provided to the
decoder. We employed the multi-query positional encoding
strategy devised in [13] to improve inference time by de-
coding multiple characters simultaneously. This is enabled
by a two-step decoding process that first predicts the start of
each line and then simultaneously queries for multiple line
token outputs.

The general structure of the decoder layer follows the
original transformer architecture comprising a masked self-
attention layer, a cross-attention layer, and a feed-forward
neural network block. Residual connections follow all
three components. We integrate two optimized atten-
tion operations—memory-efficient attention [35] for self-
attention layers and FlashAttention [14] for the cross-
attention layers—to harness the combined benefits of these
two advanced mechanisms within DANCER’s architecture.
The design’s philosophy behind memory-efficient atten-
tion focuses on reducing the total memory footprint, while
FlashAttention focuses on decreasing the number of mem-
ory reads and writes to improve runtime. This approach was
motivated by the need to enhance computational efficiency
and manage the model’s scalability when handling the com-
plex task of handwritten document recognition. Our goal is
to ensure that our model remains robust and responsive even
as the size of the documents increases.

4. Experiments
4.1. Data and Metrics

READ Statistics Single Page Double Page

Training Samples 350 169
Validation Samples 50 24
Test Samples 50 24
Total 450 217
#Chars 89 89
#Layout Tokens 10 10
Width (pixels) 1198.75 2396.48
Height (pixels) 1761.55 1761.58

Table 1. Details of the experimental data used. The values of
image width and height are averaged values across the dataset.

The experiments were conducted over the ICFHR 2016
READ dataset [36]. The data, derived from the state archive
of Bozen and part of the European Union’s Horizon 2020
READ project, consists of documents from the Ratspro-
tokolle collection – based on minutes of council meetings
from 1470 to 1805. It is composed of Early Modern Ger-
man handwriting and was introduced in the ICFHR 2016
competition for handwritten text recognition of historical
documents. READ is organized with a classification sys-

tem for text regions into five classes: page (P), page num-
ber (N), body (B), annotation (A), and section (S). An au-
tomated process establishes the reading order, prioritizing
page numbers followed by sections (with annotations read
before the body). READ is divided into training, validation,
and test sets. We use the official single-page partition and
the double-page setup in [12, 13]. Table 1 presents details
of the data collection.

We compute metrics to evaluate the recognition quality
of both the textual transcriptions and the layout understand-
ing. We measure the text recognition performance using
the well-stabilized metrics Character Error Rate (CER) and
Word Error Rate (WER) based on the edit distance [27].
On the layout side, we use the Layout Ordering Error Rate
(LOER) [12], which models the document layout as an ori-
ented graph. This approach allows for a detailed assess-
ment of layout recognition by considering both the struc-
tural hierarchy and the sequential order of layout compo-
nents within the document.

We jointly evaluate text and layout recognition through
the mAPCER [12]. It adapts the mean Average Precision
(mAP) from object detection by using the Character Error
Rate (CER) instead of Intersection over Union (IoU) for ac-
curacy assessment. mAPCER provides a nuanced measure
of how well text regions are classified and recognized in a
document. Since we are interested in offering a solution that
works well in both perspectives, we monitor the mAPCER
metric to select the models for evaluation.

We also assess computational cost-related metrics: la-
tency, throughput, and memory usage. Latency in this work
refers to the time required for the model to process a sin-
gle document. This metric is particularly crucial in appli-
cations where rapid processing of documents is necessary,
such as real-time document analysis systems. Conversely,
throughput measures the number of documents the model
can process in a set time frame. This is especially important
in scenarios involving bulk processing of documents, where
efficiently handling a large volume of documents is a prior-
ity. Furthermore, we monitor the Graphics Processing Unit
(GPU) memory usage.

4.2. Experimental Setup

Our models were developed using the PyTorch [32] frame-
work with Automatic Mixed Precision (AMP) for enhanced
efficiency. We use the xFormers tool [26] to implement our
highly optimized attention building blocks. The comput-
ing environment comprised a GNU/Linux machine running
the Linux Mint 21 system with an NVIDIA RTX 4070 TI
GPU (12GB VRAM), an Intel Core i7-10700k 3.80 GHz,
and 32 GB RAM. We employed the Adam optimizer [25]
to optimize our models. The models underwent a pretrain-
ing phase on synthetic text lines using the CTC objective
function [18], while the primary training on actual hand-
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written document images utilized cross-entropy loss. An
early stopping mechanism was implemented during pre-
training, with a patience threshold set at 80 epochs. Our
models were trained within a 40-hour window, selecting the
best-performing model on the validation set for further test-
ing. Throughout this research, we conduct experiments with
DANCER and the state-of-the-art models DAN and Faster
DAN for comparison purposes.

4.3. Training and Evaluation Results

Table 2 depicts the results on the single- and double-page
READ dataset obtained by the DANCER and predecessor
models after a 40-hour training period. We chose a training
batch size that allowed us to fit all models within the GPU
memory capacity, while the evaluation on the test set was
made on a per-image basis. We used smaller versions of ear-
lier models for double-page documents to fit into the GPU
memory. Furthermore, we added an extra experiment where
we selected the maximum batch size our model could reach
using the available GPU, referred to as DANCER-Max.

The DANCER model can handle larger training batch
sizes (6 for single pages and 3 for double pages) within
the same 12GB memory constraint as the other models, ef-
fectively tripling the batch processing capacity. This capa-
bility indicates more efficient memory usage and can con-
tribute to faster training times due to better GPU utilization.
While DANCER reaches a maximum GPU usage of ap-
proximately 3.5GB processing single-page documents, the
DAN variants consume around 9 GB, reducing the memory
usage by roughly 61%. For double-page documents, the re-
duction reaches 65%. Besides the max memory peak, we
can notice the difference in memory holds during the whole
training, as shown in Figure 2. DANCER’s low memory
cost on double-page documents allows us to form mini-
batches, while the same does not hold for reference works
that can only be fed with single document images.

In single-page documents, DANCER’s inference time is
lower than other models, and it can achieve a 7× speedup
in latency compared to DAN. Furthermore, DANCER can
process a considerably higher number of single documents
per minute than other models, reaching 118 manuscripts.
As per Figure 3, we can also observe the throughput during
training, revealing that DANCER-Max can handle approxi-
mately twice as many documents as Faster DAN. The abil-
ity to process more documents in less time might be crucial
for large-scale document processing applications.

These improvements in the computational costs can be
attributed to the use of octave convolutions and optimized
attention operations. The low-frequency path of the oc-
tave convolution operates in a smaller resolution, reduc-
ing the convolution cost. Besides, the high computational
cost caused by the quadratic nature of self-attention layers
is clearly an issue when training transformers, and using

memory-efficient attention and FlashAttention can signifi-
cantly alleviate the cost since these operations optimize how
attention scores and intermediate representations are stored
and computed, minimizing redundant operations.
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Figure 2. The graph presents DANCER’s GPU memory consump-
tion as a function of the training epochs on single-page document
recognition.
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Figure 3. The graph presents the throughput in documents per sec-
ond as a function of the training epochs computed on the validation
set of the single-page READ dataset.

Regarding the recognition capabilities, the improvement
in mAPCER for double-page documents is especially note-
worthy as this metric evaluates the joint recognition of both
text and layout. Two-page manuscripts feature more com-
plex layouts, with text flowing in parallel columns. This
structure demands sophisticated mechanisms for accurately
detecting page boundaries and determining the correct read-
ing order. DANCER is the only model capable of reach-
ing a mAPCER over 95%, which marks a notable advance-
ment over the predecessor models in correctly recognizing
the text on the different text regions. Besides, DANCER
achieves a WER of 13.34%, compared to DAN‘s 14.15%
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Method Training Testing

Batch
Size Epochs Max. GPU

Mem.↓ (GB)
CER↓
(%)

WER↓
(%)

LOER
↓ (%)

mAPCER↑
(%)

Lat.↓
(s)

Throughput↑
(docs/min)

Single-page recognition results

DAN⊛ 1 - - 3.43 13.05 5.17 93.32 3.55 -
Faster DAN⊛ 1 - - 3.95 14.06 3.82 94.20 0.66 -

DAN 2 3113 8.9 3.63 14.36 4.61 95.09 3.55 16.9
Faster DAN 2 3282 9.1 3.53 13.84 4.39 94.56 0.66 90.7

DANCER 2 4821 3.5 3.36 13.73 3.37 94.73 0.51 118.0
DANCER-Max 6 5241 9.1 3.37 13.00 5.29 94.24 0.51 118.0

Double-page recognition results

DAN⊛ 1 - - 3.70 14.15 4.98 93.09 8.50 -
Faster DAN⊛ 1 - - 3.88 14.97 3.08 94.54 1.90 -

DAN± 1 3436 9.0 4.31 15.46 4.03 92.89 4.73 12.7
Faster DAN± 1 3866 9.3 3.91 15.05 4.86 92.90 0.75 80.5

DANCER± 1 5243 3.2 3.98 14.58 4.39 93.67 0.63 95.0
DANCER 1 5178 3.3 3.64 14.37 4.51 94.44 0.87 68.9
DANCER-Max 3 5660 8.6 3.37 13.34 3.91 95.08 0.87 69.2

⊛ Official results extracted from the respective papers.
± These models had their number of decoder layers reduced from 8 to 5 layers to fit within GPU memory capacity.

Table 2. Results of the single-page and double-page experiments on the ICFHR 2016 READ dataset considering a time-based training
time of 40 hours. ↓ indicates that lower is better while ↑ indicates that higher is better. We also included the official state-of-the-art
reports obtained with 2-day pretraining and 4-day training. The throughput indicates the average number of processed documents per
minute, and the latency refers to the average time in seconds that each model takes to process a single manuscript. The DANCER
variants have approximately 6.93M learnable parameters, while DAN and Faster DAN have roughly 7.03M parameters.

in double-page documents, which suggests DANCER‘s re-
fined ability to recognize words within complex layouts.

Overall, DANCER presented better recognition rates
among the most computed metrics. Although one might ar-
gue that the improvements could be attributed to the training
speedup allowing DANCER models to iterate over the train-
ing set more frequently, the fact that DANCER can achieve
such small error rates under a 40-hour window being a shal-
lower model compared to its predecessors (17 × 30 conv
layers) is indicative of DANCER’s effective feature learn-
ing ability with octave, depth-wise and gated convolutions.

4.3.1 Scalability Evaluations

Figures 4a and 4b explore the memory scalability proper-
ties of DANCER using synthetic single-page and double-
page documents to manipulate the number of lines fed to the
model. We evaluate training DANCER with synthetic docu-
ments ranging from 1 to 30 text lines. This approach yields
insights into how memory usage fluctuates as the number of
text lines increases. The memory usage for both DAN and
Faster DAN models increases roughly linearly with the in-

crements in the number of lines. This is typical behavior as
a larger input requires more memory to process. However,
DANCER demonstrates a remarkably restrained increase in
memory usage, suggesting an architecture less sensitive to
the increase in the input size.

As expected, DANCER’s design, encompassing octave
convolution and efficient attention techniques, leads to a so-
lution with better memory scalability properties. The fact
that DANCER is less affected by document length makes
our solution potentially more robust and suitable to tackle
the handwritten document recognition task, which typically
involves full-page document images.

We conduct a second scalability analysis evaluating how
the total prediction time on the test set evolves as we in-
crease the batch size. As shown in Figure 4c, increasing
the batch size substantially decreases DANCER’s predic-
tion time. In contrast, Faster DAN’s prediction time re-
mains relatively constant or decreases only slightly. The
difference in behaviors could be explained by the paral-
lelism exploration of DANCER’s memory-efficient atten-
tion and FlashAttention. These optimized blocks are de-
signed to exploit the parallel processing of modern GPU
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(a) Memory use on the single-page dataset training as a function of the
number of lines in the synthetic samples.
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(b) Memory use on the double-page dataset training as a function of the
number of lines in the synthetic samples.
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(c) Total prediction time on the single-page dataset inference at the test set
as a function of the batch size.
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(d) Total prediction time on the double-page dataset inference at the test set
as a function of the batch size.

Figure 4. Analysis of the scalability considering the GPU memory usage during training and the latency in the inference.

more effectively than standard attention algorithms, which
becomes evident in our analysis as we increase the number
of documents simultaneously processed. DANCER’s im-
provements throughout different batch sizes convey that the
model’s architecture is robust across different workloads.

Figure 4d depicts the prediction time on double-page
documents. In this case, the difference in performance be-
tween the Faster DAN and DANCER is even more pro-
nounced, with Faster DAN taking more than double the
time DANCER takes to complete the test set evaluation.
As double-page documents have a higher spatial resolu-
tion, the impact of downsampling in the low-frequency path
of the octave layers becomes more evident. This high-
lights DANCER’s efficient design in processing complex
documents, resulting in a faster and more accurate solu-
tion. It can offer a more viable solution for practical deploy-
ment cases where many documents need to be processed in
batches, such as digitizing entire archives. Overall, the find-
ings illustrate our model’s enhanced scalability for HDR,
effectively managing computational costs in high-demand
scenarios.

5. Conclusion

This research introduces DANCER, a computationally ef-
ficient document attention model for handwritten docu-
ment recognition. DANCER’s design incorporates highly
optimized building blocks that can bring computing opti-
mizations while maintaining strong recognition accuracy.
We conducted experiments using the challenging histori-
cal dataset READ in both single- and double-page setups.
The results position DANCER as a memory-efficient and
faster alternative to previous state-of-the-art solutions. The
enhancements that DANCER brings in terms of memory ef-
ficiency, speed, and accuracy suggest its potential to revolu-
tionize practical applications, especially in situations with
limited resources or where rapid processing of large vol-
umes of documents is required.

Beyond advancing our understanding of HDR, this paper
also establishes a foundation for future exploration within
this promising domain. In future work, we aim to evaluate
DANCER across more datasets further to extend our knowl-
edge of its capabilities in diverse contexts.
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