
Efficient Skeleton-Based Action Recognition for Real-Time Embedded Systems

Nadhira Noor†, Fabianaugie Jametoni†, Jinbeom Kim‡, Hyunsu Hong‡, and In Kyu Park†

†Dept. of Electrical and Computer Engineering, Inha University, Incheon 22212, Korea
‡Finedigital Inc., Gyeonggi-do 13496, Korea

{nadhirannoor, akmalogi}@gmail.com, {jbkim, phil}@difine.co.kr, pik@inha.ac.kr

Abstract

Action recognition is vital for various real-world ap-
plications, yet its implementation on embedded systems or
edge devices faces challenges due to limited computing and
memory resources. Our goal is to facilitate lightweight ac-
tion recognition on embedded systems by utilizing skeleton-
based techniques, which naturally require less computing
and memory resources. To achieve this, we propose inno-
vative methodologies and optimizations tailored for embed-
ded deployment, including post-training quantization, op-
timized model architectures, and efficient resource utiliza-
tion. By enabling real-time and lightweight action recog-
nition on resource-constrained embedded systems, our re-
search opens up new possibilities for applications in areas
like autonomous surveillance, driving, and indoor safety
monitoring.

1. Introduction
Human action recognition, a fundamental task in video pro-
cessing, aims to classify human action in video sequences.
Over the years, action recognition has received substantial
attention within the computer vision community owing to
its possible wide-ranging practical applications, including
surveillance, robotics, and autonomous driving. Despite
its importance, implementing action recognition systems
in real-world scenarios presents significant challenges, pri-
marily due to their computational complexity.

Existing action recognition methods based on deep
learning and using RGB as input [3, 7] often exhibit heavy
computational demands, these methods rely on process-
ing large amounts of pixel data from RGB video frames.
Hence, current methods are impractical for deployment on
embedded devices with limited processing power and mem-
ory. Moreover, RGB-based methods can be affected by fac-
tors such as background colors and occlusions. Recogniz-
ing these limitations, researchers are increasingly turning
to skeleton-based approaches, which prioritize capturing

Figure 1. The illustration of our method compared to PoseC-
onv3D [6] on 5 action combined dataset [20]. Our method is 96%
faster while demonstrating competitive performance when com-
pared to the state-of-the-art approach.

the underlying motion dynamics rather than pixel-level de-
tails. Skeleton-based methods offer a promising alternative
to RGB-based approaches by abstracting away background
clutter and focusing solely on the spatial relationships be-
tween body joints. Previous works in this domain, such as
PoseConv3D [6], have explored 3D convolutional architec-
tures as the backbone for skeleton-based action recognition.
However, such methods remain unsuitable for certain em-
bedded devices, such as those utilizing Rockchip proces-
sors, due to their computational requirements and limita-
tions [9]. Conversely, several approaches [10, 18] tailored
for embedded deployment tend to sacrifice complexity in
favor of efficiency, resulting in reduced recognition accu-
racy.

To bridge this gap, we propose a novel approach to an

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

5889



efficient skeleton-based action recognition model that can
be embedded in real-world devices with limited computa-
tional resources and memory footprint, with highly accu-
rate models and less than 1 million of total parameters. In
our methodology, we represent human motion by generat-
ing joint heatmaps from detected 2D coordinates of human
keypoints across the time frame to represent human motion.
We propose a method that utilizes a 2D-CNN network, of-
fering a lighter alternative that remains viable for deploy-
ment on embedded devices while preserving accuracy. By
adopting this approach, we aim to design a more efficient
action recognition system that can operate in real-time on
devices with limited resources, addressing the challenges of
deploying in embedded environments. Additionally, we in-
corporate compression techniques such as quantization to
reduce the model’s footprint further. As illustrated in Fig-
ure 1 our method achieves higher accuracy compare to the
baseline [6] while being smaller in size and faster process-
ing speed. The contributions of this paper are as follows,

• We propose a light-weight deep learning model utilizing a
skeleton-based method that are suitable for action recog-
nition on embedded system

• We develop a real-time action recognition system on em-
bedded device

2. Related works

Skeleton-Based Action Recognition Extensive research
has been conducted on recognizing human action from
video for many years. Skeleton-based action recognition
has arisen as a promising approach due to its effective cap-
ture of human motion dynamics. Unlike RGB-based meth-
ods, skeleton-based approaches are resilient to various noise
sources, such as changes in background color and lighting
conditions.

One prominent approach in skeleton-based action recog-
nition involves representing human poses as graphs, where
joints correspond to nodes and limb connections represent
edges. Graph convolutional networks (GCNs) [4, 13, 14,
24], have been successfully applied to extract spatial and
temporal features from skeletal data for action classifica-
tion. For instance, HD-GCN [13] proposed a hierarchical
graph-based framework that leverages both spatial and tem-
poral dependencies among body joints for improved action
recognition performance.

Convolutional Neural Networks (CNNs) [6] and Recur-
rent Neural Networks (RNNs) [5, 16], have shown promis-
ing results in capturing complex motion patterns and rec-
ognizing actions accurately when applied to skeletal data.
For example, Duan et al. [6] introduced a novel spatial-
temporal convolutional network for skeleton-based action
recognition that effectively integrates spatial and temporal
information through 3D-CNN.

Efforts for real-time implementation have been made to
optimize skeleton-based action recognition models for real-
time implementation on embedded devices. Lightweight
network architectures and efficient inference techniques are
employed to reduce computational complexity and mem-
ory footprint while maintaining recognition accuracy. Noor
et al. [20] developed a real-time skeleton-based action
recognition system optimized for deployment on GPU.

Action Recognition on Embedded Devices Meng
et al. [18] introduced a human action recognition system
for embedded systems. [18] utilized Hierarchical Motion
History Histogram (HMHH) feature to represent the mo-
tion information and employed a Support Vector Machine
(SVM) as the classifier. Monisha et al. [19] utilized tem-
plate matching algorithm for action recognition, where the
template images were generated by using edge detection to
find the boundary of the human posture and the hand ges-
ture, making it not suitable in real-world scenario where the
background scene is variable. Jain et al. [19] developed a
federated learning framework that allows a large number of
devices to jointly learn action recognition models without
sharing data.

3. Methodology

3.1. Pose Estimator

The pose estimator receives input of RGB frames and out-
puts bounding boxes and coordinates of each keypoint (x,
y, score). We have a total of 17 coordinates for each per-
son based on COCO-keypoints [15]. To achieve efficient
pose estimation suitable for deployment on embedded de-
vice, we leverage YOLOv8s-pose [22], a state-of-the-art ar-
chitecture renowned for its balance between accuracy and
speed in human pose estimation tasks. Additionally, to fur-
ther optimize this architecture for embedded deployment,
we introduce two key modifications: pruning and custom
post-processing, which will be explained in Section 3.4.1.

3.2. Heatmap Generation

The pseudo joint heatmap serves as the input representation
for the action recognition model. It encapsulates spatial in-
formation about the human body’s keypoints extracted from
the estimated poses. We employ the following steps to gen-
erate the pseudo joint heatmap:

1. Heatmap Generation: As implemented in PoseC-
onv3D [6], given the location of each joint, we generate the
heatmap at every joint detected using gaussian maps.

2. Center Cropping: We perform center cropping on the
input frames to focus on the subject of interest. This crop-
ping step ensures the subject remains centered within the
frame, facilitating more accurate action recognition.

5890



Figure 2. Network architecture of our model. Given an input of stacked generated joint heatmap, we employ a number of #T channels in
line with the number of frames for the convolution.

3. Resizing: To conform to the spatial size requirements
of the action recognition module, we resize the pseudo joint
heatmap to a fixed spatial size of 112 × 112 . This resiz-
ing step ensures that the input data are consistent across all
frames and facilitates efficient processing within the action
recognition module.

4. Conversion to Grayscale: As a further preprocess-
ing step, we convert the resized pseudo joint heatmap into
grayscale. This conversion simplifies the input data repre-
sentation, reducing computational complexity and memory
requirements for subsequent processing in the action recog-
nition module.

In addition to generating pseudo joint heatmaps, our sys-
tem optimizes frame sampling. To reduce computational
load and temporal redundancy while preserving temporal
information, we uniformly sample 32 frames out of every
64 frames.

3.3. Action Recogniton

In the action recognition module, we present a novel ap-
proach designed to efficiently utilize spatial and tempo-
ral information while minimizing computational complex-
ity. Our method is based on a modified ResNet18 architec-
ture that serves as the backbone for our action recognition
model. Figure 2 shows our overall architecture.

To begin, the action recognition module receives the gen-
erated heatmap as grayscale, a single-channel image as in-
put. This preprocessing step simplifies the input represen-
tation while retaining essential information. Next, we stack
32 frames of the sampled generated pseudo heatmap to form
a multi-channel input tensor. By stacking the heatmaps over
time, we preserve both spatial and temporal features within
the input data.

In Table 1 we show our proposed network, we reduce the
number of channels from 32 (number of input frames) to 8,
reducing the number of channels is done intentionally to de-
crease the computational complexity of the network and to
extract more abstract features from the input data. Next,

Stage AR Output Sizes (C ×H ×W )

Data Layer uniform 32, 112× 112 32× 112× 112

conv1 7× 7, 8, stride 2 8× 56× 56

max pool 7× 7, stride 2 8× 28× 28

Res2

[
3× 3, 8

3× 3, 8

]
×2 8× 28× 28

Res3

[
3× 3, 16

3× 3, 16

]
×2 16× 14× 14

Res4

[
3× 3, 32

3× 3, 32

]
×2 32× 7× 7

Res5

[
3× 3, 64

3× 3, 64

]
×2 64× 7× 7

GAP, FC # of Classes

Table 1. The proposed network. The dimensions of the kernels are
denoted by H × W,C for height, width, and channel size. GAP
and FC denote the global average pooling and fully connected,
respectively.

we employ ResNet blocks to extract hierarchical features
from the input tensor. These blocks consist of convolutional
layers followed by batch normalization and ReLU activa-
tion functions, facilitating feature extraction while mitigat-
ing the risk of vanishing gradients. Subsequently, we em-
ploy a linear layer to map the extracted features and obtain
the logits as output. During training, we utilize the cross-
entropy loss function to quantify the disparity between pre-
dicted and ground truth labels. Additionally, we manually
apply softmax activation outside the model to obtain the
final class probabilities. This approach allows for greater
flexibility in model deployment and facilitates compatibility
for downstream applications. Our action recognition mod-
ule offers a balance between computational efficiency and
recognition accuracy, making it suitable for real-time de-
ployment on resource-constrained embedded device.

5891



Figure 3. Inference pipeline on embedded device.

3.4. Optimization

We employ several optimization techniques to further opti-
mize our model for speed. In our pose estimator model, we
employ both model pruning and quantization. In our action
recognition model, we employ only quantization.

3.4.1 Pruning and Post-processing

Pruning To further optimize our pose-estimator network
performance, we prune some unnecessary operations from
the original model that do not have any model weight. In
particular, we prune the last few operations, which consist
of transformation and normalization operations. In the ultr-
alytics ONNX implementation of YOLOv8s-pose [22], we
take the outputs from node ids 388, 403, 418, 336, 350, and
364, which contain the raw features of the detection and
keypoints, and trim the rest of the node below it, effectively,
increasing the speed of the model inference.

Post-Processing In addition to pruning, we implement a
custom post-processing to extract the bounding box and
keypoints coordinates. This post-processing step receives
input from the output (6 sets of arrays) of the pruned pose
estimator model. The first 3 sets from the output nodes
[388, 403, 418] are for detection, we process these outputs
by calculating the coordinates of the bounding boxes based
on the grid cell offsets and box dimensions, then apply the
sigmoid function to the scores, and then process the detec-
tion from multiple scales (output0, output1, and output2)
into a single array of bounding box proposals. The sec-
ond 3 sets from the output nodes [336, 350, 364] are for
keypoints, we process the outputs to extract keypoint pro-
posals and confidence scores. It calculates the coordinates
of the keypoints based on the grid cell offsets, applies the
sigmoid function to the confidence scores, and scales the
coordinates. Then, we convert the keypoints from multiple
scales (output0, output1, output2) into a single array with 51
values of keypoint proposals, because we employ COCO-
keypoints [15] which have 17 keypoints, hence, each 3 val-
ues represent the coordinates (x, y) and score (z). Lastly, it
filters out low-confidence detection, applies non-maximum

suppression (NMS) to remove redundant bounding boxes,
and returns the filtered detection and keypoints.

3.4.2 Quantization

For implementation on the embedded device, we employ
‘Post-Training Quantization’ to optimize the model, which
allows direct deployment of the quantized model without
additional training. We test 2 different quantization meth-
ods that will be explained in this section.

Uniform Affine Quantizer According to [11], this quan-
tization method yields the smallest loss for most models.
Assume we have a variable with a range of (Xmax, Xmin)
where X ∈ R and want to quantize it to a range of
(0, Nprecission) where Nprecission is the amount of preci-
sion we desire. We use the following formula to quantize
the variable.

Xint = round(
Xfloat

∆
) + z (1)

XQuantize = clamp(0, Nprecission − 1, Xint) (2)

Where ∆ is the scale and z is the zero-point that maps the
floating point to integers. We use the following formula to
de-quantize the results:

Xfloat = (XQuantize − z)∆ (3)

We use this method to quantize our model to unsigned inte-
ger 8 (uint8).

Dynamic Fixed Point The second quantization method
that we use is Dynamic Fixed Point [9]. This method fol-
lows the formula below to quantize a given value

Xint = round(Xfloat ∗ 2fl) (4)

XQuantize = clamp(Nmin, Nmax, Xint) (5)

where fl is how much a digit is shifted to the left and

Nmax = 2Nprecission−1 − 1 (6)

5892



Figure 4. Rockchip RV1126 EVB specifications

Nmin = −(2Nprecission−1 − 1) (7)

We set Nmin as -127 and Nmax as 127 for 8-bit precision
(int8) and Nmin as -255 and Nmax as 255 for 16-bit preci-
sion (int16). We use this method to quantize our model to
int8 and int16.

3.5. Model Conversion

To utilize the full capability of the Rockchip NPU mod-
ule, we need to convert the model to Rockchip’s file format
called RKNN. First, we must convert our PyTorch model
to a torchscript module or ONNX. In this experiment, we
choose to convert our model to ONNX with an offset of 11
because of the capability and ease of use of the ONNX for-
mat. After converting our model to ONNX, we can convert
it to RKNN using Rockchip’s [9] built-in conversion tool.

3.6. Real-time Inference on Embedded System

The real-time inference pipeline, illustrated in Figure 3, in-
tegrates our method into embedded systems for efficient ac-
tion recognition. We utilize the converted model (RKNN
model) of the pose estimator and action recognition model
for implementation on the embedded device. Connecting
a webcam or CCTV camera to our embedded device initi-
ates the process. Upon capturing frames, the embedded de-
vice simultaneously processes pose estimation for individu-
als within the scene. Utilizing every 64 frames, the system
generates joint heatmaps and to optimize temporal infor-
mation, we then uniformly sample 32 frames, ensuring a
comprehensive understanding of the motion dynamics. We
then convert the generated heatmap from RGB to grayscale
as detailed in Section 3.2, which serves as the input for our
action recognition module, which will classify the person’s
action within the frame.

Figure 5. Confusion matrix illustrating the classification perfor-
mance of the proposed model on [20] dataset, with rows corre-
sponding to actual classes and columns corresponding to predicted
classes.

Model
Accuracy Parameters Model Disk Size Action

(%) (M) (MB) Proc. Time

Duan et al. [6] 98.26 2.0 16.2 392.50
Noor et al. [20] 97.93 0.5 4.3 26.40

Ours 98.35 0.1 0.8 4.10

Table 2. Comparison with the existing method.

4. Experiments

4.1. Implementation Details

We train our model with stochastic gradient descent as the
optimizer with a momentum of 0.9 and weight decay of
0.001. The learning rate is set to decay with cosine anneal-
ing [17], the initial learning rate is 0.01 and the minimum
learning rate is 0.0001. We use the first 10 epochs for warm-
up [8] in our training. Training is done in 150 epochs.

Training and testing are performed on an Intel i7-
11700K CPU with 64GB RAM and NVIDIA RTX 4090
GPU. Following the model evaluation on the GPU, we pro-
ceed to implement the real-time system on an embedded
device. Specifically, we deploy the trained model onto the
EVB Rockchip RV1126 embedded device, which is char-
acterized by limited computing and memory resources suit-
able for edge computing applications. Figure 4 shows the
device’s specifications.

As discussed in Section 3.4, this deployment process in-
volves optimizing the model for inference on the embedded
device. By implementing the real-time system on the em-
bedded device, we demonstrate the feasibility and practical-
ity of our approach in real-world scenarios with resource-
constrained environments.

5893



Figure 6. Example of predictions from the proposed model implemented on the embedded devices. (a) Falling, (b) Sit Down, (c) Stand
Up, (d) Walking, (e) Lay Down.

Evaluation metrics. To evaluate our proposed model’s
computation efficiency, we calculate the number of param-
eters (params), its disk size, processing speed of each mod-
ule, and FPS. Note that the FPS performance is calculated
during inference by streaming the input video and then run-
ning all the processes in real-time. Therefore, as explained
in Section 3.6, action recognition is not performed on every
frame, only the pose estimator runs on every frame.

Dataset. We train and test our method by using the
5 action combined dataset (NTU RGB+D [21], NW-
UCLA [23], URFD [12], Multiple Cameras Fall Dataset [2],
and AI Hub [1]) proposed in [20]. 5 action combined
dataset is a compilation of various datasets merged together,
it is specifically curated to represent the most prevalent in-
door activities encountered in real-world scenarios. The 5
classes are: Falling, Sit Down, Stand up, Walking, and Lay-
down. In total, this dataset provides 6,231 videos and also
provides annotated sequences of human keypoints for each
video.

4.2. Experimental Result

First, we validate our trained model accuracy on the 5 ac-
tion combined dataset [20] on GPU. Second, we evaluate
our model implementation performance on the embedded
device.

4.2.1 Performance of Action Recognition on GPU

We assess the performance of our model on GPU before
deploying it on the embedded device. We evaluate the ac-
curacy of our proposed models across different classes by
examining the confusion matrix shown in Figure 5. Here,
each row represents the instances of the ground truth la-
bel, while each column represents the instances in a pre-
dicted class. The diagonal elements of the matrix indicate
the number of correctly classified instances for each class.
Off-diagonal elements represent miss-classification, where
the row class is the actual class, and the column class is the
predicted class. The confusion matrix shows that our model
demonstrates robust performance across all classes, indicat-
ing its generalization capability and effectiveness.

5894



Action Recognition Model Pose Estimator Model Accuracy (%) Pose Proc. Time (ms) Action Proc. Time (ms) Average FPS
Quantized i16 89.00 204.00 166.00 4.31

Quantized i16 Quantized i8 85.10 84.20 133.40 10.13
Quantized u8 72.60 83.20 132.40 10.20
Quantized i16 90.60 211.0 103.60 4.46

Quantized i8 Quantized i8 69.80 85.80 76.40 10.75
Quantized u8 74.60 81.70 61.80 10.80
Quantized i16 91.10 214.90 108.40 4.28

Quantized u8 Quantized i8 88.50 84.90 66.40 10.70
Quantized u8 82.10 83.00 68.30 10.90

Table 3. Comparison of the proposed quantized model on an embedded device (Rockchip’s RV1126). i16, i8, and u8 refers to int16, int8,
and uint8, respectively. The cells with orange color represent the best performance. The row with green color is the model we choose for
our real-time action recognition system on an embedded device.

Device
Accuracy Pose Estimator Action Recognition

FPS
(%) Latency (ms) Latency (ms)

GPU 98.35 15.35 4.10 19.96
CPU 98.35 55.73 25.95 11.65

Embedded Device 88.5 84.9 66.4 10.70

Table 4. Speed performance comparison between devices. Note
that FPS is computed on a set of 64 frames.

In Table 2, we compare our results with other methods,
our model is 20 times smaller, 28 times faster, and 0.09%
increase in accuracy compared to the baseline model [6].
Moreover, compared with [20], our proposed model is 5
times smaller yet achieves a higher accuracy by 0.42%.

4.2.2 Performance Result on Embedded Device

Performance of the quantized model on an embedded
device. We evaluate the performance of the different quan-
tized models. We infer the model 50 times on Rockchip’s
RV1126, followed by averaging the results obtained from
each algorithm. As presented in Table 3, we observe that the
performance of our proposed models is influenced by the
pose estimator’s performance. Notably, our models quan-
tized to int16 exhibit lower accuracy and slower processing
speeds. Conversely, our models quantized to uint8 show im-
proved performance in both accuracy and speed. However,
selecting a pose estimator model quantized to uint8 results
in decreased performance in action recognition, with only
a marginal decrease in FPS. Therefore, we opt for the pro-
posed action recognition model quantized to uint8 and pose
estimator models quantized to int8.

Speed performance between devices. As shown in Ta-
ble 4, The model we use in the embedded device is the quan-
tized model of our proposed model, with the pose estimator
quantize from fp32 to int8, and action recognition quantize
from fp32 to uint8. As expected, implementation on the

Model
System NPU Total Maximum Total
Memory Memory Memory Allocation Allocation

Not quantize 29.06 14.70 43.76 87.52 112.94
Quantize i16 11.48 6.48 17.97 35.93 47.98
Quantize i8 11.04 6.12 17.16 34.32 43.90
Quantize u8 11.00 5.92 16.91 33.83 43.39

Table 5. Comparison of memory usage (MB) of each proposed
quantized model.

embedded device is slower, with a 0.95 FPS decrease com-
pared to CPU and a 9.26 FPS decrease compared to GPU
performance.

Memory usage evaluation. The details of the evaluation
metrics of the memory usage of the RKNN model during
inference on Rockchip NPU are as follows.
• System memory: System memory allocated by non-NPU

drivers, including memory allocated in the system for
models and input data

• NPU memory: Indicates the memory allocated by the
NPU driver during model inference

• Total memory: The sum of system memory and NPU
memory

• Maximum allocation: The peak memory usage, it indi-
cates the maximum allocation value of memory from the
beginning to the end of the model inference

• Total allocation: It represents the sum of all memory al-
located during the operation of the RKNN model

The findings presented in Table 5 indicate that quantized
models require only half the memory compared to the non-
quantized model.

4.3. Ablation Studies

The effect of channel size. In Table 6, we present the re-
sults of our ablation study, focusing on the effects of varying

5895



Channel Sizes Parameters (M) Accuracy (%) Latency (ms)
Conv1, 32

Res2, 32

Res3, 64

Res4, 128

Res5, 128

 1.3 98.70 7.69


Conv1, 16

Res2, 16

Res3, 64

Res4, 128

Res5, 256

 0.7 98.47 6.53


Conv1, 8

Res2, 8

Res3, 16

Res4, 32

Res5, 64

 0.1 98.35 4.10

Table 6. Comparison of performance across different channel sizes
in the proposed network.

channel sizes in the initial convolutional layer and the sub-
sequent ResNet layers. While larger channel sizes appear to
yield slightly higher accuracy in the trained model, the ac-
companying increase in total parameters presents a notable
trade-off. Our analysis reveals that the accuracy decrease
associated with smaller channel sizes is minimal, suggest-
ing that the benefits of larger channels may not justify the
additional computational cost. Consequently, we opt for
the smallest model configuration, utilizing a first channel
output of 8, as our baseline model. This decision balances
model complexity and accuracy, ensuring optimal perfor-
mance while minimizing computational resources.

The effect of input size. We investigate the impact of dif-
ferent input resolutions on the performance of the action
recognition module. From the results presented in Table 7,
we observe a trade-off between input resolution and model
performance. While utilizing an input resolution of 56× 56
yields a commendable accuracy of 97.29% with a relatively
low latency of 3.75ms, opting for a higher resolution of
112 × 112 enhances accuracy to 98.35% at the expense of
a slightly increased latency of 4.10ms. Considering this
trade-off, we opt for the latter configuration 112 × 112 to
strike a balance between accuracy and latency, thereby en-
suring optimal performance for our application.

5. Discussion and Future Research
Our experimental results (Section 4.2) demonstrate the ef-
fectiveness of our proposed method in achieving accurate
action recognition on GPU, CPU, and embedded devices.
The validation of our model accuracy on the GPU show-

Input Resolution Accuracy (%) Latency (ms)
56× 56 97.29 3.75

112× 112 98.35 4.10

Table 7. Comparison of performance across different generated
heatmap resolutions in the proposed network.

cases its ability to accurately classify actions across various
scenarios. Furthermore, evaluating our model implemen-
tation on the embedded device confirms its suitability for
real-world deployment, even with limited computational re-
sources. The qualitative results1 depicted in Figure 6 further
reinforce the robustness of our method in correctly classify-
ing each action class. These findings show the potential of
our approach to contribute to applications such as surveil-
lance, robotics, and autonomous driving, where real-time
action recognition is crucial.

While our method shows promising performance, some
areas require further improvement and exploration. Specif-
ically, future research could focus on enhancing the effi-
ciency and speed of our model implementation on embed-
ded devices, potentially through optimization techniques,
such as knowledge-distillation. Moreover, it would be ben-
eficial to expand the scope of our experiments by utilizing
diverse datasets to evaluate the generalization capabilities
of our model across different action recognition scenarios.

6. Conclusion

In this paper, we proposed a novel approach to address
the challenges of action recognition on embedded devices.
We developed a real-time action recognition system capable
of operating efficiently on resource-constrained devices by
leveraging skeleton-based action recognition and adopting
a lightweight 2D-CNN network architecture. Our proposed
methodology offered a balance between computational ef-
ficiency and accuracy, making it suitable for real-world ap-
plications, such as surveillance systems. The experimen-
tal results demonstrated the effectiveness of our approach
in achieving high recognition accuracy while maintaining
real-time performance.

Acknowledgement
This work was supported by the Institute of Information &
communications Technology Planning & Evaluation (IITP)
grant funded by the Korean government (MSIT) (No.RS-
2022-00155915, Artificial Intelligence Convergence In-
novation Human Resources Development (Inha Univer-
sity) and No.2022-0-00981, Foreground and Background
Matching 3D Object Streaming Technology Development
and No.2021-0-02068, Artificial Intelligence Innovation
Hub).

1Video results available at https://youtu.be/c6EpnVlucWY

5896



References
[1] AI Hub Senior Abnormal Behavior Video Dataset. https:

//aihub.or.kr/aihubdata/data/view.do?
currMenu = 115 & topMenu = 100 & aihubDataSe =
realm&dataSetSn=167, 2020. 6

[2] E. Auvinet, C. Rougier, J. Meunier, A. St-Arnaud, and J.
Rousseau. Multiple cameras fall data set. Technical report
1350, DIRO - Université de Montréal, 2010. 6

[3] João Carreira and Andrew Zisserman. Quo vadis, action
recognition? A new model and the kinetics dataset. In Proc.
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 4724–4733, 2017. 1

[4] Ke Cheng, Yifan Zhang, Xiangyu He, Weihan Chen, Jian
Cheng, and Hanqing Lu. Skeleton-based action recognition
with shift graph convolutional network. In Proc. IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 180–189, 2020. 2

[5] Yong Du, Wei Wang, and Liang Wang. Hierarchical recur-
rent neural network for skeleton based action recognition.
In Proc. IEEE Conference on Computer Vision and Pattern
Recognition, pages 1110–1118, 2015. 2

[6] Haodong Duan, Yue Zhao, Kai Chen, Dahua Lin, and
Bo Dai. Revisiting skeleton-based action recognition. In
Proc. IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 2959–2968, 2022. 1, 2, 5, 7

[7] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and
Kaiming He. Slowfast networks for video recognition. In
Proc. IEEE/CVF International Conference on Computer Vi-
sion, pages 6201–6210, 2019. 1

[8] Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter No-
ordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tul-
loch, Yangqing Jia, and Kaiming He. Accurate, large mini-
batch SGD: training imagenet in 1 hour. arXiv preprint
arXiv:1706.02677, 2017. 5

[9] Rao Hong. RKNN documentations. https://github.
com/rockchip-linux/rknn-toolkit, 2023. 1, 4,
5

[10] Pranjal Jain, Shreyas Goenka, Saurabh Bagchi, Biplab
Banerjee, and Somali Chaterji. Federated action recogni-
tion on heterogeneous embedded devices. IEEE Trans. on
Artificial Intelligence, abs/2107.12147, 2021. 1

[11] Raghuraman Krishnamoorthi. Quantizing deep convolu-
tional networks for efficient inference: A whitepaper, 2018.
4

[12] Bogdan Kwolek and Michal Kepski. Human fall detec-
tion on embedded platform using depth maps and wire-
less accelerometer. Computer Methods and Programs in
Biomedicine, 117(3):489–501, 2014. 6

[13] Jungho Lee, Minhyeok Lee, Dogyoon Lee, and Sangy-
oun Lee. Hierarchically decomposed graph convolutional
networks for skeleton-based action recognition. In Proc.
IEEE/CVF International Conference on Computer Vision,
pages 10410–10419, 2023. 2

[14] Maosen Li, Siheng Chen, Xu Chen, Ya Zhang, Yanfeng
Wang, and Qi Tian. Actional-structural graph convolu-
tional networks for skeleton-based action recognition. In

Proc. IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 3595–3603, 2019. 2

[15] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C. Lawrence Zitnick. Microsoft COCO: common objects in
context. In Proc. European Conference on Computer Vision,
pages 740–755. Springer, 2014. 2, 4

[16] Jun Liu, Gang Wang, Ping Hu, Ling-Yu Duan, and Alex C.
Kot. Global context-aware attention LSTM networks for 3D
action recognition. In Proc. IEEE Conference on Computer
Vision and Pattern Recognition, pages 3671–3680, 2017. 2

[17] Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradi-
ent descent with warm restarts. In Proc. International Con-
ference on Learning Representations, 2017. 5

[18] Hongying Meng, Nick E. Pears, and Chris Bailey. A human
action recognition system for embedded computer vision ap-
plication. In Proc. IEEE Conference on Computer Vision and
Pattern Recognition, 2007. 1, 2

[19] M Monisha and Pooja S Mohan. A real-time embedded sys-
tem for human action recognition using template matching.
In Proc. IEEE International Conference on Electrical, In-
strumentation and Communication Engineering, pages 1–5,
2017. 2

[20] Nadhira Noor and In Kyu Park. A lightweight skeleton-based
3D-CNN for real-time fall detection and action recognition.
In Proc. IEEE/CVF International Conference on Computer
Vision Workshop, pages 2171–2180, 2023. 1, 2, 5, 6, 7

[21] Amir Shahroudy, Jun Liu, Tian-Tsong Ng, and Gang Wang.
NTU RGB+D: A large scale dataset for 3D human activity
analysis. In Proc. IEEE Conference on Computer Vision and
Pattern Recognition, pages 1010–1019, 2016. 6

[22] Ultralytics. Pose - ultralytics YOLOv8 documentations.
https://docs.ultralytics.com/tasks/pose,
2024. 2, 4

[23] Jiang Wang, Xiaohan Nie, Yin Xia, Ying Wu, and Song-
Chun Zhu. Cross-view action modeling, learning, and recog-
nition. In Proc. IEEE Conference on Computer Vision and
Pattern Recognition, pages 2649–2656, 2014. 6

[24] Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial tempo-
ral graph convolutional networks for skeleton-based action
recognition. In Proc. AAAI Conference on Artificial Intelli-
gence, pages 7444–7452, 2018. 2

5897


