
The Myth of the Pyramid

Ramon Izquierdo-Cordova Walterio Mayol-Cuevas
Department of Computer Science

University of Bristol
United Kingdom

izquierdocr@outlook.com, walterio.mayol-cuevas@bristol.ac.uk

Abstract

A deep-rooted strategy for building convolutional neural

networks in computer vision is to increase the number of fil-

ters every time the feature map resolution is decreased. The

notion ruling this pyramidal design is that the expressivity

of the network increases with a higher number of filters to

compensate for losses caused for lower resolutions. This

paper challenges the practice by testing a set of variate

distribution of filters, named filter templates, on popular

CNN architectures (VGG, ResNet, MobileNet and Mnas-

Net). The experimental results show that the superiority

of the pyramidal design holds on the ImageNet dataset but

fails for other datasets such as MNIST, CIFAR and Tiny-

ImageNet, and for other tasks such as audio classification.

CNN models with different filter distributions deliver higher

accuracy with reduced resource consumption suggesting the

pyramidal design has been optimised to Imagenet and that

each model-dataset pair benefits from tuning the number

and distribution of filters. To further illustrate the benefits

of exploring other distributions, this paper shows that the

best performing model from the NASBench101 dataset can

increase its accuracy over the original pyramidal design

with reductions of parameters up to 68 per cent by using tem-

plates. Overall, our experiments point to new opportunities

for model designers to find more efficient models.

1. Introduction

Convolutional Neural Networks (CNNs) have been notably
successful in many domains. However, after all the contin-
uous progress in CNN models, an element in their design
remains almost unchanged. That is, the practice of increas-
ing the number of filters in deeper layers, and essentially
doubling the number of filters when a pooling layer halves
the resolution of the feature map. This pyramidal design is
rooted in the philosophy of deep learning, aiming to build hi-
erarchical representations, reusing simple concepts in lower
levels to form complex higher-level ones [4, 18]. It is gen-

erally believed that a progressive increase in the number of
kernels compensates for a possible loss of the representa-
tion caused by the spatial resolution reduction [31], as well
as improves performance by keeping a constant number of
operations in each layer [7].

This pattern was first proposed in [31] with the introduc-
tion of LeNet and can be observed in a diverse set of models
such as VGG[46], ResNet[23] and MobileNet[25]. Even
models obtained from neural architecture search (NAS), such
as NASNet [58], follow this principle since many automatic
model discovery methods are mainly formulated to search
for layers and connections. Note that all the models explored
use the pyramidal design.

Since LeNet’s emergence in 1998, there has been over-
whelming adoption of the pyramidal filter distribution. It
has been taken for granted that this design is optimal for all
models and datasets, at least in the computer vision domain.
Recently, researchers [13, 44, 49] are looking back to the
uniform distribution of filters from the 1980 Fukushima’s
Neocognitron design [16]. They underline that, by following
a uniform pattern, it is possible to achieve higher perfor-
mance and structure simplicity, making architectures easier
to implement [44, 49] . Our work calls for extending the
search space to other filter distributions that can produce
more efficient models.

To challenge the myth that the pyramidal distribution is of
universal applicability, we evaluate a small set of predefined
distributions, that we call templates. These are straight-
forward linear and piece-wise linear functions that can be
easily implemented in most of the existing classical CNN
and state-of-the-art models. Furthermore, we complement
the definition with a fast method to match the number of
floating point operations (FLOPs) of the original design (or
any other FLOPs budget), allowing for fair comparison of
models.

To use a template, our method takes a base model and
redefines its filter distribution with a new pattern, while
keeping the rest of the model unchanged. The process pre-
serves the number and types of layers, including pooling

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

311

ones. Therefore, feature map resolutions at each level are
those of the original model. Once trained, the new model
requires similar FLOPs.

Templates can easily by applied to a wide range of exist-
ing CNNs excepting few cases. For example, the Pyramid-
Net architecture [22] is designed with zero-padded shortcut
connections within blocks which only allows constant or
incremental distributions of filters.

Experimental evidence shows that simple changes to the
pyramidal distribution of filters can improve accuracy while
reducing the number of parameters and/or memory footprint.
Experiments also highlight that our tested models, although
significantly changed in their original filter distribution, ex-
hibit high resiliency w.r.t. accuracy, a phenomenon that
requires further investigation. This hints to greater freedom
to, for example, choose an appropriate number of channels
given constraints, without significantly sacrificing perfor-
mance.

2. Related Work

The evolution of neural networks has been described in nu-
merous sources e.g. [2, 3, 33, 40, 42, 45]. They usually
describe features extrinsic to network architectures such as
activation and loss functions, parameter optimisation or reg-
ularisation; and architectural innovations, such as multi-path
modules, deeper layers, residual connections and grouped
convolutions [27]. Something that is less covered are the
designers’ arguments for choice of number of filters within
layers. We found that from LeNet [31] almost all subse-
quent convolutional models have been using a pyramidal
filter distribution. As far as we know, besides some limited
exploration experiments performed only on ImageNet [41]
with the ZFNet model [55], there is no other justification for
universally adopting this incremental distribution than “to
keep the richness of the representation” [31].

2.1. Recent Architectures With A Uniform Distri
bution of Filters

We note some works have started to revisit one other pop-
ular distribution, the uniform distribution introduced in
Fukushima’s Neocognitron [16]. Examples include: the
Isometric Neural Network (INN) [44], that argues that the
significance of the internal resolution of hidden layers (in-
ternal feature map resolutions) is more crucial than the res-
olution of the input image; the Vision Transformer (ViT)
[13], composed of constant size transformer encoders keep-
ing equal resolution throughout all layers; the Convolutional
Mixer (ConvMixer) [49], with a similar filter distribution
approach adopted resulting in a relatively simple architec-
ture outperforming ViT and ResNet on ImageNet; and the
work in [26] where other distributions of filters other than
the pyramidal are evaluated on image classification tasks.

These works underline that a different distribution, mostly
uniform in these cases, can achieve performance gains and
structure simplicity. Our work calls for extending the search
space to other filter distributions that can produce more effi-
cient models.

2.2. Neural Architecture Search

Modern algorithms for neural architecture search are in-
tended to produce high performing models with minimal
human interaction [14, 57]. One of the biggest challenges
in NAS is the infinite search space. A frequent solution is
to take a subset of the possible values of the elements of
the architecture, such as types of layers, number of filters
and interconnections. Even so, the problem remains com-
plex [8, 15, 24] and many approaches rely on previously
published search spaces [35, 48]. Interestingly, the search
space for most NAS methods is restricted to different sets of
layers and their connections. However, the filter distribution
in each layer follows the pyramidal pattern.

Exceptions are the new methods for channel number
search (CNS) designed to automatically find the best number
of filters for each layer in a neural network [19, 32]. Yet,
most of the architectures used as base models to initialise
the automatic search in CNS methods share the practice
of increasing filters [5, 12, 51, 54] resembling the LeNet
design[31].

3. Defining a Set of Filter Distribution Tem-

plates

To define the set of templates to investigate filter distribu-
tion effects, we are inspired by findings of PyramidNet [22]
that presents two variations to the incremental pattern that
increase accuracy in a modified ResNet architecture. The au-
thors propose to use multiplicative and additive increases in
the number of filters making the transitions of feature maps
dimensions between layers smoother than in the original
pattern. This is motivated by the harmful effects of sharply
increasing filters between blocks, a phenomenon that has
only been studied in residual networks. However, we have
found that the effect extends to plain architectures too. Thus,
to define our templates, we chose to use the additive pat-
tern, the most successful of the two, and gradually change
the number of channels across the architecture with linear
segments.

We selected as the first template, one with the same incre-
mental distribution but with a smooth step (a) (see Figure
1right). The second template is a distribution with a con-
stant number of filters (b) as in the original Neocognitron.
Another immediate option, contrary to the increasing dis-
tribution, is a decreasing distribution of filters (c). Finally,
inspired by the distributions of blocks from the resulting
ResNet101 and VGG models found in [19] and [30, 53], we

312

Base Model

Input Conv Final

Untrained Trained

Layers:

Filters:

Template New Model

New Model Trained

c

Layer

#
 F

ilt
e

rs

Layers

F
ilt

e
rs

Base
Layers

F
ilt

e
rs

Template a

Template b
Layers

F
ilt

e
rs

Layers

F
ilt

e
rs

Template c

Template d
Layers

F
ilt

e
rs

Layers

F
ilt

e
rs

Template e

Figure 1. The pyramidal pattern of increasing filters per layer is widely adopted in convolutional models (left). We propose to apply a
small set of templates to an existing model to change its filter distribution (right). After being trained from scratch, resulting models are
competitive in accuracy compared to the original model, however, they require less computational resources.

define a template in which filters agglomerate in the centre,
increasing the internal resolution (d) and, on the contrary,
where filters are reduced in the centre of the model (e).

One first approach to implementing a change of filters
in a model is to keep the original number of filters in the
resulting model and redistribute them differently across its
layers. Nevertheless, final models end up with different
resource demands and therefore making a fair comparison
is problematic. Parameters, FLOPs and inference time have
been used as a proxy for comparing models with different
designs [6]. We believed that using one metric is insufficient
for a fair comparison. As an example, for processing the
CIFAR datasets, our implementations of VGG and ResNet
count an approximate number of parameters (20.03 million
versus 23.52 million, respectively), but ResNet’s FLOPs
(1307 MFLOPs) are more than three times VGG ones (399
MFLOPs). To facilitate comparisons, we match one metric
while comparing the other. In particular, we fix models
obtained from templates to match the number of FLOPs of
the original distribution and then compare a second metric
such as parameters, memory footprint or inference time.

In a more formal way, we define a convolutional neu-
ral network base model as a set of numbered layers L =
1, ..., D + 1, each with fl filters in layer l. D + 1 is the final
classification layer whose size is given by the task. The or-
dered set of all filters in the model is F1:D = {f1, . . . , fD}
and the total number of FLOPs, the resource to be matched
between templates, is given by some function R(F1:D). We
want to find a new distribution of filters F ′

1:D
in which

R(F1:D) ≈ R(F ′

1:D) (1)

and to test if the common heuristic of distributing F1:D

having fl+1 = 2fl each time the feature map is halved,
is advantageous to the model over F ′

1:D
when evaluating

performance, memory footprint and inference time.

Our templates are defined as simple linear segments, or a
combination of them, in which min(F ′

1:D
) = min(F1:D) =

nmin and max(F ′

1:D
) = n ∈ N satisfying constrain (1).

3.1. Similar FLOPs Optimisation

CNS methods aim to find individual values for the number
of filters in each layer, and thus, exploration space becomes
huge. For our method, the optimisation of the values is eased
by the constrain in (1) and the way the templates are defined.
Given that they are built with linear segments, only two
natural numbers are required to compute the number of filters
in each layer. One is fixed (nmin), and it is found by taking
the lower number of filters generally in the first hidden layer
of the original model. To find the second (n), we rely on the
monotonic relationship between n and the model’s FLOPs,
valid for all templates. We use a simple binary search starting
with the maximum number of filters in the original model
and then reducing or increasing the value of n depending if
the modified model has more or less FLOPs than the original.
For obtaining the number of filters in intermediate layers in
each linear segment, we round the evaluation of the linear
equation produced by nmin and n according to the layer
position within the segment. The only particular change in
the method is made when using a template with a uniform
pattern, in which case we make nmin = n. The whole
procedure is performed before training, carrying minimal
computational costs for redefining the model and estimating
the new FLOPs value. We provide a precise value of filters
for each layer of all models and templates tested in this work
in Tables 7, 8, 9 and 10 of the appendix.

4. Templates on Image Classification

We investigated the effects of applying different templates
to the distribution of filters in well known CNNs. We high-
light that the resulting models produced from templates have

313

similar FLOPs to the original model from which they are
obtained.

4.1. Datasets and Models

We selected MNIST, FashionMNIST, CIFAR-10, CIFAR-
100 [28], CINIC-10 [10], Tiny-Imagenet [29], and ImageNet
[41]. Apart from the latter, these are datasets with diverse
number of samples and classes allowing fast training. The
first four datasets contain sets of 50,000 and 10,000 samples
for train and validation, respectively. MNIST and Fashion-
MNIST contain 28 x 28 grayscale images divided into 10
classes each. CIFAR datasets have associated labels from 10
and 100 classes and colour images with a resolution of 32x32.
CINIC-10 contains 90,000 images in each, the training and
validation sets with the same resolution and classes as the
CIFAR-10 dataset. ImageNet is a 1000-class dataset with
more than one million variable-size images. Tiny-Imagenet
is a reduced version of the original Imagenet dataset with
only 200 classes and images with a resolution of 64 x 64
pixels.

We evaluated VGG[46] and ResNet[23] models, which
represent some of the most influential CNN architectures
on the ImageNet challenge in previous years [9, 41] as
well as MobileNetV2[43], one highly optimised model, and
MnasNet[48], an automatically produced architecture from
a NAS method.

4.2. Implementation Details

Experiments have models fed with images with the standard
augmentation techniques of padding, random cropping and
horizontal flipping and excepting ImageNet, with cutout [11]
using one patch of 16 x 16 pixels. Our experiments were
run in an NVidia Titan X Pascal 12GB GPU adjusting the
batch size to 64 for TinyImagenet and 256 for the rest of
the datasets. For ImageNet we utilised one node with two
NVidia P100 GPUs.

Models on MNIST-like datasets were trained for 150
epochs using stochastic gradient descent (SGD) with a sched-
uled learning rate of 0.01 decreased with gamma 0.2 at
epochs 75 and 110; weight decay of 1e-5 and momentum of
0.9. For CIFAR and CINIC-10, models were trained for 200
epochs using the same conditions: SGD with a learning rate
of 0.1 scheduled with gamma 0.2 at epochs 60, 120 and 160;
weight decay of 1e-5 and momentum of 0.9. For ImageNet
and TinyImagenet, models were trained for 90 epochs using
SGD with a scheduled learning rate of 0.1 decreased with
gamma 0.1 at epochs 45, 70 and 85; weight decay of 1e-1
and momentum of 0.9.

4.3. Effects of Templates on Classical Models

Table 1 shows properties of resulting models for each archi-
tecture after using templates. Parameters, memory footprint

and inference time are reduced in almost all cases. These re-
sults already show the effect of different distributions despite
the template patterns were selected following simplicity and
diversity but not focused on efficiency.

In particular, for the classical models, we observe in-
creases in accuracy up to 2.11 percent points over the VGG
base model primarily obtained with template d. Reductions
of 90% in parameters, 79% in memory usage and 22% in
inference time are produced by using template c while ac-
curacy is still slightly superior on all datasets. The fastest
model with a reduction of 24% in inference time is reached
with template b.

The behaviour for ResNet differs from that of VGG in
some aspects. The impact on resource consumption is lower.
Template c shows savings of 85% in parameters, 30% in
memory usage and almost 20% in inference time. The high-
est accuracies are obtained in half of the datasets by template
a. The smallest model in memory is obtained with template
d reaching maximum accuracy in CIFAR datasets with 32%
less memory.

We also note a pattern behaviour related to each template.
Accuracy improves in many datasets with templates a and
d. Template b emerges as a good trade off between resource
consumption and accuracy and templates c and e give the
biggest reduction in resources by sacrificing some accuracy.
We provide plots of our experiments with classical models
in Figure 3 of the appendix.

4.4. Effects of Templates on Optimised Models

MobileNet and MnasNet architectures were optimised to
perform well on mobile devices focusing on obtaining high
accuracy and low inference time. The former was optimised
by experts and the latter was optimised through a neural
architecture search method. We show resource demands of
both base models and their modifications produced by tem-
plates in Table 1. Although it is expected that the margin of
improvement on these highly optimised models be consid-
erably lower, we found that templates can reduce resource
demands up to 77% in parameters and 11% in memory foot-
print.

Inference time depends more on the degree the computa-
tional graph allows parallelism. Our method keeps the same
layer distribution and interconnection in the model. Thus,
the computational graph remains similar. We also keep sim-
ilar FLOPs for all the templates in our experiments. We
think the difference in inference time is due to how well the
size and number of feature maps fit the GPU memory. Al-
though MobileNet and MNASNet more optimised, models
with templates reach almost 5% of reduction in inference
time.

We observe that template e produces the biggest savings
in parameters and memory for MobileNet while still surpass-
ing the base accuracy. The highest performance is obtained

314

Table 1. Resource consumption on CIFAR-10 for original architectures and resulting models after applying templates. FLOPs remain similar
in comparison to base models.

Param Mem Inference
Template (Millions) (MB) Time (ms)
vgg19 base 20.03 % ↓ 87.0 % ↓ 1.85 % ↓

vgg19 a 17.23 13.9 76.5 12.0 1.85 0.0
vgg19 b 3.17 84.1 23.0 73.5 1.40 24.3

vgg19 c 1.89 90.5 17.8 79.5 1.43 22.7
vgg19 d 8.07 59.7 39.8 54.2 1.46 21.0
vgg19 e 2.06 89.7 17.8 79.5 1.43 22.7

Param Mem Inference
Template (Millions) (MB) Time (ms)
resnet50 base 23.52 % ↓ 185.5 % ↓ 5.35 % ↓

resnet50 a 14.17 39.7 146.8 20.8 4.83 9.7
resnet50 b 4.85 79.3 132.1 28.7 4.29 19.8

resnet50 c 3.48 85.2 128.9 30.5 4.30 19.6
resnet50 d 8.36 64.4 125.8 32.1 4.32 19.2
resnet50 e 3.68 84.3 132.1 28.7 4.34 18.8

Param Mem Inference
Template (Millions) (MB) Time (ms)
mobilenet base 2.23 % ↓ 28.3 % ↓ 3.81 % ↓

mobilenet a 1.42 36.3 27.2 3.8 3.86 -1.3
mobilenet b 0.80 64.1 28.3 0.0 3.91 -2.6
mobilenet c 0.59 73.5 27.2 3.8 3.71 2.6
mobilenet d 1.12 49.7 27.2 3.8 3.68 3.4

mobilenet e 0.51 77.1 25.1 11.3 3.92 -2.8

Param Mem Inference
Template (Millions) (MB) Time (ms)
mnasnet base 3.11 % ↓ 82.8 % ↓ 3.79 % ↓

mnasnet a 1.57 49.5 98.5 -18.9 3.68 2.9
mnasnet b 1.05 66.2 101.7 -22.8 3.85 -1.5
mnasnet c 0.79 74.5 101.7 -22.8 3.82 -0.7
mnasnet d 1.14 63.3 98.5 -18.9 3.61 4.7

mnasnet e 0.93 70.0 100.6 -21.4 3.75 1.0

with templates a and b for this model. For MnasNet, tem-
plate a emerges as the best one regarding accuracy and being
capable of reducing almost 50% of parameters. Moreover,
it shows reductions of 2.9% on model latency despite being
this the main goal used in its NAS method.

We note that both MobileNetV2 and MnasNet perform
best in tiny-Imagenet dataset. We believe this is because
tiny-Imagenet is strongly related to Imagenet, and designs
have been optimised to the latter. However, template a is still
competitive with reductions of 1.5 and 1.8 points in accuracy
but savings up to 36% and 49% in parameters for MobileNet
and MnasNet, respectively, on this specific dataset. We show
plots for these results in Figure 4 of the appendix.

5. Templates on ImageNet with Classical Mod-

els

As expected, results on the ImageNet dataset show the pyra-
midal pattern yields better accuracy in models than templates
(see Table 4). Yet, templates produce models with lower
number of parameters. For example the model obtained
from VGG with template d uses only 29% of the original
parameters sacrificing 4.6 points in accuracy. For ResNet,
template d can produce a model with the accuracy of the
original VGG using 35% of the original ResNet parameters.
With template a, we obtained a model with 38% less param-
eters and a difference of less than one point of accuracy.

For VGG and ResNet, our experiments show that the pyra-
midal filter distributions of both models (and possibly many
other CNNs) are overfitting ImageNet. For other datasets, a
different distribution could make models better in accuracy
and/or more efficient. Benefits of exploring new distribution
are applicable to NAS methods too. We provide and example
and extend this discussion in section 7.

6. Templates on Audio Classification

According to [39], in the absence of a well-established the-
ory to find the optimal design hyperparameters for a CNN
architecture for a specific task (size of kernels, pooling, num-
ber of channels and interconnections with successive layers),
researchers have mostly opted to experimentally select the
best performing model from a range of, usually alike, alter-
natives. While this statement is made for the field of audio
processing, we agree that it is true for many of the other
domains of deep learning architecture design.

We have found in audio processing architectures, as well
in computer vision, that many complex models are not devel-
oped from scratch. They use classic architectures as a back-
bone, being ResNet one of the most popular [20]. So, we
decided to test out templates using the well known ResNet50
architecture, adapting only the number of filters according to
the new definition of templates and the final dense layer to
adjust the output as required for the dataset to be evaluated.

Raw audio samples come from a one-dimensional signal
indexed in time [39]. Nevertheless, they are often translated
into two-dimensional time-frequency representations, such
as mel-frequency cepstral coefficients (MFCCs), which is
the standard representation used for audio data processing
[17, 36, 56]. MFCC spectrograms, unlike images in com-
puter vision applications, do not represent an instant in time.
Instead, they are built taking constant-length segments from
the raw audio signal. Yet, the resulting representation can
be interpreted as a single image and processed using classic
convolutional neural networks [21].

6.1. Audio Datasets

The GTZAN dataset [50] is used for for music genre recog-
nition (MGR) [47]. GTZAN contains 1000 music clips with
a duration of 30 seconds each. The clips, sampled at a rate
of 22.5kHz, are grouped into 10 distinct genre classes. The

315

Table 2. VGG19 and ResNet50 performances with the original distribution of filters and five templates evaluated on six datasets. Flops
are kept to similar values between templates of same models (399 MFLOPs for VGG19 and 1307 MFLOPs for ResNet50). After filter
redistribution, most models surpass the base accuracy with less resources. Results show average of three repetitions.

tiny
Template mnist fashionmnist cifar10 cifar100 cinic10 imagenet
vgg19 base 99.769 ± 0.011 95.47 ± 0.05 94.90 ± 0.10 73.91 ± 0.08 85.79 ± 0.10 57.34 ± 0.30
vgg19 a 99.772 ± 0.019 95.59 ± 0.16 95.03 ± 0.26 74.47 ± 0.10 86.13 ± 0.14 57.21 ± 0.56
vgg19 b 99.779 ± 0.005 95.51 ± 0.03 95.01 ± 0.10 73.34 ± 0.24 86.37 ± 0.02 56.88 ± 0.31
vgg19 c 99.775 ± 0.024 95.28 ± 0.06 95.04 ± 0.19 72.27 ± 0.35 86.15 ± 0.09 54.50 ± 0.24
vgg19 d 99.779 ± 0.040 95.65 ± 0.09 95.21 ± 0.08 74.64 ± 0.13 86.49 ± 0.05 59.45 ± 0.18

vgg19 e 99.789 ± 0.024 95.33 ± 0.17 94.75 ± 0.07 71.13 ± 0.28 85.85 ± 0.03 54.26 ± 0.35
resnet50 base 99.772 ± 0.009 95.58 ± 0.10 95.91 ± 0.29 78.31 ± 0.54 88.78 ± 0.93 65.57 ± 0.47
resnet50 a 99.766 ± 0.022 95.66 ± 0.16 96.10± 0.07 79.00 ± 0.05 89.60 ± 0.05 66.06 ± 0.53

resnet50 b 99.762 ± 0.019 95.48 ± 0.13 96.07 ± 0.08 78.91 ± 0.08 89.36 ± 0.09 65.01 ± 0.43
resnet50 c 99.779 ± 0.037 95.41 ± 0.08 96.13 ± 0.20 77.92 ± 0.18 89.27 ± 0.15 64.07 ± 0.17
resnet50 d 99.775 ± 0.022 95.61 ± 0.08 96.20 ± 0.11 79.43 ± 0.24 89.30 ± 0.29 65.59 ± 0.39
resnet50 e 99.749 ± 0.030 95.41 ± 0.07 95.79 ± 0.03 77.99 ± 0.48 89.15 ± 0.02 64.49 ± 0.57

Table 3. MobileNetV2 and MnasNet performances with the original distribution of filters and five templates evaluated on six datasets. Flops
are kept to similar values between templates of same models (68 MFLOPs for MobileNetV2 and 314 MFLOPs for MnasNet on CIFAR10).
Despite both original architectures have been highly optimised, most resulting models from applying templates surpass the base accuracy.
Results show average of three repetitions.

tiny
Template mnist fashionmnist cifar10 cifar100 cinic10 imagenet
mobilenetV2 base 99.726 ± 0.024 94.38 ± 0.04 93.37 ± 0.10 72.62 ± 0.03 82.19 ± 0.04 61.47 ± 0.39

mobilenetV2 a 99.772 ± 0.019 94.69 ± 0.14 93.69 ± 0.20 73.31 ± 0.39 82.83 ± 0.04 58.98 ± 2.11
mobilenetV2 b 99.752 ± 0.019 94.85 ± 0.11 94.26 ± 0.15 73.27 ± 0.31 83.85 ± 0.17 55.40 ± 2.62
mobilenetV2 c 99.772 ± 0.026 94.72 ± 0.11 93.54 ± 0.20 67.96 ± 0.40 83.03 ± 0.10 41.73 ± 5.04
mobilenetV2 d 99.752 ± 0.009 94.57 ± 0.04 93.57 ± 0.11 68.92 ± 0.11 82.33 ± 0.21 45.02 ± 5.75
mobilenetV2 e 99.756 ± 0.020 94.66 ± 0.22 93.82 ± 0.18 70.18 ± 0.31 83.20 ± 0.10 52.61 ± 1.86
mnasnet base 99.736 ± 0.005 95.17 ± 0.07 94.92 ± 0.07 76.46 ± 0.30 86.25 ± 0.07 61.78 ± 0.27

mnasnet a 99.756 ± 0.015 95.52 ± 0.07 95.62 ± 0.17 76.73 ± 0.48 87.28 ± 0.09 59.02 ± 0.62
mnasnet b 99.772 ± 0.029 95.34 ± 0.10 95.49 ± 0.10 75.82 ± 0.26 86.94 ± 0.11 56.51 ± 0.31
mnasnet c 99.752 ± 0.017 95.50 ± 0.11 95.23 ± 0.12 74.01 ± 0.50 86.65 ± 0.14 49.12 ± 0.11
mnasnet d 99.746 ± 0.011 95.47 ± 0.06 95.53 ± 0.11 74.96 ± 0.25 86.93 ± 0.12 51.62 ± 0.61
mnasnet e 99.759 ± 0.011 95.48 ± 0.08 95.41 ± 0.08 75.55 ± 0.26 86.88 ± 0.16 57.62 ± 0.29

ESC-50 dataset is designed to provide a benchmark for envi-
ronmental sound classification [38] (laughter, cat meowing,
glass breaking or brushing teeth are some examples of en-
vironmental sounds), a distinct task from speech or music
classification. The ESC-50 dataset consists of 2000 labelled
environmental recordings distributed between 50 classes.
Each instance has a length of 5 seconds sampled at 44.1
kHz.

6.2. Implementation Details

For training, we use the code and hyperparameters provided
by [37], which were found via grid search [34]. Learning rate
and weight decay were set a 0.0001 and 0.001 respectively.
We use a batch size of 32 for ESC-50 and 16 for GTZAN.
The learning rate was decreased by a factor of 10 for every
30 epochs from a total of 70 epochs.

6.3. Results

The results of this experiment are shown in Table 5. They
show the average accuracy of three runs. By using templates

on ResNet50 we can see marginal improvements in accuracy
of 0.96% and 2.14% for GTZAN and ESC-50 over the base
ResNet model compared to the best performing template.
However, when we look at the resource consumption, sav-
ings in memory footprint and inference time reach 15% for
template d while the number of parameters shows a con-
siderable reduction of 65%. We could take template c on
GTZAN and obtain a similar accuracy with only 14.82% of
the original parameters. As in all the experiments performed
in this paper, the different templates use similar FLOPs to
the original ResNet architecture. In this way, we show that
there are no hidden costs of applying our templates other
than the simple step of redistributing neurons and training
our small set.

There is no absolute winner template in this task of audio
classification. Instead, each particular template provides a
compromise of advantages even between datasets.

316

Table 4. VGG19 and ResNet50 performances with the original distribution of filters and five templates evaluated on ImageNet. Despite
the pyramidal base pattern reaches the highest accuracy in both models, some other filter distributions show considerable reductions in
parameters.

Templates
Models base a b c d e
VGG19 Acc 72.936 72.804 66.406 62.198 68.248 60.874
(19.6 GFLOPs) Param 143.672 155.523 54.759 35.618 41.798 58.070
ResNet50 Acc 75.309 74.603 70.667 68.425 72.823 69.160
(4.1 GFLOPs) Param 25.557 15.847 5.405 3.844 8.998 4.214

Table 5. Accuracy and resource utilisation of ResNet50 with templates on GTZAN and ESC-50 audio classification datasets.

Filter Templates
Metric base a b c d e
Accuracy GTZAN 85.59 85.92 87.26 85.75 87.43 85.08
Accuracy ESC-50 69.66 70.33 68.16 65.75 69.91 67.25
Param (Millions) 23.61 14.23 4.88 3.50 8.39 3.71
Memory (MB) 395.51 350.54 383.10 385.15 337.40 392.29
Inference (ms) 5.47 7.47 4.56 7.75 4.66 4.48

7. Templates on NASBench-101

NASBench-101 [52] was introduced to provide a common
framework to evaluate new proposed exploration and perfor-
mance estimation strategies for NAS methods. The dataset
delivers training and validation performances of all convolu-
tional neural network architectures on the CIFAR-10 dataset.
All networks are built by stacking identical groups of layers
called cells which are followed by a downsampling layer.
The network finish with a dense layer that conducts the final
classification. In this sense, the difference between networks
is found in the cell design. Cells are described by directed
acyclic graphs with up to 9 vertices and 7 edges. The set
of valid operations at each vertex are 3x3 convolution, 1x1
convolution, and 3x3 max-pooling.

The search space of NASBench-101 contains 423,624
individual CNN networks, each of them being trained and
evaluated several times on CIFAR-10. Given that networks
are evaluated at several steps, the dataset contains over 5
million trained models.

7.1. Implementation Details

NASBench-101 is a benchmark framework that provides a
full set of tools programmed in TensorFlow [1] to evaluate
neural networks following the pattern defined in the search
space. The search space of NASBench is restricted to the
pyramidal distribution of filters. Hence we performed minor
changes to the original code to add the different templates.

For all NASBench models, the authors used the same
set of hyperparameters. By running a coarse grid search on
the average accuracy of 50 randomly sampled designs from
the space, this collection of hyperparameters was chosen to
be robust across different architectures. We use the same
training parameters defined in the framework.

7.2. Results

On NASBench, we evaluated and compared the best model
in the dataset and another ResNet-like network highlighted
in [52].

Models in the NASBench-101 dataset are not constrained
in resources in any way. Restrictions are created indirectly
by the types of layers and connections, the number of cells
in each module and the number of modules. Because our
method follows the same graph as the original architectures,
we constrain the models using templates to operate under the
same amount of FLOPs to have a similar point of reference.

The experimental results are shown in Table 6. We have
mentioned that a fair comparison of models is challenging
not only with models inside the dataset but also with models
in the literature in general. FLOPs and parameters of the best
performing network in NASBench-101 are more than five
times the ones of the ResNet-like network, while gaining in
accuracy is less than three per cent.

Models obtained with templates show a considerable re-
duction of computational costs. Template b with both models
uses one-fifth of the original parameters. Template c obtains
a higher accuracy than the best performing model with one-
third of the parameters. We are not aiming for templates
to outperform any NAS method. We state that combining
templates with NAS methods can deliver further improve-
ments to final CNN models at a very low cost. Moreover,
by exploring the proposed (and other) new distributions, it
is possible to find more efficient models. Each template
enables different metrics to be enhanced.

8. Discussion and Conclusions

Since the early origins of CNN models, starting with the
Neocognitron, the distribution of filters began with a uni-
form pattern but switched to a pyramidal pattern since the

317

Table 6. accuracy and parameters of the best model in NASBench-101 dataset and a ResNet-like model produced with an extended search
space. By using templates, both models are capable of obtaining further accuracy with fewer parameters using the same FLOPs.

Templates
Models base a b c d e
Best architecture Acc 95.35 95.20 95.02 95.44 95.06 95.26
3664 GFLOPs Param 32.42 27.49 6.44 10.38 17.26 8.73
ResNet-like Acc 92.64 93.85 91.80 92.65 91.81 92.67
687 GFLOPs Param 6.04 5.18 1.24 1.79 3.30 1.63

LeNet introduction in 1989. From then, the pyramidal de-
sign has remained largely unquestioned in almost all neural
networks including classical and resource-optimised ones.
Methods that modify the number of filters, such as prun-
ing, neural architecture search, and channel number search,
also initiate their exploration from models following the
pyramidal design. We argue that researchers keep using the
pyramidal design because models are mainly tested on the
ImageNet dataset. Therefore, the hyperparameters defining
their structure (including filter distribution) are optimised to
ImageNet.

This work introduced a definition of templates that allows
matching a predefined number of FLOPs with no significant
overheating in the search process. A set of experiments
with filter distribution templates were performed in several
domains to evaluate their representation capability.

Overall, redistributing templates enhances performance
and reduces resources for the models and domains tested.
Exploring novel filter distributions has advantages that go
beyond the domain of image classification. Consequently,
the suggested templates offer a straightforward mechanism
for quickly achieving performance gains compared to the
computationally expensive NAS approaches.

Despite significant changes in filter distributions from the
original architectures, the variation in accuracy for all models
after using templates is less than 5% for image classification.
These results defy the common wisdom that CNN models
are required to capture more diverse features in deeper layers
and show that lower-dimensional representations are still
useful in deeper layers. Moreover, lowering filters can be
beneficial for some datasets.

Experiments indicate that for each model tested, there is
no particular distribution of filters that guarantees the best
accuracy on all tasks. Furthermore, templates can improve
differently on the same task but different datasets. This
means that the results of automatically searching for the
number of channels in small datasets such as CIFAR should
be carefully extrapolated to others. In the opposite direc-
tion, models with distributions that work well on extensive
datasets should be changed (e.g., using templates) to perform
efficiently on different domains.

The approach presented in this work allows a model’s
architect to apply a set of templates for changing the number
of filters originally assigned to each layer before training

from scratch. This redesign can be easily achieved without
any previous training process to select particular weights. In
essence, the application of filter distribution templates offers
an alternative approach to the iteration-intensive automatic
architecture search and model pruning methods.

It is clear there are contributions to be made in terms
of questioning if the architectures that have been designed
for ImageNet are applicable everywhere. The existence of
dataset-dependent architecture requires faster ways to find
networks performing well in each case. Authors of new ar-
chitectures such as the isometric neural networks, the vision
transformer, and the convolutional mixer have looked back
and adopted the uniform distribution again. We hope this
work motivates to continue the search for other filter distri-
butions that benefit the evolution and better understanding
of more efficient models.

References

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: A system for large-scale machine learning.
In 12th {USENIX} symposium on operating systems de-

sign and implementation ({OSDI} 16), pages 265–283,
2016. 7

[2] Neena Aloysius and M Geetha. A review on deep
convolutional neural networks. In 2017 International

Conference on Communication and Signal Processing

(ICCSP), pages 0588–0592. IEEE, 2017. 2

[3] Laith Alzubaidi, Jinglan Zhang, Amjad J Humaidi,
Ayad Al-Dujaili, Ye Duan, Omran Al-Shamma, J San-
tamaría, Mohammed A Fadhel, Muthana Al-Amidie,
and Laith Farhan. Review of deep learning: Concepts,
cnn architectures, challenges, applications, future di-
rections. Journal of big Data, 8(1):1–74, 2021. 2

[4] Yoshua Bengio. Deep learning of representations for
unsupervised and transfer learning. In Proceedings of

ICML workshop on unsupervised and transfer learn-

ing, pages 17–36. JMLR Workshop and Conference
Proceedings, 2012. 1

[5] Maxim Berman, Leonid Pishchulin, Ning Xu,
Matthew B Blaschko, and Gérard Medioni. Aows:
Adaptive and optimal network width search with la-

318

tency constraints. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recogni-

tion, pages 11217–11226, 2020. 2
[6] Simone Bianco, Remi Cadene, Luigi Celona, and Paolo

Napoletano. Benchmark analysis of representative
deep neural network architectures. IEEE Access, 6:
64270–64277, 2018. 3

[7] Joseph Lin Chu and Adam Krzyżak. Analysis of fea-
ture maps selection in supervised learning using convo-
lutional neural networks. In Canadian Conference on

Artificial Intelligence, pages 59–70. Springer, 2014. 1
[8] Yuanzheng Ci, Chen Lin, Ming Sun, Boyu Chen, Hong-

wen Zhang, and Wanli Ouyang. Evolving search space
for neural architecture search. In Proceedings of the

IEEE/CVF International Conference on Computer Vi-

sion, pages 6659–6669, 2021. 2
[9] Musab Coşkun, Özal YILDIRIM, UÇAR Ayşegül, and

Yakup Demir. An overview of popular deep learning
methods. European Journal of Technique, 7(2):165–
176, 2017. 4

[10] Luke N Darlow, Elliot J Crowley, Antreas Antoniou,
and Amos J Storkey. Cinic-10 is not imagenet or cifar-
10. arXiv preprint arXiv:1810.03505, 2018. 4

[11] Terrance DeVries and Graham W Taylor. Improved
regularization of convolutional neural networks with
cutout. arXiv preprint arXiv:1708.04552, 2017. 4

[12] Xuanyi Dong and Yi Yang. Network pruning via
transformable architecture search. arXiv preprint

arXiv:1905.09717, 2019. 2
[13] Alexey Dosovitskiy, Lucas Beyer, Alexander

Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, et al. An image is worth
16x16 words: Transformers for image recognition at
scale. arXiv preprint arXiv:2010.11929, 2020. 1, 2

[14] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter.
Neural architecture search: A survey. The Journal of

Machine Learning Research, 20(1):1997–2017, 2019.
2

[15] Jiemin Fang, Yuzhu Sun, Qian Zhang, Yuan Li, Wenyu
Liu, and Xinggang Wang. Densely connected search
space for more flexible neural architecture search. In
Proceedings of the IEEE/CVF conference on computer

vision and pattern recognition, pages 10628–10637,
2020. 2

[16] Kunihiko Fukushima. Neocognitron: A self-organizing
neural network model for a mechanism of pattern recog-
nition unaffected by shift in position. Biological cyber-

netics, 36(4):193–202, 1980. 1, 2
[17] Todor Ganchev, Nikos Fakotakis, and George Kokki-

nakis. Comparative evaluation of various mfcc imple-
mentations on the speaker verification task. In Proceed-

ings of the SPECOM, pages 191–194, 2005. 5

[18] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
Deep learning. MIT press, 2016. 1

[19] Ariel Gordon, Elad Eban, Ofir Nachum, Bo Chen, Hao
Wu, Tien-Ju Yang, and Edward Choi. Morphnet: Fast
& simple resource-constrained structure learning of
deep networks. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages
1586–1595, 2018. 2

[20] Andrey Guzhov, Federico Raue, Jörn Hees, and An-
dreas Dengel. Esresnet: Environmental sound clas-
sification based on visual domain models. In 2020

25th International Conference on Pattern Recognition

(ICPR), pages 4933–4940. IEEE, 2021. 5

[21] Grzegorz Gwardys and Daniel Michał Grzywczak.
Deep image features in music information retrieval.
International Journal of Electronics and Telecommuni-

cations, 60(4):321–326, 2014. 5

[22] Dongyoon Han, Jiwhan Kim, and Junmo Kim. Deep
pyramidal residual networks. In Proceedings of the

IEEE conference on computer vision and pattern recog-

nition, pages 5927–5935, 2017. 2

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 770–778, 2016.
1, 4

[24] Min-Fong Hong, Hao-Yun Chen, Min-Hung Chen, Yu-
Syuan Xu, Hsien-Kai Kuo, Yi-Min Tsai, Hung-Jen
Chen, and Kevin Jou. Network space search for pareto-
efficient spaces. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition,
pages 3053–3062, 2021. 2

[25] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam. Mobilenets: Efficient
convolutional neural networks for mobile vision appli-
cations. arXiv preprint arXiv:1704.04861, 2017. 1

[26] Ramon Izquierdo-Cordova and Walterio Mayol-
Cuevas. Towards efficient convolutional network mod-
els with filter distribution templates. arXiv preprint

arXiv:2104.08446, 2021. 2

[27] Asifullah Khan, Anabia Sohail, Umme Zahoora, and
Aqsa Saeed Qureshi. A survey of the recent architec-
tures of deep convolutional neural networks. Artificial

Intelligence Review, 53(8):5455–5516, 2020. 2

[28] Alex Krizhevsky, Geoffrey Hinton, et al. Learning
multiple layers of features from tiny images. Technical
report, Citeseer, 2009. 4

[29] Ya Le and Xuan Yang. Tiny imagenet visual recogni-
tion challenge. CS 231N, 7:7, 2015. 4

[30] Guillaume Leclerc, Manasi Vartak, Raul Castro Fer-
nandez, Tim Kraska, and Samuel Madden. Smallify:

319

Learning network size while training. arXiv preprint

arXiv:1806.03723, 2018. 2
[31] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick

Haffner, et al. Gradient-based learning applied to doc-
ument recognition. Proceedings of the IEEE, 86(11):
2278–2324, 1998. 1, 2

[32] Eugene Lee and Chen-Yi Lee. Neuralscale: Efficient
scaling of neurons for resource-constrained deep neural
networks. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages
1478–1487, 2020. 2

[33] Yandong Li, ZB Hao, and Hang Lei. Survey of convo-
lutional neural network. Journal of Computer Applica-

tions, 36(9):2508–2515, 2016. 2
[34] Richard Liaw, Eric Liang, Robert Nishihara, Philipp

Moritz, Joseph E Gonzalez, and Ion Stoica. Tune: A
research platform for distributed model selection and
training. arXiv preprint arXiv:1807.05118, 2018. 6

[35] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon
Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille,
Jonathan Huang, and Kevin Murphy. Progressive neu-
ral architecture search. In Proceedings of the European

Conference on Computer Vision (ECCV), pages 19–34,
2018. 2

[36] Beth Logan. Mel frequency cepstral coefficients for
music modeling. In In International Symposium on

Music Information Retrieval. Citeseer, 2000. 5
[37] Kamalesh Palanisamy, Dipika Singhania, and Angela

Yao. Rethinking cnn models for audio classification.
arXiv preprint arXiv:2007.11154, 2020. 6

[38] Karol J Piczak. Esc: Dataset for environmental sound
classification. In Proceedings of the 23rd ACM inter-

national conference on Multimedia, pages 1015–1018,
2015. 6

[39] Hendrik Purwins, Bo Li, Tuomas Virtanen, Jan
Schlüter, Shuo-Yiin Chang, and Tara Sainath. Deep
learning for audio signal processing. IEEE Journal of

Selected Topics in Signal Processing, 13(2):206–219,
2019. 5

[40] Waseem Rawat and Zenghui Wang. Deep convolutional
neural networks for image classification: A compre-
hensive review. Neural computation, 29(9):2352–2449,
2017. 2

[41] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, et al. Im-
agenet large scale visual recognition challenge. Inter-

national Journal of Computer Vision, 115(3):211–252,
2015. 2, 4

[42] Madhusmita Sahu and Rasmita Dash. A survey on deep
learning: Convolution neural network (cnn). In Intelli-

gent and Cloud Computing, pages 317–325. Springer,
2021. 2

[43] Mark Sandler, Andrew Howard, Menglong Zhu, An-
drey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2:
Inverted residuals and linear bottlenecks. In Proceed-

ings of the IEEE conference on computer vision and

pattern recognition, pages 4510–4520, 2018. 4
[44] Mark Sandler, Jonathan Baccash, Andrey Zhmoginov,

and Andrew Howard. Non-discriminative data or weak
model? on the relative importance of data and model
resolution. In Proceedings of the IEEE/CVF Inter-

national Conference on Computer Vision Workshops,
pages 0–0, 2019. 1, 2

[45] Ajay Shrestha and Ausif Mahmood. Review of deep
learning algorithms and architectures. IEEE Access, 7:
53040–53065, 2019. 2

[46] Karen Simonyan and Andrew Zisserman. Very deep
convolutional networks for large-scale image recogni-
tion. arXiv preprint arXiv:1409.1556, 2014. 1, 4

[47] Bob L Sturm. A survey of evaluation in music genre
recognition. In International Workshop on Adaptive

Multimedia Retrieval, pages 29–66. Springer, 2012. 5
[48] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasude-

van, Mark Sandler, Andrew Howard, and Quoc V Le.
Mnasnet: Platform-aware neural architecture search
for mobile. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages
2820–2828, 2019. 2, 4

[49] Asher Trockman and J Zico Kolter. Patches are all you
need? arXiv preprint arXiv:2201.09792, 2022. 1, 2

[50] George Tzanetakis and Perry Cook. Musical genre
classification of audio signals. IEEE Transactions on

speech and audio processing, 10(5):293–302, 2002. 5
[51] Jiaxing Wang, Haoli Bai, Jiaxiang Wu, Xupeng Shi,

Junzhou Huang, Irwin King, Michael Lyu, and Jian
Cheng. Revisiting parameter sharing for automatic
neural channel number search. Advances in Neural

Information Processing Systems, 33, 2020. 2
[52] Chris Ying, Aaron Klein, Eric Christiansen, Esteban

Real, Kevin Murphy, and Frank Hutter. Nas-bench-101:
Towards reproducible neural architecture search. In
International Conference on Machine Learning, pages
7105–7114. PMLR, 2019. 7

[53] Zhonghui You, Kun Yan, Jinmian Ye, Meng Ma, and
Ping Wang. Gate decorator: Global filter pruning
method for accelerating deep convolutional neural net-
works. In Advances in Neural Information Processing

Systems, pages 2130–2141, 2019. 2
[54] Jiahui Yu and Thomas Huang. Autoslim: Towards one-

shot architecture search for channel numbers. arXiv

preprint arXiv:1903.11728, 2019. 2
[55] Matthew D Zeiler and Rob Fergus. Visualizing and un-

derstanding convolutional networks. In European con-

ference on computer vision, pages 818–833. Springer,
2014. 2

320

[56] Fang Zheng, Guoliang Zhang, and Zhanjiang Song.
Comparison of different implementations of mfcc.
Journal of Computer science and Technology, 16(6):
582–589, 2001. 5

[57] Barret Zoph and Quoc V Le. Neural architecture
search with reinforcement learning. arXiv preprint

arXiv:1611.01578, 2017. 2
[58] Barret Zoph, Vijay Vasudevan, Jonathon Shlens,

and Quoc V Le. Learning transferable architec-
tures for scalable image recognition. arXiv preprint

arXiv:1707.07012, 2017. 1

321

