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Abstract

To compete with existing mobile architectures, Mobile-
ViG introduces Sparse Vision Graph Attention (SVGA), a
fast token-mixing operator based on the principles of GNNs.
However, MobileViG scales poorly with model size, falling
at most 1% behind models with similar latency. This paper
introduces Mobile Graph Convolution (MGC), a new vision
graph neural network (ViG) module that solves this scaling
problem. Our proposed mobile vision architecture, Mobile-
ViGv2, uses MGC to demonstrate the effectiveness of our
approach. MGC improves on SVGA by increasing graph
sparsity and introducing conditional positional encodings
to the graph operation. Our smallest model, MobileViGv2-
Ti, achieves a 77.7% top-1 accuracy on ImageNet-1K, 2%
higher than MobileViG-Ti, with 0.9 ms inference latency on
the iPhone 13 Mini NPU. Our largest model, MobileViGv2-
B, achieves an 83.4% top-1 accuracy, 0.8% higher than
MobileViG-B, with 2.7 ms inference latency. Besides im-
age classification, we show that MobileViGv2 generalizes
well to other tasks. For object detection and instance seg-
mentation on MS COCO 2017, MobileViGv2-M outper-
forms MobileViG-M by 1.2 AP box and 0.7 APmask, and
MobileViGv2-B outperforms MobileViG-B by 1.0 AP box

and 0.7 APmask. For semantic segmentation on ADE20K,
MobileViGv2-M achieves 42.9% mIoU and MobileViGv2-
B achieves 44.3% mIoU 1.

1. Introduction

With the explosion of interest in large generative models,
the demand for artificial intelligence (AI) applications has
skyrocketed. An increasingly important sector of this de-
mand is the mobile market. The goal is the ability to run
powerful AI applications directly on user devices. These

1Code: https://github.com/SLDGroup/MobileViGv2
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Figure 1. Latency versus top-1 % accuracy on ImageNet-1K of
MobileViG [19] and MobileViGv2. From this graph, we can see
that MobileViGv2 improves on MobileViG, shifting the accuracy-
latency curve up for similar points of inference latency.

models must provide quick, personalized responses and,
more importantly, keep users’ data private and off the cloud.
To achieve this, models must be small in size, fast, low
power, and still maintain high performance on the target
task.

Early efforts at targeting vision applications on mobile
devices used convolutional neural networks (CNNs), such
as with the MobileNet [10][23] and EfficientNet[24][25]
family of architectures. While these models perform
well, the introduction of vision transformers (ViTs) [5]
brought in new hybrid CNN-ViT mobile architectures
[1][17][18][14][13] that significantly outperformed their
CNN counterparts. The success of CNN-ViT-based mo-
bile architectures over CNN-based ones is mainly due to
the global receptive field of the self-attention operation,
which accounts for more complex relationships across to-
kens. However, this success comes at a cost. The self-
attention module is much slower than a convolution layer,
as it scales quadratically with the number of input tokens.

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. The new MobileViGv2 architecture. The full architecture is shown on the left. The stem is composed of two stride two
convolutions that downsample the input image by 4×. Each downsampling block contains a single stride two convolution to downsample
the input by 2×. (a) An inverted residual block using GELU activation. For Stage 1, only inverted residuals are used. The number of
inverted residuals in this stage is controlled by N1. (b) For stages 2-4, a combination of inverted residuals and MGCs are used. Each stage
has Ni inverted residuals followed by Mi MGCs, where i is the stage number. The CPE block is a conditional positional encoding [2]
implemented with a 7×7 depthwise convolution. The MRConv block contains graph construction and the max-relative message passing
step. (c) Computing max-relative features using graph construction as outlined in MGC. Given an input image, this module computes the
max-relative score against a fixed set of shifted inputs: shifting right, left, up, and down by k. The outputs of this stage are the max-relative
scores, which are concatenated to the input and passed through a 1×1 convolution to complete message passing.

As such, most CNN-ViT-based mobile architectures only
use self-attention in low-resolution stages.

More recently, vision graph neural networks (ViGs) [6]
were introduced as an alternative to CNNs and ViTs. ViGs
connect tokens based on a predefined algorithm, such as K-
nearest neighbors (KNN), and then mix the tokens with a
message-passing scheme. The first use of ViGs in mobile
vision architectures came with MobileViG [19]. Mobile-
ViG uses Sparse Vision Graph Attention (SVGA), which
replaces KNN with a static graph construction method, re-

sulting in a fast CNN-ViG architecture. While MobileViG
performs well for small model sizes, it scales poorly as the
model size increases, falling nearly 1% behind CNN-ViT-
based models with similar latency [13] [27].

To address this scaling problem, we propose a new ViG
module called Mobile Graph Convolution (MGC), which
improves on SVGA by increasing graph sparsity and in-
troducing positional encodings to the graph operation. To
demonstrate the effectiveness of MGC, we introduce Mo-
bileViGv2. This CNN-ViG-based architecture uses inverted
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residual blocks for processing using local receptive fields
and MGC blocks for processing using long-range recep-
tive fields. With higher graph sparsity, MobileViGv2 can
use MGC at higher resolution stages without impacting la-
tency compared to MobileViG. Unlike the original ViG [6]
model, MobileViG does not use positional encodings, an
improvement introduced in MGC that leads to a significant
performance boost with a slight increase in parameters. We
summarize our contributions below:
1. We propose Mobile Graph Convolution (MGC). This

new mobile ViG module creates sparser graphs than
Sparse Vision Graph Attention (SVGA) by fixing the
number of possible connections per token regardless of
input size. It uses conditional positional encodings to
share the spatial relationships between tokens during
message passing.

2. We propose MobileViGv2, as shown in Figure 2, a CNN-
ViG-based mobile architecture that uses MGC to achieve
similar performance to state-of-the-art CNN-ViT-based
mobile architectures. Notably, MobileViGv2 can begin
mixing tokens globally at much higher resolution stages
than existing CNN-ViT-based architectures due to the
high speed of MGC.

3. Our results show that a CNN-GNN-based mobile vision
architecture can compete with state-of-the-art CNN-ViT-
based image classification models and outperform them
on downstream tasks. These results include latency and
top-1 accuracy on ImageNet-1K [4], object detection and
instance segmentation on MS COCO 2017 [15], and se-
mantic segmentation on ADE20K [32].
The remainder of this paper is structured as follows. Sec-

tion 2 covers recent works in the mobile architecture space.
Section 3 provides background on Sparse Vision Graph At-
tention (SVGA), the ViG module used in MobileViG [19].
Section 4 describes the design of the MGC module and
MobileViGv2 architecture. Section 5 describes the experi-
mental setup and results for ImageNet-1K image classifica-
tion, COCO object detection, COCO image segmentation,
and ADE20K semantic segmentation. Additionally, Section
5 includes ablation studies further outlining the improve-
ments of MGC and MobileViGv2 over SVGA and Mobile-
ViG. Section 6 summarizes our contributions.

2. Related Work
We break up previous works in the mobile vision space into
three categories: CNN-based, CNN-ViT-based, and CNN-
GNN-based. The most well known CNN-based methods
are MobileNet [10] [23] [9] and EfficientNet [24] [25].
MobileNet introduced depthwise separable convolutions,
which separate the convolution operation into a depthwise
convolution followed by a pointwise convolution. This ap-
proach achieves performance similar to a normal convolu-
tion op with significantly lower computational cost. Mo-

bileNetv2 [23] built on depthwise separable convolutions
with the new inverted residual block. Inverted residuals
make residual links less memory-intensive on mobile de-
vices by adding skip links around points where the channel
layer is expanded. Hence, these large layers do not have
to be saved in memory for future additions. Lastly, Mo-
bileNetv3 [9] uses neural architecture search and squeeze
and excitation blocks to further improve on MobileNetv2.
Like MobileNetv3, EfficientNet [24] and EfficientNetv2
[25] use neural architecture search to produce fast, highly
accurate models.

There are many CNN-ViT-based models, but two recent
works have achieved remarkable performance with very low
mobile latency: EfficientFormerV2 [13] and FastViT [27].
EfficientFormerV2 combines inverted residual blocks with
a modified transformer operation and SuperNet architecture
search. The modified transformer block uses talking heads
and a depthwise convolution on the value matrix to inject
local information. FastViT [27] uses a new RepMixer block
along with transformers to achieve similar results to that of
EfficientFormerV2. The RepMixer block combines a depth-
wise convolution and convolution-based feed-forward net-
work. Additionally, FastViT makes extensive use of repara-
materization.

To our knowledge, there is currently only one CNN-
GNN-based mobile architecture: MobileViG [19]. Mobile-
ViG introduced Sparse Vision Graph Attention (SVGA), a
vision graph neural network module for statically construct-
ing graphs and performing message passing. For small
model sizes, MobileViG appears to compete with state-
of-the-art CNN-ViT-based models, but as the model size
grows, MobileViG accuracy fails to scale as well as that
of CNN-ViT-based counterparts. To address this limitation,
we introduce a new CNN-GNN-based mobile architecture,
MobileViGv2, which fixes this scaling problem.

3. Background
Before explaining our proposed solution, Mobile Graph
Convolution (MGC), to the scaling problem experienced by
MobileViG [19], we briefly explain SVGA to highlight the
differences between the two approaches better. SVGA can
be split into a token mixing step and a feed-forward net-
work. Given an input X ∈ RN×M ,

Y = MRConv(XWin)Wout +X (1)

where Y ∈ RN×M is the output of the token mixer, and
Win and Wout are fully connected layer weights.

For a single token xi, the MRConv operation [12] is
described as follows,

MRConv(xi) = max({xj − xi|xj ∈ G(xi)}) (2)

where xj is a neighboring token to xi, in the set of neigh-
boring tokens G(xi).
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The output of the token-mixing operation is then passed
to a feed-forward network. The feed-forward network is a
two-layer MLP expressed as

Z = σ(XW1)W2 + Y (3)

where Z ∈ RN×M , W1 and W2 are fully connected layer
weights, and σ is a GeLU activation.

4. Methodology
In this section, we describe the design of Mobile Graph
Convolution (MGC) and MobileViGv2. MobileViGv2
leverages the speed of MGC to use graph convolutions in
higher resolution stages of the model architecture, result-
ing in significantly higher model accuracy on ImageNet-1K
without a significant drop in latency.

Figure 3. Mobile Graph Convolution (MGC) (left) versus Sparse
Vision Graph Attention (SVGA) (right). Each grid is broken up
such that the effective receptive field is equal to that of Mobile-
ViGv2 at Stage 4. (left) The connections made for the green token
using MGC (L = 2) are shown in blue. (right) The connections
made for the green token using SVGA (K = 2), as used in Mo-
bileViG, are shown in blue. The image above was obtained from
the ImageNet-1K [4] dataset and has been modified for this paper.

4.1. Mobile Graph Convolution

We propose Mobile Graph Convolution (MGC) as a faster,
highly scalable alternative to Sparse Vision Graph Atten-
tion (SVGA) [19]. MGC improves on SVGA by increas-
ing graph sparsity and introducing conditional positional
encodings to the graph operation.

The MGC algorithm alters equations 1 and 2, leaving 3
unchanged. Equation 1 is altered by adding a conditional
positional encoding [2] (CPE), and in equation 2, the car-
dinality of G(xi)∀xi is reduced by using a different graph
construction method. The updated equation for MGC is:

Y = MRConv((X + CPE(X))Win)Wout +X (4)

where CPE is a depthwise convolution and stands for con-
ditional positional encoding.

Unlike the original ViG [6], MobileViG [19] does not
use positional encodings. As shown in ViT [5], without po-
sitional encodings, the model accuracy of ViTs drops sig-
nificantly since the self-attention operation becomes per-
mutation invariant. We find this performance drop also
holds for graph operations in MobileViG [19] (see Table
3). As such, MGC uses conditional positional encodings
(CPE) [2] to encode spatial information before message
passing. MGC uses reparameterizable CPE as introduced
in FastViT [27]. Before constructing the graph and message
passing, a positional encoding is added to the feature map
by taking a depthwise convolution of the feature map it-
self. During inference, the residual link can be merged with
the depthwise convolution, saving a fraction of a millisec-
ond. This simple change introduces spatial information in
the message-passing step yet adds few parameters and sub-
stantially increases performance. For example, when CPE
[2] is added to SVGA in MobileViG-B, the top-1 accuracy
on ImageNet-1K improves by 0.3%, as seen in Table 3.

The differences in graph construction are straightfor-
ward. The SVGA algorithm uses a hyperparameter, K, to
determine the distance and density of connections for each
token. For token xi, every Kth token to the right in its
row and down in its column is connected to it. Thus, the
number of connections to xi grows according to O(N+M

K ),
where N and M are the dimensions of the input image.
Thus, for a fixed value of K, the cardinality of G(xi) grows
linearly with respect to the input resolution. As such, us-
ing SVGA for higher resolutions requires more computa-
tion during graph construction, making it difficult to scale
to higher input resolutions while maintaining competitive
inference latency. One could fix this by scaling K with in-
put resolution, but a simple, more straightforward approach
is to fix the number of possible connections per token re-
gardless of input size.

Following this approach, each input token has only five
connections in MGC: one self-connection, two long-range
links to the left and right of the token on its row, and two
long-range links up and down from the token on its col-
umn. This can be seen in greater detail in Figure 2c and
Figure 3 for an input resolution of 7 × 7. For larger input
resolutions, the distance of the long-range links can be in-
creased to gather information from regions further away for
each token. As implemented in MobileViG, SVGA uses 7
connections per token (K = 2), while MGC uses only 5
(L = 2), contributing to the speedup over SVGA. We also
found that lowering the number of connections improves
model performance, which can likely be attributed to re-
ducing over-smoothing. For example, when swapping in
SVGA for MGC in MobileViGv2-B, the resulting model is
0.2 milliseconds slower with 0.1% worse top-1 classifica-
tion accuracy on ImageNet-1K.
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Table 1. Results of MobileViGv2 and other mobile architectures on ImageNet-1K classification task roughly grouped by NPU latency of
an iPhone13 Mini using the ModelBench [26] application. Type indicates whether the model is CNN-based, CNN-ViT-based, or CNN-
GNN-based. Params lists the number of model parameters in millions. GMACs lists the number of MACs in billions. Gray highlights
indicate the contributions of this paper. The Top-1 accuracy results for MobileViGv2 models are averaged over three experiments, and
there is about a 0.1% fluctuation between training seeds. Missing entries could not be profiled on the iPhone 13 Mini (iOS 16). ↓ means
the lower, the better. ↑ means the higher, the better.

Model Type Params (M) GMACs iPhone 13 Latency ↓ Top-1 (%) ↑
(ms)

MobileNetV2x1.0 [23] CNN 3.5 0.3 0.8 71.8
EdgeViT-XXS [20] CNN-ViT 4.1 0.6 - 74.4

FastViT-T8 [27] CNN-ViT 3.6 0.7 0.8 76.7
EfficientFormerV2-S0 [13] CNN-ViT 3.5 0.4 0.8 75.7

MobileViG-Ti [19] CNN-GNN 5.2 0.7 0.9 75.7
MobileViGv2-Ti CNN-GNN 5.6 0.6 0.9 77.7

MobileNetV2x1.4 [23] CNN 6.1 0.6 1.1 74.7
EdgeViT-XS [20] CNN-ViT 6.7 1.1 - 77.5

EfficientFormerV2-S1 [13] CNN-ViT 6.1 0.7 1.0 79.0
MobileViG-S [19] CNN-GNN 7.2 1.0 1.1 78.2
MobileViGv2-S CNN-GNN 7.7 0.9 1.1 79.8

EfficientNet-B0 [24] CNN 5.3 0.4 1.5 77.7
EdgeViT-S [20] CNN-ViT 11.1 1.9 - 81.0

EfficientFormer-L1 [14] CNN-ViT 12.3 1.3 1.3 79.2
FastViT-T12 [27] CNN-ViT 6.8 1.4 1.2 80.3
FastViT-S12 [27] CNN-ViT 8.8 1.8 1.4 80.9

FastViT-SA12 [27] CNN-ViT 10.9 1.9 1.6 81.9
EfficientFormerV2-S2 [13] CNN-ViT 12.6 1.3 1.5 81.6

MobileViG-M [19] CNN-GNN 14.0 1.5 1.5 80.6
MobileViGv2-M CNN-GNN 15.4 1.6 1.6 81.7

EfficientNet-B3 [24] CNN 12.2 2.0 4.8 81.6
MobileViTv2-1.0 [18] CNN-ViT 4.9 1.8 3.0 78.1
MobileViTv2-2.0 [18] CNN-ViT 18.5 7.5 6.3 82.4

EfficientFormer-L3 [14] CNN-ViT 31.3 3.9 2.6 82.4
EfficientFormer-L7 [14] CNN-ViT 82.1 10.2 6.5 83.3

FastViT-SA24 [27] CNN-ViT 20.6 3.8 2.7 83.4
EfficientFormerV2-L [14] CNN-ViT 26.1 2.6 2.4 83.3

MobileViG-B [19] CNN-GNN 26.7 2.8 2.4 82.6
MobileViGv2-B CNN-GNN 27.7 3.6 2.7 83.4

4.2. MobileViGv2 Architecture

The MobileViGv2 architecture, as shown in Figure 2, can
be broken into four main stages, where processing occurs
at a single resolution in a given stage. Within each stage,
a mixture of inverted residuals and Mobile Graph Convolu-
tions (MGCs) are used.

The entry point into the architecture is the stem. The

stem takes the input image and downsamples it 4× using
convolutions with stride equal to two. The output of the
stem is fed to Stage 1, which consists of N1 inverted residu-
als as described in Figure 2a. Between each stage is another
convolution-based downsampling step. Stages 2, 3, and 4
each start with a sequence of Ni inverted residuals, where
i is the stage number. The output of the inverted residual
sequence is then fed through Mi MGCs, as shown in Fig-
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Table 2. Results of MobileViGv2 and other mobile architectures on COCO object detection, COCO instance segmentation tasks, and
ADE20K semantic segmentation. Parameters lists the number of backbone parameters in millions, not including Mask-RCNN or Semantic
FPN. AP box and APmask scores are for object detection and instance segmentation on MS COCO 2017 [15]. mIoU scores are for
semantic segmentation on ADE20K [32]. Shaded regions show the contributions of this paper. A (-) denotes a model that did not report
these results.

Model Params (M) AP box AP box
50 AP box

75 APmask APmask
50 APmask

75 mIoU

EfficientFormer-L1 [14] 12.3 37.9 59.0 40.1 34.6 55.8 36.9 38.9
FastViT-SA12 [27] 10.9 38.9 60.5 42.2 35.9 57.6 38.1 38.0
MobileViG-M [19] 14.0 41.3 62.8 45.1 38.1 60.1 40.8 -
MobileViGv2-M 15.4 42.5 63.9 46.3 38.8 60.8 41.7 42.9

EfficientFormer-L3 [14] 31.3 41.4 63.9 44.7 38.1 61.0 40.4 43.5
FastViT-SA24 [27] 20.8 42.0 63.5 45.8 38.0 60.5 40.5 41.0
MobileViG-B [19] 26.7 42.0 64.3 46.0 38.9 61.4 41.6 -
MobileViGv2-B 27.7 43.0 64.9 47.1 39.6 62.2 42.7 44.3

ure 2b. After Stage 4, an average pooling step followed by
a feed-forward network produces the predicted class of the
input image.

To achieve different model sizes, the channel width of
each stage and values of Ni and Mi are changed. There are
four different MobileViGv2 configurations, MobileViGv2-
Ti, MobileViGv2-S, MobileViGv2-M, and MobileViGv2-
B. Note that all inverted residual blocks use an expansion
factor of 4. Additionally, all FFNs used in MGC, as shown
in Figure 2b, use an expansion factor of 4. While a differ-
ent mixture of widths and expansion factors may produce
better results, as could be found using a neural-architecture
search, our work aims to show the potential of using graph
convolutions in mobile vision architectures, not finding the
optimal model structure. We leave this task of using NAS
for future work.

5. Experimental Results

In this section, we describe the setup and results for Mo-
bileViGv2 experiments on ImageNet-1K [4] classification,
COCO object detection, COCO instance segmentation [15],
and ADE20K [32] semantic segmentation tasks.

5.1. Image Classification

MobileViGv2 is implemented using PyTorch 1.12.1 [21]
and the Timm library [28]. Each model is trained using 16
NVIDIA A100 GPUs with an effective batch size of 2048.
The models are trained from scratch for 300 epochs on the
ImageNet-1K dataset with a standard training and inference
resolution of 224×224. We use the AdamW [16] optimizer
and a learning rate of 2e-3 with a cosine annealing sched-
ule. Like many CNN-ViT-based [13] [19] mobile architec-
tures, we use RegNetY-16GF [22] for knowledge distilla-

tion. Our data augmentation pipeline includes RandAug-
ment [3], Mixup [30], Cutmix [29], random erasing [31],
and repeated augment [8]. To measure inference latency,
all models are packaged as MLModels using CoreML and
profiled on the same iPhone 13 Mini (iOS 16) using Model-
Bench [26]. We use the following ModelBench settings to
profile each model: 50 inference rounds, 50 inferences per
round, and a low/high trim of 10. Table 1 shows ImageNet-
1K classification results for MobileViGv2 and similar mo-
bile vision architectures. Models are roughly grouped by
latency.

For models with an inference latency under 1 ms,
MobileViGv2-Ti has the highest accuracy, with the next
closest model, FastViT-T8 [27], being a full 1% behind.
Additionally, MobileViGv2-Ti is 2% more accurate than
MobileViG-Ti for the same inference latency. When
compared to EfficientFormerV2-S1 [13], MobileViGv2-
S has 0.8% higher accuracy for a similar inference la-
tency. MobileViGv2-S is also 1.7% more accurate than
MobileViG-S for the same inference latency.

The wide performance gap shown in Figure 1 indi-
cates that MGC and the new model configuration of Mo-
bileViGv2 successfully solve the scaling problem experi-
enced by MobileViG. This, along with better or compara-
ble performance to CNN-ViT-based models such as Effi-
cientFormerV2 [13] and FastViT [27], show the potential
of CNN-GNN-based architectures to compete in the mobile
vision space.

5.2. Object Detection and Instance Segmentation

We show that MobileViGv2 generalizes well to downstream
tasks by using it as a backbone for object detection and in-
stance segmentation on the MS COCO 2017 [15] dataset,
which contains training and validation sets of 118K and
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Table 3. An ablation study of the effects of conditional positional encodings, higher resolution graphers, and different graph construction
methods on MobileViG-B and MobileViGv2-B. A checkmark indicates this component was used in the experiment. A (-) indicates this
component was not used. 1-Stage indicates that graph convolutions were only used in Stage 4 of the model, while 3-Stage indicates that
graph convolutions were used in stages 2, 3, and 4. The * indicates that this model swapped the graph convolution for a fully connected
layer.

Base Model Params (M) Latency (ms) SVGA MGC CPE 1-Stage 3-Stage Top-1 (%)

MobileViG-B 26.7 2.4 ✓ - - ✓ - 82.6
MobileViG-B 27.6 2.9 ✓ - - - ✓ 83.2
MobileViG-B 26.8 2.4 ✓ - ✓ ✓ - 82.9
MobileViG-B 27.7 2.9 ✓ - ✓ - ✓ 83.3
MobileViG-B* 28.6 2.5 - - - - ✓ 83.0

MobileViGv2-B 27.7 2.7 - ✓ ✓ - ✓ 83.4

5K images. We use pre-trained MobileViGv2 backbones
with Mask-RCNN [7] for training. Each model is trained
on 16 NVIDIA A100 GPUs for 12 epochs with an effective
batch size of 16. We use AdamW [16] optimizer, an ini-
tial learning rate of 2e-4, and a standard image resolution of
1333×800.

As shown in Table 2, MobileViGv2-M hits an AP box

and APmask of 42.5 and 38.8, respectively. This is 1.2
and 0.7 points higher than MobileViG-M [19] and 3.6 and
2.9 points higher than FastViT-SA12 [27]. MobileViGv2-B
achieves an AP box and APmask of 43.0 and 39.6, respec-
tively. This is 1.0 and 0.7 points higher than MobileViG-B
and 1.0 and 1.6 points higher than the comparable FastViT
backbone, FastViT-SA24.

These results show that MobileViGv2 generalizes well
to downstream tasks. Compared to competitive CNN-ViT-
based models like FastViT [27], MobileViGv2 performs
significantly better on these downstream tasks, even though
the performance in image classification is comparable.

5.3. Semantic Segmentation

We also show that MobileViGv2 generalizes well to seman-
tic segmentation on the ADE20K dataset [32], which con-
tains 20K training images and 2K validation images with
150 semantic categories. For training, we use 8 NVIDIA
RTX 6000 Ada generation GPUs, the AdamW optimizer,
and a learning rate of 2e-4 with polynomial decay. We use
MobileViGv2 as a backbone with Semantic FPN [11] as the
segmentation decoder. The backbone is initialized with pre-
trained weights on ImageNet-1K, and the model is trained
for 40K iterations.

As shown in Table 2, MobileViGv2-M outperforms
FastViT-SA12 [27] by 4.9% mIoU and outperforms
EfficientFormer-L1 [14] by 4% mIoU . Addition-
ally, MobileViGv2-B outperforms FastViT-SA24 by 3.3%
mIoU and outperforms EfficientFormer-L3 by 0.8%

mIoU . Again, when compared to competitive CNN-ViT-
based models like FastViT [27] and EfficientFormer [14],
MobileViGv2 performs significantly better on this down-
stream task even though the performance in image classifi-
cation is comparable.

5.4. Ablation Studies

We perform ablation studies to show the benefits of MGC
over SVGA and to demonstrate that graph convolutions pro-
vide benefits over a simple feed-forward network solution.
A summary of these results can be found in Table 3.

Starting with MobileViG-B as a base model, we try using
SVGA-style graph convolutions in stages 2, 3, and 4 of the
model while keeping the number of parameters the same.
We adjust the number of blocks in each stage and the chan-
nel depth to keep the number of parameters similar. The
resulting model achieves a top-1 accuracy on ImageNet-1K
of 83.2%, 0.6% higher than MobileViG-B. However, this
model has an inference latency of 2.9 milliseconds, signif-
icantly slower than the 2.3 milliseconds of MobileViG-B
without catching up to the top-1 performance of FastViT
[27] and EfficientFormerV2 [13].

We also try adding CPE to SVGA in MobileViG-B and
find that it improves model performance by 0.3%. We then
combine both CPE and 3-stage SVGA, which results in
a top-1 accuracy of 83.3%. Even though SVGA makes
more connections than MGC, it performs slightly worse
than MGC when used with the same model settings. We ex-
pect that this occurs due to over-smoothing from the higher
connection count.

To get the benefits of using more stages without a signif-
icant hit to latency, we use MGC, which uses sparser graphs
and CPE, in MobileViGv2-B, to achieve the best perfor-
mance of 83.4%. This final configuration has the same top-1
performance and mobile latency as FastViT-SA24 [27].

To verify that graph convolutions boost model perfor-
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mance, we swap each graph convolution with a fully con-
nected layer of the same expansion size and use this in
stages 2, 3, and 4 of the model. This experiment is marked
as MobileViG-B* in Table 3. We find that this model
achieves an accuracy of only 83.0%, which is 0.2% less than
using SVGA in three stages and 0.4% less than using MGC
in three stages. This shows that graph convolutions are im-
proving model performance.

6. Conclusion

In this work, we have proposed Mobile Graph Convolution
(MGC) and MobileViGv2, a model architecture that uses
MGC and competes with state-of-the-art CNN-ViT-based
mobile architectures. MGC uses a sparser, static graph con-
struction method than SVGA, resulting in faster inference
speeds. Additionally, MGC introduces conditional posi-
tional encodings to the graph operation, considerably boost-
ing model accuracy with only a slight increase in the num-
ber of parameters. With these changes, MGC can be used in
much higher resolution stages than SVGA without signifi-
cantly impacting latency.

MobileViGv2 takes advantage of this by using MGC in
the last three processing stages. Earlier global processing
and the sharing of spatial information during message pass-
ing through CPE solves the scaling problem experienced by
MobileViG, thus making MobileViGv2 a genuine competi-
tor to state-of-the-art CNN-ViT-based mobile architectures
and, consequently, MGC a competitor to self-attention in
the mobile vision model space.
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