
CoDISP: Exploring Compressed Domain Camera ISP with RGB-guided Encoder

Molin Zhang1* Soumendu Majee2 Chengyu Wang2 Seok-Jun Lee2

Hamid Sheikh2

1Massachusetts Institute of Technology,2 Samsung Research America
molin@mit.edu,{s.majee,chengyu.wang,seokjun1.lee,hr.sheikh}@samsung.com

Abstract

Most mobile device Image Signal Processing (ISP)
pipelines operate directly on RAW image data for all pro-
cessing tasks. However, the rise of super-high-resolution
cameras on mobile devices has led to increased memory
demands for multi-frame ISP pipelines. In this work, we
introduce a novel ISP pipeline that operates on a learned
compressed domain, aiming to conserve memory for down-
stream ISP modules’ inputs. We utilize RGB image com-
pression to define a compressed latent domain, preserving
both semantic information and high-frequency details. To
facilitate mapping of raw images to the compressed domain,
we develop a transfer learning strategy. All downstream
processing tasks, including demosaicing, single and multi-
frame denoising, and registration, are performed on this
compressed latent domain. We demonstrate the effective-
ness of our compressed domain ISP pipeline on both public
and internal datasets. Remarkably, our pipeline achieves
ISP performance similar to non-compression methods while
significantly reducing mobile memory requirements.

1. Introduction

The image Signal Processing (ISP) pipeline plays an impor-
tant role in mobile camera imaging. Recently, deep learn-
ing (DL) has demonstrated remarkable success in various
computational photography and vision applications due to
its outstanding performance and faster computation time.
This success spans across both low-level tasks, such as
demosaicing [37, 48], denoising [24, 28, 38], and super-
resolution [9], as well as high-level tasks, such as tone map-
ping [32], detection, and pose estimation [43, 49, 50, 52].
Additionally, DL has shown promising capabilities in the
Image Signal Processing (ISP) pipeline [16, 25, 34]. The
emergence of Neural Processing Units (NPUs) and Graph-
ics Processing Units (GPUs) in mobile platforms has pro-
vided the necessary hardware support to deploy DL models
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on modern mobile phones.
However, the high-resolution camera sensors in mod-

ern mobile devices dramatically increase the memory re-
quirement for current ISP algorithms and multi-frame im-
age techniques, creating a major bottleneck for further im-
age quality (IQ) improvements. Smartphone cameras gener-
ally use multiple frames for low resolution photos but could
be limited to 1 or 2 frame only for high megapixel cam-
eras. Current DL-based ISP pipelines also directly work
on full-resolution images which restrict the performance of
multi-frame image processing [16, 25, 34].

Image compression techniques are proposed to over-
come the limitation of memory storage and data trans-
ferring. Conventional image compression techniques like
JPEG [46] and BPG [6] rely heavily on hand-crafted com-
pression features and rules. Those features exhibit occa-
sional challenges in effective generalization, particularly
within intricate scenarios, leading to an observable decline
in overall performance. Learned compression rules with
deep learning, especially Convolutional Neural Networks
(CNN) have been proven to achieve outperforming com-
pression performance [4, 5, 7, 8, 14] compared to traditional
methods. Compressed domain has shown success in var-
ious applications including generative models and solving
inverse problems [2, 53]. Current compression techniques
involve entropy encoding for a higher compression ratio in
data transfer. For example, the variational auto-encoder
(VAE) framework [19] has been widely adopted for high
distortion-rate ratio [35]. To better retrieve the details from
the compression-decompression process, window-based at-
tention [10, 36, 45] has also been introduced into the en-
coder and decoder [47, 54].

In this paper, we introduce a novel approach to ISP
pipeline directly operating on a learned compressed do-
main, aimed at mitigating high memory usage by employ-
ing compressed latent variables to reduce input size for ISP
modules. To the best of our knowledge, we are the first to
propose such an ISP pipeline directly on the compressed
domain.

There are two main objectives in this study:
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1. Designing a compressed latent manifold to enable com-
pression and projection of RAW images onto the mani-
fold.

2. Demonstrating the effectiveness of the compressed la-
tent manifold in performing downstream ISP tasks.
We utilize RGB image compression techniques to define

the latent space. RGB images inherently contain more se-
mantic information and details compared to RAW images.
Once a raw image is captured, we employ another encoder
specifically designed for raw images, following the same ar-
chitecture as the RGB encoder, to compress it onto the same
compressed latent space defined by RGB compression. We
utilize transfer learning to train the raw image encoder by
transferring the model parameters to facilitate the mapping
between the compressed raw image and compressed RGB
image. This approach ensures that both raw and RGB im-
ages can be compressed uniformly, sharing the same com-
pressed latent manifold. In addition to compression and
demosaicing, we demonstrate the capability of our com-
pressed domain ISP for other downstream ISP tasks such
as denoising and registration, where separate deep learning
models are employed with compressed inputs. Our exper-
imental results show that our pipeline achieves similar ISP
performance while significantly reducing mobile memory
requirements. From the results, our pipeline achieves simi-
lar ISP performance while reducing the mobile memory re-
quirements by reducing the size of input to the ISP mod-
ules. Note that while a conventional ISP pipeline typically
includes tasks such as tone mapping and multi-frame blend-
ing, this work primarily focuses on establishing a proof-of-
concept for an ISP pipeline directly on a compressed do-
main. The main contributions of this paper are summarized
as follows:

• We propose a novel ISP pipeline directly on the com-
pressed domain to save memory for high-resolution im-
ages captured by mobile phone cameras.

• We introduce a transfer learning strategy to enhance the
training of the raw image encoder, improving its ability to
map raw image data to the compressed domain.

• We evaluate and demonstrate the ability of our com-
pressed domain ISP for other downstream tasks with three
representatives: demosaicing, denoising and registration.

2. Related Works

2.1. RGB image compression

Traditional RGB image lossy compression algorithms, such
as JPEG [33] and JPEG2000 [39], employ hand-crafted
compression rules for image compression. Recent deep
learning (DL) methods based on Convolutional Neural
Networks (CNNs) have demonstrated significant advan-
tages over traditional image compression methods by di-
rectly optimizing Shannon’s Rate-Distortion (R-D) trade-

off. Initial attempts were made using Recurrent Neural Net-
work (RNN) architectures [41, 42] and autoencoder mod-
els [4, 40]. Modern efficient image compression frame-
works are based on Variational Autoencoder (VAE) archi-
tectures. When a distortion metric is specified, VAEs are
trained to compress data by minimizing a tight upper bound
on the Rate-Distortion (R-D) loss function.

To better model the posterior of compressed latent vari-
ables, a hyper-prior was incorporated into the VAE frame-
work to capture the spatial dependence [5]. Side infor-
mation is generated with additional network modules and
used as conditional information for compressed informa-
tion where the posterior becomes Gaussian distribution [7,
23, 26]. The prior for the side information is modeled as a
non-parametric kernel-based probability. The overall opti-
mization function with side information is modeled below,

L =R+ λ ·D
=Ex∼px

[
− log2 pŷ|ẑ(ŷ | ẑ)− log2 pẑ(ẑ)

]
+ λ · Ex∼px

[d(x, x̃)]

(1)

where R represents ratio loss, D represents distortion loss,
x is the original image, x̃ is the reconstructed image, ŷ
quantized is the compressed latent variables and ẑ is the
side information. λ is the hyperparameter controlling the
trade-off between bit-rate and distortion.

To further enhance the hyperprior entropy model, auto-
regressive components are utilized to recover the miss-
ing part of the quantization [29]. Generative Adversar-
ial Networks (GANs) [13] have been applied to enhance
image quality by introducing additional perceptual con-
trol [27, 44]. At the same time, the R-D trade-off becomes
a triple trade-off between rate distortion and perception.

2.2. Raw image demosaicing

A raw image from a phone camera typically has only one
color channel due to a specific Color Filter Array (CFA)
pattern. Demosaicing methods convert these single-channel
raw images into full-color RGB images. While various non-
deep learning-based demosaicing algorithms exist, many
struggle with preserving high-frequency structures, leading
to artifacts. Several approaches aim to improve recovery in
high-frequency regions [11, 15, 31], but they often suffer
from issues like excessive blurring, false colors, and high
computational demands.

DL-based demosaicing methods offer superior perfor-
mance by replacing hand-crafted features with learned de-
mosaicing rules. Emerging techniques combine demosaic-
ing with denoising for joint improvement. For example,
Gharbi et al.[12] trained a deep convolutional neural net-
work on a large dataset, achieving leading performance.
Additionally, Kokkinos et al.[21] introduced an iterative
network that integrates the majorization-minimization algo-
rithm with a residual denoising network.
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Among DL-based algorithms, demosaicing tasks typi-
cally utilize information from a full-size image, often in-
corporating residual links in network architectures. In con-
trast, our approach presents a demosaicing framework in the
compressed domain, without residual links and using com-
pressed intermediate variables compared to the input raw
image.

3. Proposed compressed domain ISP
Designing a compression method and its corresponding
compressed latent manifold for downstream tasks in ISP
is a non-trivial task. To achieve the desired performance,
we propose a novel compressed domain ISP with an RGB-
guided compression encoder, as illustrated in Figure 1.
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Figure 1. Our proposed compressed domain ISP framework in-
volves three key steps. Firstly, an RGB encoder and decoder are
trained using RGB images to define a latent manifold. Secondly,
transfer learning is employed to train a raw image encoder with an
identical network architecture as the RGB counterpart. Initialized
with the weights of the RGB encoder, the raw image encoder is
trained to map raw image data onto the established latent manifold
using L1 loss optimization. Finally, downstream ISP modules are
trained directly on the latent manifold, demonstrated here through
denoising and registration modules.

3.1. RGB image compression

VAE-based learned RGB image compression achieves high
fidelity reconstruction quality and low data transferring bit-
stream, but the trade-off between the distortion and the com-
pression ratio tends to over-smooth the regions with high-
frequency details when the compression ratio is high as
shown in figure 2. Here we directly minimize the distor-
tion cost function so that the compressed latent manifold
contains richer details and semantic information, and the re-
constructed images have improved image quality. Follow-
ing the encoder-decoder (ERGB(·), GRGB(·)) architecture
deployed in most autoencoder-based or VAE-based works

without side information modules, the loss function with
L2 loss is formulated as below:

LRGB = Exrgb∼px
[L2(xrgb, GRGB(Q(ERGB(xrgb))))],

(2)
where Q(·) represents the quantization operator. The zeros
gradient issue of the quantization can be bypassed in Py-
Torch with x=torch.round(x)+x-x.detach() during the gra-
dient updates.

We define the compressed latent manifold as the output
from the encoder ERGB(x), containing the information re-
quired for RGB image reconstruction. The compression ra-
tio is defined as the ratio between the sizes of the input RGB
image and the latent variables, which are quantized to 8-
bit integers. This fixed compression ratio design facilitates
downstream tasks directly on the learned latent manifold.

In conclusion, we prioritize a fixed compression ratio
when designing the compressed domain ISP. VAE-based
compression methods with R-D loss function often result
in overly smoothed reconstruction images when the com-
pression ratio is high, diminishing the effectiveness of the
compressed latent manifold for downstream ISP tasks. Ad-
ditionally, even if entropy encoding is considered, we prefer
a constant compressed size for ISP purposes. This approach
ensures that we allocate a fixed size, as uncertainty in size
allocation would necessitate a larger size regardless. There-
fore, we do not utilize entropy loss in our work.

3.2. RGB-guided raw image compression

The inputs to the camera ISP pipeline are raw images ac-
quired by a certain CFA pattern. Building a compressed
domain ISP directly using raw images is inferior com-
pared to RGB images due to the training difficulty with
high-frequency CFA binary masks, and the latent manifold
trained with single-channel inputs contains fewer details
and semantic information.

To alleviate the difficulties in training and the build-up
of the compressed latent manifold of raw images xraw, we
introduce a novel method where the raw image encoder and
RGB image encoder share the same compressed latent man-
ifold defined by the trained RGB encoder ERGB(·) and de-
coder GRGB(·). The RGB image encoder guides the train-
ing of the raw image encoder ERAW(·) by enforcing the
mapping of the same object or image to the same latent
point. The same encoder network architecture is used and
initialized with the parameters of the RGB encoder. To
ensure the input is compatible with the architecture of the
shared encoder, we rearrange the values from the single-
channel CFA pattern into the three-channel RGB format and
zero-fill the missing values. The loss function for raw image
compression is formulated below,

LRAW = Exrgb∼px
[L1(ERAW(xraw), ERGB(xrgb))]

(3)
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Origin Baseline (x4) [31.92,  0.900] Ours (x4) [36.41,  0.967]

Baseline (x6) [31.18,  0.868] Ours (x6) [33.57,  0.937]

Figure 2. Illustration of RGB image compression with (baseline) and without (ours) entropy encoding loss and auto-regressive module
for side information. Evaluation metrics are shown as [PSNR, SSIM]. For both compression at 4 and 6, training RGB image compression
without entropy encoding yields better image quality with finer details.

Compared with previous work [17], where an RGB
encoder-decoder is also used as a teacher model, the guid-
ance is employed in the training of the RAW domain de-
coder. Here, we guide the RAW domain encoder to map
onto the trained compressed latent manifold. Moreover,
while the ISPs in the cited work are performed on the full
resolution RGB domain, our approach performs ISPs on the
compressed latent manifold.

We choose the L1 loss function to optimize the distance
between the latent variables from the RGB encoder and
RAW encoder. With the aforementioned strategies, it is eas-
ier to train an encoder for raw images.

3.3. Compressed domain ISP downstream tasks

The compressed domain for raw images is designed and
trained with a guided RGB image encoder-decoder, and
the ISP downstream tasks are performed in the compressed
domain. As a proof-of-concept we discuss the designs
for three of these tasks: demosaicing, multi/single -frame
(MF/SF) denoising, and registration.

Compressed domain demosaicing. Demosaicing is a crit-
ical task in a camera ISP pipeline, and our RGB-guided raw
image compression naturally achieves demosaicing in the
compressed domain, because the raw image encoder maps
the input to the same latent point as the corresponding RGB
image encoder. The desired RGB image can be recon-
structed by passing the compressed latent variables of the
raw image ERAW(xraw) to the RGB decoder GRGB. The
loss function in this case can be extended from Eq. (3) to

the formula as below,

LRAW = Exrgb∼px [L1(ERAW(xraw), ERGB(xrgb))

+ λ1 · L2(xrgb, GRGB(Q(ERAW(xraw)))

+ λ2 · R(xrgb, GRGB(Q(ERAW(xraw)))],

(4)

where R is the perceptual loss from VGG16.
Compressed domain denoising. The compressed latent
manifold is expected to preserve noise when reconstruct-
ing images from noisy input images. Unlike current non-
compression joint demosaicing and denoising algorithms,
we choose to employ an additional module in our com-
pressed domain ISP.

Multi-frame averaging is widely used in multi-frame
(MF) camera ISP to reduce noise and preserve details. Sim-
ilarly, in the compressed domain ISP, denoising can be
achieved by averaging the compressed latent variables of
multiple frames. When multi-frame is not available, we can
perform single-frame (SF) AI denoising with a simple Unet
in the compressed domain. The loss function is as follows,

Ldenoise = Ex∼px
[L1(D(ŷn;σ), ŷ)], (5)

where D(·) is the Unet that takes the noisy compressed la-
tent variables as input and generates denoised latent vari-
ables. Denote the compressed latent variables as ŷ =
Q(ERAW(xraw)) from the clean raw image and ŷn =
Q(ERAW(xraw + σ)) from the noisy raw image. The de-
noising module is trained for a fixed noise level σ.
Compressed domain affine registration. When the depth
of the camera scene is large enough, the motion of cam-
era shaking could be simulated with 2D affine registration
consisting of 2D rotation and 2D translation given a short
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shutter time. To estimate the motion, the latent variables of
an original image and a target image with 2D affine trans-
formation are fed into the registration module, and the three
affine parameters are predicted by the registration network.
MSE loss is used for all three parameters.

C5x5, s2: Conv, kernel size 5x5, stride 2.
TC5x5, s2: Transposed conv, kernel size 5x5, stride 2.
WA: windowed attention
GDN: Generalized divisive normalization
IGDN: Inverse generalized divisive normalization

Quan

C5x5, s2

C5x5, s2

C5x5, s2
C5x5, s2

TC5x5, s2

C5x5, s2

T5x5, s2
TC5x5, s2

Encoder Decoder

Figure 3. Network architecture of RGB encoder and decoder. Note
that raw encoder is the same as the RGB encoder: raw image is
zero filled at un-sampled-locations before feeding to the encoder.

4. Experiments
4.1. Experiments setup and implementation details

Training. We implement our proposed compressed domain
ISP and RGB-guided training strategy in PyTorch [30]. As
shown in Figure 3, we adopt the same RGB encoder and de-
coder structure with a window-based attention module with
GDN [3] as proposed in [54]. Note that we don’t include
the auto-regressive module for side information.

For RGB image compression, we randomly choose 300k
images from the OpenImages dataset [22] and randomly
crop them to the size of 256 × 256 to save GPU memory.
We use the Adam optimizer [18] on MSE loss with a batch
size of 64. The initial learning rate is set to 1× 10−4 for 30
epochs, and drops to 3×10−5 for the next 30 epochs. There
are two experiments with two different channel numbers of
latent output: 200 and 120.

For raw image demosaicing, we adopt the same architec-
ture from the RGB encoder and initialize it with the param-
eters of the RGB encoder. The raw images are converted to
RGB by zero-filling pixels before inputting to the network.
We apply additional L1 loss between the output of the RGB
and the raw encoder to enforce identical mapping between
two encoders. We used the same training images from the
OpenImages dataset with simulated Bayer and Tetra CFA
patterns. Note that for high-resolution images, the Tetra
pattern (also known as quad Bayer) is preferred and more
widely used compared with the Bayer pattern. We also ac-
quire 2500 high-resolution (25MP) images and crop them
into 4 equal size patches as an internal dataset. We ran-
domly select 90% of the patches and add them to the train-
ing set. The remaining 10% is used for evaluation. Under

the guidance of the RGB encoder, only 5 epochs are needed
with an initial learning rate of 1 × 10−4. We use λ1 = 0.1
and λ2 = 0.1.

For the compressed domain denoising with a compres-
sion ratio of 4, we conduct two scenarios: 1. Multi-frame
(MF) with direct blending in the compressed domain. 2.
Single-frame (SF) with blind DL denoising module. Signal-
dependent Poisson noise with a mean of 1000 is added to the
raw image. The architecture is illustrated in Figure S1.

For the registration between two frames, we simulate the
2d affine motion of 2d translation (4% of the height and
width) and rotation (-10 degrees to 10 degrees). We train
it with the internal high-resolution dataset only. The archi-
tecture is shown in figure S2. For both denoising and regis-
tration, we train them for 100 epochs with learning rate of
1× 10−4.
Comparisons with SOTA/baselines. To the best of our
knowledge, we are among the first to propose a phone cam-
era ISP pipeline directly in the compressed domain to ad-
dress memory limitations with high-resolution images. As
a result, there is no direct comparison between our method
and existing state-of-the-art (SOTA) methods. However, for
RGB reconstruction, we choose WAM [54] as the baseline.
For raw image demosaicing, we compare against Deep-
joint [12], which operates on noise-free raw images using
Bayer pattern without compression.
Evaluation. We evaluate our proposed method for RGB
image compression and raw image demosaicing by calcu-
lating the average reconstruction performance (PSNR and
SSIM) on commonly used public datasets: Kodak image
set [20], CLIC validation dataset [1], MCM [51], and our
internal DSLR high-resolution dataset. We conduct the ex-
periments under compression ratios of 4 and 6, using both
the Tetra pattern and Bayer pattern. For denoising and regis-
tration, we evaluate them with our internal dataset only as a
proof-of-concept. The compressed domain is motivated and
designed to address the issues of high-resolution images.

4.2. Ablation study

We propose an RGB-guided design strategy for raw im-
age compression, incorporating both initialization from the
RGB encoder and constraints of mapping to the RGB com-
pressed latent manifold. To better reveal the effectiveness
of our proposed strategy, we explore different design strate-
gies for the Tetra pattern, which is widely adopted for high-
resolution images:

1. Use RGB guidance only with initialization. This in-
volves initializing the encoder and decoder with parameters
from the RGB encoder and decoder, respectively. Instead of
mapping the compressed latent manifold to the same man-
ifold defined by RGB compression, we optimize both the
raw encoder and RGB decoder specifically for demosaic-
ing.
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Figure 4. Demosaicing results with a compression ratio of 4 across four datasets (CLIC, KODAK, MCM, and Internal). The baseline
comparison is performed using DeepJoint trained on Bayer pattern. Evaluation metrics include [PSNR,SSIM]. A zoomed-in image, focused
on the content within the yellow box, is provided for detailed analysis.

Noisy: [32.79,0.867] GT MF2: [34.99, 0.939] MF10: [36.19, 0.971]

Zoomed in Recon: [36.87, 0.980] MF5: [35.89, 0.964] SF: [35.60, 0.959]

Figure 5. Denoising results on compressed latent manifold. The evaluation metrics are shown as [PSNR, SSIM]. The single frame denoising
with learned CNN denoiser achieves similar performance compared with an average of 5 independent frames in the compressed domain.
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2. Abandon RGB guidance. Optimize raw encoder and
RGB decoder from scratch.

By sharing the same compressed latent manifold, the ISP
pipeline could compress RGB images and raw images in a
uniform format.

4.3. Visual Quality

Figure 2 shows the RGB compression with (baseline) and
without (ours) entropy encoding and auto-regressive mod-
ule. Our approach outperforms the baseline, showcasing
superior reconstruction quality for compressed domain ISP.
Figures 4 and S3 display visual examples of demosaicing on
datasets with compression ratios of 4 and 6. Our proposed
compressed domain demosaicing framework achieves com-
parable performance to DeepJoint on the majority of im-
ages. Notably, while DeepJoint preserves the details of red
foams better, our framework may exhibit slight blurring in
this aspect, particularly evident in the MCM dataset. Nev-
ertheless, our method generally achieves satisfactory demo-
saicing performance within the compressed domain. Fig-
ure 5 illustrates the denoising ISP performance within the
compressed domain. In the multi-frame scenario, conven-
tional blending exhibits improved performance with an in-
creased number of frames. Conversely, in the single-frame
scenario, a trained denoising module can effectively elimi-
nate noise directly from the compressed domain, while pre-
serving high-frequency details. Figure 6 depicts the visual
outcomes of our high-accuracy registration and warping, as
facilitated by our registration module within the compressed
domain. In real-world scenarios involving multi-frame mo-
tion, the motion range is typically smaller, further highlight-
ing the effectiveness of our approach.

Origin Target Warped

Origin Target Warped

Figure 6. Examples of 2d affine registration results. The registra-
tion module on the latent manifold achieves successful results to
warp the image from the original image to the target image.
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Figure 7. Results of predicted 2d affine parameters from com-
pressed domain and the ground truth.

4.4. Quantitative analysis

Table 1 shows the quantitative results, PSNR and SSIM,
for RGB compression and Raw image demosaicing with
Bayer and Tetra patterns, under compression ratios at 4 and
6. Without entropy encoding loss, our RGB compression
achieves higher metrics. Based on the manifold defined
by RGB compression, our compressed domain demosaic-
ing framework achieves a similar performance as the base-
line. From the comparisons with ablation studies, our RGB-
guided strategy significantly improves the performance.

Table 2 shows the quantitative results of denoising tasks
on the compressed domain. Direct multi-frame blending
(averaging) on compressed variables can reduce the noise
with increased PSNR and SSIM. For a single frame, the
denoising module achieves denoising performance roughly
equivalent to 4 frames blending.

Figure 7 shows the predicted 2d affine parameters and
ground truth. Our registration module can predict high-
accuracy registration parameters directly based on com-
pressed variables. For the registration results, in our inter-
nal test dataset, the average absolute rotation error is 0.43
degrees and x translation error is 2.8 pixels and the y trans-
lation is 3.3 pixels.

4.5. Discussion

Designing the compressed manifold: t is worth noting
that we construct the compressed domain without any con-
straints related to downstream tasks. Our experimental find-
ings in demosaicing, single and multi-frame denoising, and
registration reveal that the knowledge acquired within the
compressed domain is sufficiently robust to yield satisfac-
tory performance.
Entropy loss consideration: The size of entropy encoding
presents a trade-off between the effectiveness of the man-
ifold. Our focus is on designing an effective compressed
latent manifold to compress the raw image, thus conserving
memory by reducing the input size of the ISP modules. As
depicted in Figure 2, optimizing the rate-distortion trade-
off using entropy encoding can result in the loss of fine de-
tails, which are essential for compressed domain ISP. Fur-
thermore, our experiments reveal that simple quantization-
based AI compression is three times faster than entropy en-
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Task Methods CLIC KODAK MCM Internal

Recon WAM(x4) [34.70, 0.934] [34.90, 0.938] [34.27, 0.924] [39.15, 0.963]
Ours(x4) [38.42, 0.974] [39.68, 0.982] [37.42, 0.959] [42.28, 0.984]
WAM(x6) [32.88, 0.890] [32.54, 0.878] [32.13, 0.868] [35.90, 0.913]
Ours(x6) [37.02, 0.961] [37.15, 0.964] [36.73, 0.953] [41.82, 0.981]

Demosaic(B) DeepJoint [37.30, 0.965] [38.98, 0.980] [35.75, 0.942] [40.87, 0.976]
Ours(x4) [37.07, 0.965] [38.25, 0.976] [35.71, 0.944] [41.20, 0.981]
Ours(x6) [34.64, 0.943] [34.65, 0.946] [34.32, 0.931] [39.33, 0.971]

Demosaic(T) Plain(x4) [31.44, 0.910] [31.18, 0.912] [30.21, 0.875] [36.35, 0.955]
Init(x4) [31.70, 0.913] [31.00, 0.915] [30.40, 0.883] [36.47, 0.955]

Ours(x4) [35.50, 0.959] [36.46, 0.969] [33.06, 0.932] [39.35, 0.978]
Plain(x6) [28.98, 0.812] [27.89, 0.823] [28.35, 0.826] [33.87, 0.916]
Init(x6) [31.26, 0.906] [30.80, 0.906] [30.10, 0.873] [36.32, 0.953]

Ours(x6) [33.65, 0.936] [33.83, 0.939] [32.38, 0.914] [38.12, 0.966]

Table 1. Quantitative metrics on RGB compression reconstruction, Bayer (B) raw image demosaicing and Tetra (T) raw image demosaicing.
The numbers in the table are the fashion of [PSNR, SSIM]. Note that our proposed method achieves the best performance compared with
the ablation experiments and similar performance with DeepJoint (trained in image domain) in demosaicing task.

coding with auto-regressive modules. Therefore, we omit
the entropy encoding rate cost and use reconstruction loss
only to improve the capability of the compressed latent
manifold.
Analysis of design degrees of freedom: Our ablation stud-
ies explore the functional guidance provided by RGB image
compression. Our proposed method fully utilizes the assis-
tance of RGB compression. Compared to design choices
without RGB guidance, whether using initialization or not,
our methods achieve superior results. This suggests that the
constraints imposed by RGB guidance are more influential
than the design choices themselves. We can interpret this
as a form of regularization, making optimization easier to
converge into better solutions.
Analysis of denoising ISP task: In our experiments, we
simulate camera noise using Poisson noise, although a
potentially better choice could involve mixed Gaussian-
Poisson noise. In this work, we treat denoising as a super-
vised blind denoising task, training the module for single-
frame denoising or employing simple blending for multi-
frame denoising. However, single-image denoising is lim-
ited by the reduced spatial information due to downsam-
pling operators in the encoder, while blending is constrained
by the mismatch between the assumed i.i.d. zero-mean dis-
tribution and the true distribution in the compressed mani-
fold. Modeling the noise distribution, especially for Poisson
noise, remains a topic for future study, which could further
enhance the performance of the denoising module.
Registration choice: In this work, we illustrate the poten-
tial of our compressed domain ISP for downstream tasks
by designing a module for two-frame 2D affine registration.
It’s worth noting that our current design does not account

Metrics Clean Noisy MF2 MF5 MF10 SF

PSNR 39.35 35.68 37.17 38.21 38.58 37.69
SSIM 0.978 0.918 0.949 0.965 0.970 0.961

Table 2. Quantitative metrics on compressed domain denoising
task with Poisson noise level at K = 1000 in the raw image domain.
MF represents multi-frame averaging. SF represents single-frame
denoising.

for rotation and translation invariant. Consequently, warp-
ing needs to be performed in the image domain rather than
the compressed domain. Future work could focus on de-
signing a method to achieve compressed domain warping
by incorporating constraints during the construction of the
compressed domain manifold.

5. Conclusion
In this work, we introduce a novel concept aimed at real-
izing a mobile camera ISP pipeline directly on the com-
pressed domain to tackle the challenges posed by high
memory consumption from super-high-resolution images.
Our approach involves a unique design strategy where
we utilize the same compressed manifold designed in
RGB image compression and train the raw image encoder
with guidance from the RGB encoder. We show the ca-
pability of this compressed domain ISP by implement-
ing demosaicing, single-frame denoising, multi-frame de-
noising, and registration downstream tasks. Both quan-
titative and visual results provide compelling evidence
that our proposed compressed domain ISP is feasible
and paves the way for further exploration in future stud-
ies.
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[3] Johannes Ballé, Valero Laparra, and Eero P Simoncelli. Den-
sity modeling of images using a generalized normalization
transformation. arXiv preprint arXiv:1511.06281, 2015. 5
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