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Abstract

Neural network (NN) compression via techniques such
as pruning, quantization requires setting compression hy-
perparameters (e.g., number of channels to be pruned,
bitwidths for quantization) for each layer either manually
or via neural architecture search (NAS) which can be com-
putationally expensive. We address this problem by pro-
viding an end-to-end technique that optimizes for model’s
Floating Point Operations (FLOPs) via a novel ℓ1

ℓ2
latency

surrogate. Our algorithm is versatile and can be used
with many popular compression methods including prun-
ing, low-rank factorization, and quantization, and can op-
timize for on-device latency. Crucially, it is fast and runs
in almost the same amount of time as a single model train-
ing run; which is a significant training speed-up over stan-
dard NAS methods. For BERT compression on GLUE fine-
tuning tasks, we achieve 50% reduction in FLOPs with only
1% drop in performance. For compressing MobileNetV3 on
ImageNet-1K, we achieve 15% reduction in FLOPs with-
out drop in accuracy, while still requiring 3× less training
compute than SOTA NAS techniques. Finally, for transfer
learning on smaller datasets, our technique identifies 1.2×-
1.4× cheaper architectures than standard MobileNetV3, Ef-
ficientNet suite of architectures at almost the same training
cost and accuracy.

1. Introduction
Large-scale neural networks consistently provide state-of-
the-art performance on complex learning tasks [22, 29, 63].
But they place heavy burden on compute resources such as
battery, memory or processor making them hard to deploy
on edge devices such as phones, cameras and wearables.
Several recent works have designed techniques to compress
ML models and make them efficient for inference. How-
ever, as detailed below, many of these techniques are hard
to use in practice, and often achieve sub-optimal accuracy
vs inference time trade-offs.

†Work done at while Google Research, India. Correspondence to
anshulnasery@gmail.com

Hyperparameter search for compression. Existing
works typically rely on one of the following building blocks
to design efficient models: unstructured weights spar-
sity [21, 32, 66], pruning entire neurons or low-rank factor-
ization [25, 72], quantization [48], distillation [7, 23]. Fig-
uring out an optimal way to combine these building blocks
(or to figure out hyper-parameters such as amount of spar-
sity associated with each block) while satisfying a global
FLOPs/latency/resource constraint is difficult and involves
a combinatorial search. This problem is further exacerbated
when multiple building blocks are used for model com-
pression (e.g., simultaneous low rank factorization, spar-
sity/pruning of weights).

Over the past few years, there has been a large body of
work that addresses the problem of finding hyperparameters
for model compression. Existing literature in this space can
be broadly classified into two categories depending on the
style of optimization techniques employed: blackbox, and
whitebox techniques.

Blackbox Compression Techniques. Several works
in this category formulate model compression as a black-
box Neural Architecture Search (NAS) problem and rely
on state-of-the-art NAS techniques to search for efficient
models [28, 79, 88]. These techniques directly take the
FLOPs/latency into account and have the potential to iden-
tify the optimal per-layer budget allocation for a wide va-
riety of efficient blocks/compression mechanisms. How-
ever, these approaches are often computationally expen-
sive as they take a blackbox view of the problem and
perform combinatorial search over the space of architec-
tures. Recent works have tried to open this blackbox to
speed up the search process. One prominent line of work
here is based on weight sharing which involves training a
large surrogate network with many redundant operations to
quickly evaluate the quality of an architecture in the search
space [8, 41, 60, 64]. However, these techniques do not
scale well to large search spaces, as they require storing a gi-
gantic network. Despite recent advances such as TuNAS [2]
for reducing the size of the network, these techniques can
be an order of magnitude slower and less accurate than our
proposed method (see Fig 1). See Section 2 for a thorough
discussion on other related works.

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
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Whitebox Compression Techniques. Among the cat-
egory (b) techniques mentioned above, a prominent line
of work has focused on unstructured pruning of weights
with non-uniform budget allocation across layers [21, 32,
39, 55]. However, any gain in FLOPs using unstructured
pruning is hard to translate to real latency gain as modern
hardware – like GPUs, TPUs – are more geared towards
dense matrix operations. So it is more fruitful to focus on
structured building blocks such as neuron pruning, which
removes entire neurons/channels, and low-rank factoriza-
tion of weights, which is closely related to neuron pruning.
Recent techniques in this line of work add a latency/FLOPs
regularizer to the standard cross entropy loss [8, 9, 19] to
bias the model towards lower number of neurons. Unfor-
tunately the resulting objective is discrete and difficult to
optimize. To alleviate this, existing works have designed
continuous surrogates that are more amenable to SGD style
optimization. These methods either work in the space of
probability distributions over pruned models and optimize
the “expected objective” [9, 43, 72] or replace the discon-
tinuous FLOPs regularizer with a continuous surrogate such
as ℓ1 norms of the weights of the network [19]. However,
the former class of techniques are often unstable, hard to im-
plement in practice, and empirical studies indicate that their
performance is similar to that of simple magnitude based
pruning [18] (also see left plot of Fig. 1). Furthermore, as
we show in this work, the latter class of techniques fail to
enforce sparsity in the presence of batch, layer normaliza-
tion (see Section 3). Even in the absence of batch, layer nor-
malization, these techniques require adhoc post-processing
steps to output exact sparse solutions.

Our Approach: In this work, we propose a white-
box compression technique that addresses the above de-
scribed optimization issues. Specifically, we propose a
novel FLOPs/latency surrogate based on ℓ1

ℓ2
norm that works

even in the presence of batchnorm, layernorm. Our ap-
proach applies to a large class of efficient building blocks
– like unstructured sparsity, neuron pruning, quantization –
for which we can express the FLOPs of the model with a
ℓ1
ℓ2

surrogate (see Table 1). While our surrogates are con-
tinuous, they are non-differentiable. In such cases standard
optimizers such as SGD, Adam can be quite slow to con-
verge [51]. To overcome this, we propose a projection op-
eration on the mask variables, after each SGD step. Our
proposed method speeds up the convergence and also out-
puts exact sparse solutions thus eradicating need for post-
hoc thresholding. Finally, our approach is much faster than
SOTA blackbox optimization techniques and runs in almost
the same amount of time as single model training run.

We implement our algorithm with multiple building
blocks including pruning, low-rank factorization, quantiza-
tion, and apply it on multiple problems in the domain of
image classification and NLP. In particular, we demonstrate

the effectiveness of our technique for MobileNetV3 com-
pression on ImageNet (see Fig. 1), where our method can
learn an architecture with up to 15% (11%) lower FLOPs
(latency) on Pixel 6 mobile phones, without any drop in
accuracy. Here our approach is more accurate than Mor-
phNet, a SOTA technique which focuses exclusively on
neuron-pruning, as well as, TuNAS, a SOTA NAS tech-
nique. Furthermore, in terms of training time, our method
is 3× cheaper than TuNAS. We would like to highlight that
MobileNetv3 is a highly optimized architecture found using
efficient NAS techniques [24], and our technique is able to
compress this architecture further.

One exciting application of our work is that we can ap-
ply it to optimize certain “foundational” baseline models
for individual fine-tuning tasks. For example, for compres-
sion of BERT on GLUE benchmarks, our method achieved
40 − 50% reduction in FLOPs with only 1% drop in accu-
racy (see Fig 1). Moreover, our technique dominates stan-
dard model compression baselines. Similarly for smaller
vision classification tasks, our technique compresses Mo-
bileNetV3, EfficientNet suite of architectures and identifies
1.2×-1.4× cheaper architectures without significant loss in
accuracy (see Figure 5). Our technique also outperforms
SOTA model compression techniques for ResNet by upto
1.5% on ImageNet (see Figure 4) We would like to note
that all these results are obtained at almost the same cost
as that of training a single model for the task. Finally, we
also demonstrate the versatility of our method by using it
to quantize a CNN on CIFAR-10, and learning optimal bit-
widths for each of its layers. Our technique found a model
that is 55% smaller than the baseline float-16 model, while
achieving the same accuracy (see Figure 6). Here is a sum-
mary of our contributions:

(1). We provide an end-to-end neural network compres-
sion technique that directly optimizes the FLOPs regular-
ized objective leading to compression during training. Our
algorithm can be used with many popular efficient building
blocks including pruning, low-rank factorization, quantiza-
tion, and can optimize for on-device inference latency.

(2). We design a novel ℓ1
ℓ2

regularized surrogate for la-
tency that works even in the presence of batchnorm, lay-
ernorm. We also provide a a simple algorithm for solving
this objective. Our algorithm is fast and runs in the same
amount of time as single model training, and doesn’t re-
quire any post-processing steps.

(3). We demonstrate the performance of our technique
on both language and vision tasks. Moreover, for transfer
learning settings where the goal is to take a baseline archi-
tecture and optimize it for individual tasks, our techniques
outperform SOTA techniques in the broad-domain of auto-
mated neural compression.
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Figure 1. Left plot compares various techniques for BERT compression on GLUE tasks (averaged across tasks). x-axis is the relative
number of FLOPs as compared to BERTBASE. y-axis is the relative drop in accuracy from the baseline. Pruning SOTA numbers are
taken from [33], while distillation baselines are from [57, 62]. Right plot compares various techniques for MobileNetV3 compression on
ImageNet-1K dataset. MobileNetV3 corresponds to MobileNetV3 models with different width multiplier. TuNAS, MorphNet are SOTA
techniques for scalable compression. TuNAS takes a blackbox approach to model compression, whereas MorphNet takes a more direct
approach by optimizing FLOPs regularized objective.

2. Related Work

2.1. Neural Architecture Search

Early works on NAS treated the problem as a purely
blackbox optimization (BO) problem. These works relied
on BO techniques such as random search [35], Gaussian
process optimization [28], and zeroth-order gradient de-
scent [64, 88], evolutionary algorithms to optimize the NAS
objective and identify a good architecture. Several works
have improved upon these algorithms using heuristics such
as early stopping [35]. Nonetheless, these techniques are
computationally expensive, as evaluating the optimization
objective at any point requires training a neural network
from scratch. Moreover, due to computational complexity,
these techniques perform a very coarse grained search and
are not suited for fine-grained search over sparsity or low-
rank structures.
One-Shot NAS - Recent works have tried to open the black-
box a bit. These techniques, termed as One-Shot NAS,
aim to return the searched architecture as well as its op-
timal weights in a single pass. In these techniques, the
search space is first transformed to the space of probabil-
ity distributions over architectures. Next, a surrogate model
is trained to quickly evaluate the optimization objective at
any input [2, 9, 41, 45, 52]. While these techniques are
fast, they involve joint training of the surrogate model dur-
ing the search process. This joint training often makes the
optimization process unstable [16]. Since our method uses
a gradient descent like paradigm, it sidesteps such issues.
Further, prior work has shown evidence that such auxiliary
models do not often correlate with the actual model perfor-
mance [53, 81, 84, 86] in various settings.
Zero-Cost Proxies - There have also been techniques
which look at data-independent zero-cost proxies for esti-

mating the performance and latency of a network. These
rely on proxy tasks[36, 71] to come up with an estimate of
the actual performance. However, recent work has shown
that simple baselines such as “number of parameters” and
“FLOPs” are surprisingly competitive with all leading tech-
niques [75]. The main downsides of using zero-cost proxies
are that they may be unreliable, especially on larger search
spaces [74, 75]. They also may have biases, such as prefer-
ring larger models [50] or wide channels [10]. It has been
shown that zero-cost proxies for CNNs do not transfer well
to transformers[87]. In contrast, our method provides a sim-
ple regularizer and training recipe which can be applied to
a wide range of base architectures and tasks, as we demon-
strate in our experiments. We further refer the reader to a
recent survey[75] for a more thorough view on the land-
scape of NAS.
Hardware-aware NAS for Efficient ML Several recent
works at the intersection of efficient ML and NAS have re-
alized the importance of explicitly accounting for the hard-
ware in the search process [4, 8, 12, 15, 38, 64, 85]. These
works incorporate the actual inference time in their search
objectives, instead of surrogates such as FLOPs. The in-
ference time maybe estimated using another neural net-
work [89], or through latency tables for basic arithmetic op-
erations on the target platform [79]. Many of these works
rely on greedy, random search heuristics to solve the re-
sulting objective [15, 38]. However, these heuristics either
take a lot of time to find the optimal architecture or are
not guaranteed to converge to an optimal solution. There
are some works that rely on the NAS algorithms described
above [2, 12, 64]. However, these techniques face the same
scalability and optimization issues as previously mentioned.
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2.2. Model Compression
The field of model compression is vast. Here, we fo-
cus on techniques that perform training-time compression
(as opposed to post-training compression) using the fol-
lowing building blocks: unstructured sparsity, pruning and
low-rank factorization. Early works in unstructured spar-
sity and pruning relied on magnitude, gradient based prun-
ing [17, 18, 21]. Several works have explored more so-
phisticated scoring metrics for pruning [14, 20, 30, 46, 47].
Other techniques include adding sparsity inducing norms
such as ℓ0, ℓ1to the training objective [32, 43, 66]. A num-
ber of works have also explored low-rank factorization for
model compression [25, 27, 44, 77]. Some of these tech-
niques again rely on sparsity inducing regularizers to in-
duce the low-rank structure [25, 72]. Others rely on SVD
based pruning. Some recent works try and optimize FLOPs
regularized objective to perform pruning, low-rank factor-
ization [9, 19]. However, as we discussed in the introduc-
tion, the resulting optimization techniques are often unsta-
ble and difficult to use in practice, in particular due to the
large number of hyper-paramters needed by them. There
have also been specialized methods developed for particu-
lar architecture types and modalities. [82] present a unified
compression framework for vision transformers, and [59]
present a similar pruning framework for multiple modali-
ties. While our method is similar to these works, we note
that our method can work across architecture types, modal-
ities and training paradigms, and is agnostic to particular
quirks of each of these domains.

3. Method

In this section, we describe our approach for model com-
pression. For simplicity of presentation, we illustrate our
technique on feed-forward networks and restrict ourselves
to structured pruning. The ideas here can be extended to
other architectures (e.g., 1x1 convolutions in CNNs), and
other efficient building blocks (e.g., unstructured sparsity,
low-rank factorization, quantization) in a straightforward
manner (see Table 1 for details).

3.1. Regularizing the FLOPs

Consider the following problem: we are given a pre-
trained feed forward neural network (FFN) f∗(x) =
σ(W ∗

Dσ(W ∗
D−1σ(. . . σ(W

∗
1 x)))), where W ∗

i ∈ Rdi+1×di

for all i ∈ [D], and a dataset {(xi, yi)}ni=1. Our goal is to
compress f∗ while simultaneously performing well on the
learning task. This problem can be formulated as the fol-
lowing optimization problem

min
W

1

n

n∑
i=1

ℓ(xi, yi;W) + λ× Latency(W). (1)

HereW = {Wi}Di=1, with Wi ∈ Rd′
i+1×d′

i being the weight
matrix at layer i, λ is the regularization parameter which
trades-off latency with accuracy and ℓ is the supervised loss.
Directly optimizing the above objective is intractable be-
cause Latency(W) is a discrete function of the dimensions
of weight matrices, and is hardware specific.

We now present a technique for solving Equation (1). To
begin with, we substitute Latency(W) with FLOPs(W)†.
In App B.1, we extend it to actual latency. The objective in
this case is given by

min
W

1

n

n∑
i=1

ℓ(xi, yi;W) + λ

D∑
i=1

d′id
′
i+1. (2)

To solve this objective, we associate masks with each neu-
ron in the network. In particular, we parameterize the
weight matrix in the ith layer as Wi × diag(αi). Here
αi ∈ {0, 1}di are the mask variables of layer i. If αi,j

is set to 0, then the jth neuron in the (i − 1)th layer will
be pruned. The FLOPs regularizer† can now be written
in terms of masks as

∑D
i=1 ∥αi∥0∥αi+1∥0, where αD+1 is

the static vector of all 1’s. To make this objective continu-
ous and amenable to gradient based optimization, one class
of techniques place a Bernoulli distribution Bern(pi,j) over
each of the masks αi,j and solve the resulting smoothed ob-
jective where expectation is taken w.r.t. the random masks
αi’s [9, 43, 72] The resulting problem is NP-hard, and the
discrete nature of αi’s makes the optimization unstable. To
overcome this, [9, 43, 72] rely on a heuristic which involves
relaxing Bernoulli distribution to a continuous distribution
such as LogisticSigmoid. However, the main drawback of
the resulting algorithm is that it is hard to implement in
practice and requires very careful annealing of the param-
eters of LogisticSigmoid distribution. Further, the perfor-
mance of such techniques is not well understood theoret-
ically, even for simple and fundamental problems such as
sparse linear regression.

Another common approach to convert the discrete objec-
tive in Equation (2) into a continuous function is to replace
the ℓ0 norm on αi’s with ℓ1 norm

min
W,αi∈Rdi

1

n

n∑
i=1

ℓ(xi, yi;α,W) + λ

D∑
i=1

∥αi∥1∥αi+1∥1.

(3)

This approach is both theoretically grounded [49, 65]
and easier to implement in practice [51, 83]. Con-
sequently, recent SOTA compression techniques relied

†FLOPs is also a discrete function of dimensions of Wi, and the result-
ing optimization problem is still intractable.

†The expression we write here actually corresponds to the Multiply-
Accumulate Operations (MACs). Each MAC usually corresponds to two
FLOPs. However, we abuse notation slightly and use FLOPs throughout
the paper, since this term is more widely used in prior literature.
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on ℓ1 norm surrogates to compute the FLOPs regular-
izer [19, 59]. A major drawback of ℓ1 norm though
is that it does not promote sparsity in the presence of
batch normalization and layer normalization [1, 26]. To
see this, consider the following 1-hidden layer network:
σ(BN(W2diag(α2)σ(BN(W1diag(α1)x)))). One can scale
down all entries of α1 and scale up the weights W1 with-
out affecting the output of the network. Doing this reduces
the objective value in Equation (3), but doesn’t induce any
sparsity in the network. In practice, we in fact notice this
behaviour during optimization of Equation (3), which leads
to sub-optimal solutions. We demonstrate this phenomenon
empirically in Section 3.3. Note that adding ℓ2 penalty on
the weights (i.e., weight decay) doesn’t mitigate this issue
as any scaling of α′s can be absorbed by the batch norm pa-
rameters without changing the output of the network. Fur-
ther, such approaches also need a post-training thresholding
step on the masks to achieve sparsity in practice, adding an-
other hyper-parameter to the method.

3.2. Inducing sparsity through ℓ1
ℓ2

regularizer

We now introduce our approach for making the objective in
Equation (2) continuous. Instead of using ℓ1 as a proxy,
we replace ℓ0 norm over masks (∥αi∥0) with ℓ1

ℓ2
penalty

(
√
di∥αi∥1/∥αi∥2) and solve the following optimization

problem

min
W,αi∈Rdi

1

n

n∑
i=1

ℓ(xi, yi;α,W) + λ

D∑
i=1

√
didi+1∥αi∥1
∥αi∥2

∥αi+1∥1
∥αi+1∥2

.

(4)

The
√
di term in the numerator normalizes the penalty to

lie between [0, di]. When αi’s are all 1’s, the regularizer
evaluates to FLOPs. Observe that this regularizer is invari-
ant to scaling of α’s. Consequently, the value of the regu-
larizer cannot simply be reduced by scaling down αi’s. In
our experiments in Sections 3.3 and 4.3, we show that this
handles batch, layer normalizations better than ℓ1 regular-
izer. Several works have studied this regularizer in the con-
text of sparse linear regression and showed that is recovers
the underlying sparse signal under mild conditions on the
data [54, 70, 80]. [78] and [13] used a similar ℓ1

ℓ2
regularizer

for network pruning, but their techniques don’t optimize la-
tency or FLOPs, and rely on post-training thresholding to
get sparsity.

For certain technical reasons described in the next para-
graph, we add a positivity constraint on αi’s and solve the
above objective Note that we consider αi ∈ Rdi

+ rather than
discrete or bounded values. We would like to highlight that
this change doesn’t reduce the representational power of our
model. It is mainly done for computational reasons.

Importance of positivity constraints. The objective in
Equation (4) is continuous, but not smooth. For such losses,

standard optimization techniques such as SGD, Adam are
slow to converge to stationary points [6]. Furthermore,
these algorithms don’t output exact sparse solutions. This
forces additional post-processing steps to be introduced into
the compression pipeline. For example, [19, 78] rely on
Adam optimizer and add a pruning step at the end, where
masks that are close to 0 are pruned away. This is quite
cumbersome in practice as one needs to choose appropriate
thresholds for pruning, which introduces an additional tun-
able hyper-parameter, and needs re-training after pruning.
To overcome this, we add a positivity constraint to the mask
variables and modify the objective to replace the ℓ1 norm
accordingly. This makes the regularizer smooth (except at
all 0’s vector), and easy to optimize using SGD, Adam. Af-
ter each SGD/Adam update, we simply project the masks
back to the space of positive real numbers. The overall up-
date looks as follows

W ←W − η∇W(L(α,W) + λR(α)),
α← max(0, α− η∇α(L(α,W) + λR(α))).

Here L(α,W) is the empirical risk and R(α) is the
regularizer. Notice, the only additional step compared
to traditional optimization, is the clipping of α’s. In our
ablation studies in Sections 3.3 and 4.3, we validate the
importance of this projection step, together with ℓ1

ℓ2
norm,

in encouraging sparse solutions.

Hardware-aware compression - While we deal with
FLOPs in this section, our method can also be extended to
optimize the actual latency. We model the on-device latency
as a sum of latencies of the individual matrix multiplications
involved in the model. The latencies are looked up from
a linearly interpolated latency table constructed from on-
device measurements. The ℓ1

ℓ2
regularizer is crucial to this

interpolation, as it is normalized and lies between [0, di],
leading to easy lookups. In our experiments, we perform
on-device latency evaluations using the CPU on the Pixel6
phone as well. We refer the reader to Appendix B.1 for
more details on our approach.

3.3. Verification of design choices

To empirically demonstrate the drawbacks of using ℓ1
penalty for model compression, we perform experiments
on the FashionMNIST dataset with a single hidden layer
fully connected network which has a batch norm layer af-
ter the first linear layer. We prune out the input to the net-
work using a mask α on the input. We compare the per-
formance of networks compressed using FLOPs regularizer
induced by ℓ1 and ℓ1

ℓ2
norms. We use SGD for optimiza-

tion of both the objectives. Furthermore, we pre-train the
network using standard CE loss, and initialize α = 1. We
track the variance of the absolute values of the entries of
α, i.e.

∑d
i=1(|αi|−µα)2

d , where µα =
∑d

i=1 |αi|
d . We also
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Figure 2. Comparison of ℓ1, ℓ1
ℓ2

induced FLOPs regularizer for pruning on FashionMNIST: Figures (a) and (b) depict the evolution
of the statistics of the mask variables (α) as training progresses. Figure (c) shows the relation between the actual FLOPs of the model and
the value of the proxy computed by Equations 3, 4. Figure (d) shows the evolution of the Frobenius norm of the weight matrix.

track the mean µα of the absolute values of the entries of α.
Finally, we plot out the curve between FLOPs and the con-
sidered norm of α (i.e., ℓ1, ℓ1

ℓ2
). Figure 2 presents the results

from these experiments. We can see that the ℓ1 objective is
mis-aligned with the actual value of FLOPs, while the reg-
ularizer computed using ℓ1

ℓ2
is a better proxy. We also find

that the mean and variance of α′s sharply decreases when
ℓ1 induced FLOPs regularizer is used for compression. This
indicates that all entries of α are uniformly scaled down to a
small, non-zero value, reducing the value of the regularizer,
while not providing any sparsity. As seen from the figure,
ℓ1
ℓ2

does not suffer from this drawback. Finally, we note that
the frobenius norm of the weight matrix W increases when
ℓ1 regularization is used on α, suggesting that the network
is simply scaling down α′s and scaling up the weights to
evade the regularizer.

4. Experiments

In this section, we apply our framework to large scale
pre-training and transfer learning tasks on standard lan-
guage and vision benchmarks. To demonstrate the versa-
tility of our technique, we perform experiments on multiple
model families (MobileNet, EfficientNet, ResNet, BERT),
and multiple building blocks (pruning, low-rank factoriza-
tion). Note that in this section, we provide accuracy v/s
MACs (Multiply-Accumulate operations) trade-off for var-
ious tasks†. Since we focus on structured pruning, a de-
crease in FLOPs (or MACs) would correlate with a de-
creased latency as well. In addition to this, in Sec 4.3, we
also present experiments using the actual on-device latency
instead of FLOPs and show that our searched models are
indeed faster on device. Further, we also present a case
study integrating quantization into our framework in Ap-
pendix A.1, demonstrating its versatility.

4.1. Large scale classification on ImageNet

MobileNet Family - We begin by comparing the perfor-
mance of our technique with baselines on MobileNetV3

†Note that while we use the term “FLOPs” to describe computational
cost in the paper, we report MACs for computer vision models, in line with
prior work.

compression, for ImageNet classification. We rely on low-
rank factorization + pruning for the compression. The re-
sults from this experiment are presented in Figure 1. By
varying the strength of our regularization, we obtain mod-
els with different MACs and accuracies. We find that mod-
els produced by our method significantly outperform Mo-
bileNetV3 and TuNAS in the high and mid-MACs regime.
In particular, for the same accuracy as MobileNetV3Large,
our approach finds a model with 15% fewer MACs. In com-
parison with TuNAS, we achieve 30% reduction in MACs
at the same level of accuracy. We however find that our
model is at par with MobileNetV3Small in the low MACs
regime, indicating that the former is already well-tuned for
this task. In terms of compute needed for training, TuNAS
is the most expensive among all the techniques we tried; it
took 2 days to train with our hardware setup. In contrast,
our method took 13 hours (3 − 4× faster than TuNAS),
and MorphNet took 10 hours. Note that MobileNetv3 is a
highly compressed model for edge deployment, and previ-
ous works have found it challenging to compress the model
further. Our method can still provide a better FLOPs v/s ac-
curacy trade-off, providing evidence for its efficacy.

ResNet Family - We also compress the ResNet architec-
ture for ImageNet classification, using our method. In par-
ticular, we compress the 1 × 1 convolutions using prun-
ing and low-rank factorization. We compare our method
against HALP [58] and PAS [37], two state of the art meth-
ods for neural architecture search and model compression
for ResNet. Our method compresses ResNet-101 to a model
with similar FLOPs as ResNet-50, while simultaneously
achieving better performance than the baseline ResNet-50.
Furthremore, our technique outperformns SOTA methods
for the same number of FLOPs by up to 1.5%, as seen in
Fig 4.

4.2. Transfer Learning

A common paradigm in deploying machine learning models
today is to first pre-train them on a large scale dataset such
as ImageNet, and then fine-tune them for the desired target
task. However, deploying large models is not feasible on
edge devices. Our technique provides a light-weight modi-
fication to the standard fine-tuning procedure by producing
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Figure 4. (a) Pruning ResNet on ImageNet - We compare against HALP and PAS, two recent SOTA techniques to prune ResNet-50,
and achieve better performance over different FLOP regimes. (b),(c),(d) - Ablation studies on Mobilenetv3 We compare using ℓ1 and ℓ1

ℓ2
norms in our regularizer, with subscript p indicating that projected-Adam was used for optimization. We also experiment with combining
low-rank (LR) factorization with channel pruning. Finally, we show on device latency-accuracy tradeoff with using the actual latency
regularizer for compressing MobileNetv3

a highly compressed model with comparable transfer learn-
ing performance on the specific task. We demonstrate this
on vision and language tasks.

Vision tasks. We consider the task of fine-tuning an Ima-
geNet pre-trained model for a smaller dataset. We consider
Cars196 [31] and Food101 [5] as the target datasets, and
compare against the MobileNetV3 and EfficientNet fami-
lies of models. We use ImageNet pre-trained models for
initialization. We plot the FLOP-accuracy curves in Fig 5.
We compress MobileNetv3Large and EfficientNet-B4 and
EfficientNet-B2 architectures while fine-tuning them on the
target target task. We find that our method consistently
improves over baseline architectures across various FLOPs
regimes. This is because our technique is able to adaptively
prune the model based on the difficulty of the classification
task. On both the tasks, we see 1% accuracy gains over Mo-
bileNetV3 small. The accuracy gains persist at the latency
footprint of MobileNetV3Large-0.75, where we see over
1.5% accuracy gains on both datasets. On EfficientNet, we
see upto 40% reduction in FLOPs without any drop in accu-
racy on Food101, and around 20% reduction in FLOPs on
the Cars196 dataset for the largest models (B4). We also see
around 30% FLOP reduction while maintaining the trans-
fer learning performance of the B1 and B0 variants. This
demonstrates that our learnt models can scale better than
the heuristic scaling described in [63].

Fine-tuning BERT on GLUE. We consider 5 datasets
of the GLUE benchmark [69] that are commonly used in
the literature, and fine-tune a pre-trained BERT-Base model
with our FLOPs regularizer. We re-parameterize the weight
matrices of the feed forward network of each transformer
block with our low-rank+sparse parameterization. We com-
pare our approach against model pruning, where SOTA
numbers are taken from Fig. 6 of [33], reporting the maxi-
mum accuracy among [34, 40, 42, 56, 73, 76]. We also re-
port the performance of widely-used distillation based base-
lines [57, 62]. Figure 1 presents the average performance on
the 5 datasets, and Figure 8 in appendix presents the perfor-
mance on each dataset. In both these figures, we plot the rel-

ative non-embedding FLOPs of the compressed model w.r.t
BERT-base against the drop in accuracy w.r.t BERT-base
(similar to [33]). We find that on 4 of the 5 datasets consid-
ered, our technique provides a higher accuracy for the same
number of FLOPs, indicating the efficacy of our method.
On MRPC, a dataset with very few samples, our method is
worse off for models with higher FLOPs, but outperforms
the baselines in the low FLOP regime.

4.3. Ablation Studies on MobileNetv3

Effect of optimization choices. In section 3 we provided
small scale experiments to justify our design choices of us-
ing projected-Adam and ℓ1

ℓ2
norm. In this section we per-

form large-scale ablation studies on MobileNetV3 for Im-
ageNet training. The results from this experiment are pre-
sented in Figure 4. Without projected-Adam, we notice that
the optimization algorithm doesn’t converge to sparse so-
lutions. Consequently, the resulting models do not have
large reduction in MACs. The accuracy of these models
also takes a big hit. On the other hand, using ℓ1 norm based
FLOPs regularizer with projected-Adam suffers from the
scaling issue described in Sec 3.3. This leads to a large
fraction of channels being pruned for some blocks, produc-
ing a model with deteriorated accuracy. Our method has
2-4% better accuracy in the high and mid FLOPs regimes
than these alternatives.
Comparing different building blocks. In Table 1, we de-
scribed ways to integrate various building blocks into our
framework. In Figure 4, we demonstrate the accuracy vs in-
ference time trade-offs of using two of these building blocks
in our framework, namely Pruning and Pruning+Low-rank
Factorization. We find that the extra flexibility provided
by the Low-Rank Factorization leads to models with fewer
MACs for the same accuracy, and the difference is even
more pronounced for smaller models. We note that channel
pruning alone can give us 10% reduction in MACs over the
MobileNetV3 family at the same accuracy level. In partic-
ular, at 73.4% accuracy, our model has 136Mn MACs com-
pared to 155Mn MACs of the MobileNetV3 family model.
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Figure 5. Accuracy-FLOPs trade-off on vision transfer learning tasks: Figures (a) and (b) depict the the fine-tuning performance
of models found by our method while compressing MobileNetv3Large and baseline MobileNetV3 on Cars-196 and Food-101 datasets.
Figures (c) and (d) show the performance on the EfficientNet family of architectures, where baselines are EfficientNetB0-B4, while our
method compresses EfficientNet B4 and B2.

Similarly, at 75.5% accuracy, our model has 198Mn MACs
compared to 216Mn MACs of MobileNetV3 family model.
Adding Low-Rank structure introduces another 5% reduc-
tion in MACs, with no loss in accuracy. This also shows
the effectiveness of our algorithm across multiple building
blocks.
Hardware-aware compression. We now optimize for ac-
tual on-deive latency by considering latency based ℓ1/ℓ2
surrogates (see Eq 6 in Appendix for more details on the
surrogate). We provide empirical evidence on the effec-
tiveness of this approach for MobileNetV3 on Pixel 6. We
measure the latency on the device’s CPU. We use out-of-
the box models, and do not quantize or add any other la-
tency optimizations for these. We compare the accuracy-
latency curves of models produced using FLOPs, latency
regularizers (see Fig 4). Observe that using the latency reg-
ularizer leads to models with smaller latencies and conse-
quently better latency-accuracy tradeoff compared to using
the FLOP regularizer. We also find these models to have
better performance than MobileNetV3 (0.5− 2% improve-
ment in accuracy for similar latency), despite MobileNetV3
being hand-crafted for faster inference on mobile devices.
Note that latencies here are actual on-device inference la-
tencies of the models.

5. Conclusion and Future Work
In this work, we presented an end-to-end technique for neu-
ral network compression. Our approach applies to a wide
variety of efficient blocks including pruning, unstructured
sparsity, quantization. At the core of our algorithm is a
novel surrogate for FLOPs, latency that relies on ℓ1

ℓ2
norms,

and works with batchnorm, layernorm. Our algorithm is
computationally efficient and runs in same amount of time
as needed for training a single model. We demonstrated the
efficacy of our approach on various pre-training and transfer
learning tasks on standard language and vision benchmarks.
As a future work, it will useful to incorporate more efficient
building blocks such as block diagonal matrices into our
framework. Another interesting direction would be to make
our technique more hardware aware by incorporating hard-
ware level parameters such as tiling into our search process.
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